1
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
2
|
Grabiele M, Aguilera PM, Ducasse DA, Debat HJ. Molecular characterization of the 5S rDNA non-transcribed spacer and reconstruction of phylogenetic relationships in Capsicum. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Capsicum includes ca. 41 species of chili peppers. In this original report we PCR amplified, cloned, sequenced and characterized the 5S rDNA non-transcribed spacer -NTS- in 23 taxa of nine clades of Capsicum, divergent at geographical origin and fruit and chromosome traits, and compared the NTS features throughout Solanaceae. According to GC content, inner variability and regulatory elements, the NTS organizes into three distinct structural regions; genetic variability at the NTS in Capsicum and related genus clusters into defined taxa hierarchies. Based on the reconstruction of a maximum-likelihood phylogenetic tree and phylogenetic networks, NTS sequences of Capsicum and related taxa grouped into well recognized categories -genus, section, clade, species, variety-. An evolutionary scenario arose from combined genetic and phylogenetic NTS data, in which monophyly and lineage diversification over time of Capsicum are addressed. Our analysis is original to include all domesticated species of Capsicum prevailing in germplasm collections and breeding programs, together with a large group of wild taxa that demanded further genetic characterization. The NTS set up as a double purpose marker in Capsicum, to directly evaluate genetic variability and reconstruct phylogenetic relationships to a broad extent, and constitutes a valuable tool for germplasm characterization and evolutionary studies within Solanaceae.
Collapse
|
3
|
de Souza TB, Gaeta ML, Martins C, Vanzela ALL. IGS sequences in Cestrum present AT- and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Mol Biol Rep 2019; 47:55-66. [PMID: 31571109 DOI: 10.1007/s11033-019-05104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The 35S and 5S ribosomal DNA (rDNA) organized in thousands of copies in genomes, have been widely used in numerous comparative cytogenetic studies. Nevertheless, several questions related to the diversity and organization of regulatory motifs in 5S rDNA remain to be addressed. The 5S rDNA unit is composed of a conserved 120 bp length coding region and an intergenic spacer (IGS) containing potential regulatory motifs (Poly-T, AT-rich and GC-rich) differing in number, redundancy and position along the IGS. The Cestrum species (Solanaceae) have large genomes (about 10 pg/1C) and conserved 2n = 16 karyotypes. Strikingly, these genomes show high diversity of heterochromatin distribution, variability in 35S rDNA loci and the occurrence of B chromosomes. However, the 5S rDNA loci are highly conserved in the proximal region of chromosome 8. Comparison of seventy-one IGS sequences in plants revealed several conserved motifs with potential regulatory function. The AT- and GC-rich domains appeared highly conserved in Cestrum chromosomes. The 5S genic and the GC-rich IGS probe produced FISH signals in both A (pair 8) and B chromosomes. The GC-rich domain presented a strong potential for regulation because it may be associated with CpG islands organization, as well as to hairpin and loop organization. Another interesting aspect was the ability of AT- and GC-rich motifs to produce non-heterochromatic CMA/DAPI signals. While the length of the 5S rDNA IGS region varied in size between the Cestrum species, the individual sequence motifs seem to be conserved suggesting their regulatory function. The most striking feature was the conserved GC-rich domain in Cestrum, which is recognized as a signature trait of the proximal region of chromosome pair 8.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Marcos Letaif Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, CEP 18618689, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
4
|
Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene 2018; 650:49-54. [DOI: 10.1016/j.gene.2018.01.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/12/2023]
|
5
|
Ye L, Zhang C, Tang X, Chen Y, Liu S. Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp. BMC Genet 2017; 18:75. [PMID: 28789633 PMCID: PMC5549377 DOI: 10.1186/s12863-017-0542-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ♀) and common carp (Cyprinus carpio L., ♂) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs of the 5S rDNAs in both parental fishes were conserved, while their NTS units seemed to have been subjected to rapid evolution. RESULTS The diploid hybrid 2nF1 inherited all the types of 5S rDNAs in both progenitors and there were no signs of homeologous recombination in the 5S rDNAs of 2nF1 by sequencing of PCR products. We obtained two segments of 5S rDNA with a total length of 16,457 bp from allotetraploid offspring 4nAT through bacterial artificial chromosome (BAC) sequencing. Using this sequence together with the 5S rDNA sequences amplified from the genomic DNA of 4nAT, we deduced that the 5S rDNAs of 4nAT might be inherited from the maternal progenitor red crucian carp. Additionally, the IPRs in the 5S rDNAs of 4nAT contained A-repeats and TA-repeats, which was not the case for the IPRs in the 5S rDNAs of 2nF1. We also detected two signals of a 200-bp fragment of 5S rDNA in the chromosomes of parental progenitors and hybrid progenies by fluorescence in situ hybridization (FISH). CONCLUSIONS We deduced that during the evolution of 5S rDNAs in different ploidy hybrid fishes, interlocus gene conversion events and tandem repeat insertion events might occurred in the process of polyploidization. This study provided new insights into the relationship among the evolution of 5S rDNAs, hybridization and polyploidization, which were significant in clarifying the genome evolution of polyploid fish.
Collapse
Affiliation(s)
- Lihai Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaojun Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyi Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene 2017; 608:20-27. [DOI: 10.1016/j.gene.2017.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
|
7
|
Galián JA, Rosato M, Rosselló JA. Partial Sequence Homogenization in the 5S Multigene Families May Generate Sequence Chimeras and Spurious Results in Phylogenetic Reconstructions. Syst Biol 2014; 63:219-30. [DOI: 10.1093/sysbio/syt101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- José A. Galián
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Marcela Rosato
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Josep A. Rosselló
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| |
Collapse
|
8
|
Gnavi G, Bertea CM, Maffei ME. PCR, sequencing and PCR-RFLP of the 5S-rRNA-NTS region as a tool for the DNA fingerprinting of medicinal and aromatic plants. FLAVOUR FRAG J 2010. [DOI: 10.1002/ffj.1970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Morgan DR, Korn RL, Mugleston SL. Insights into reticulate evolution in Machaerantherinae (Asteraceae: Astereae): 5S ribosomal RNA spacer variation, estimating support for incongruence, and constructing reticulate phylogenies. AMERICAN JOURNAL OF BOTANY 2009; 96:920-32. [PMID: 21628245 DOI: 10.3732/ajb.0800308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although reticulate evolution has been a frequent occurrence during the history of plants, determining how it has contributed to plant evolution will require analyzing many nuclear loci and developing effective analytical methods. The objective of this study was to make progress toward meeting these requirements in the evolutionarily complex subtribe Machaerantherinae. The 5S ribosomal RNA (rRNA) spacer was investigated to characterize its structure and variation. Analysis of the spacer supported relationships that were mostly the same as those supported by ITS and ETS sequence data. Two methods were used to estimate support for 11 occurrences of incongruence between 5S/ITS/ETS and cpDNA data sets. The five best-supported incongruences were proposed to have had reticulate evolutionary histories. For Arida blepharophylla, Xanthisma rhizomatum, and Pyrrocoma, 5S and ITS/ETS evidence supported the same or similar relationships, indicating that these two regions of the nuclear genome were descended from the same ancestor or from two closely related ancestors, with cpDNA coming from a more distantly related ancestor. The 5S and ITS/ETS evidence disagreed on the relationships of Arida riparia, suggesting that its ITS/ETS region came from one ancestor and its 5S region and cpDNA from a different ancestor.
Collapse
Affiliation(s)
- David R Morgan
- Department of Biology, University of West Georgia, Carrollton, Georgia 30118 USA
| | | | | |
Collapse
|
10
|
Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovarík A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 2008; 118:85-97. [PMID: 18779974 DOI: 10.1007/s00412-008-0179-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 08/20/2008] [Indexed: 10/24/2022]
Abstract
Typically in plants, the 5S and 35S ribosomal DNA (rDNA) encoding two major ribosomal RNA species occur at separate loci. However, in some algae, bryophytes and ferns, they are at the same locus (linked arranged). Southern blot hybridisation, polymerase chain reactions (PCR), fluorescent in situ hybridisation, cloning and sequencing were used to reveal 5S and 35S rDNA genomic organisation in Artemisia. We observed thousands of rDNA units at two-three loci containing 5S rDNA in an inverted orientation within the inter-genic spacer (IGS) of 35S rDNA. The sequenced clones of 26-18S IGS from Artemisia absinthium appeared to contain a conserved 5S gene insertion proximal to the 26S gene terminus (5S rDNA-1) and a second less conserved 5S insertion (5S rDNA-2) further downstream. Whilst the 5S rDNA-1 showed all the structural features of a functional gene, the 5S-rDNA-2 had a deletion in the internal promoter and probably represents a pseudogene. The linked arrangement probably evolved before the divergence of Artemisia from the rest of Asteraceae (>10 Myrs). This arrangement may have involved retrotransposons and once formed spread via mechanisms of concerted evolution. Heterogeneity in unit structure may reflect ongoing homogenisation of variant unit types without fixation for any particular variant.
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fulnecek J, Kovarik A. Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana. Mol Genet Genomics 2007; 278:565-73. [PMID: 17671796 DOI: 10.1007/s00438-007-0273-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.
Collapse
Affiliation(s)
- Jaroslav Fulnecek
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i, Kralovopolska 135, 612 65, Brno, Czech Republic.
| | | |
Collapse
|
12
|
Nagy ED, Lee TC, Ramakrishna W, Xu Z, Klein PE, SanMiguel P, Cheng CP, Li J, Devos KM, Schertz K, Dunkle L, Bennetzen JL. Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:961-70. [PMID: 17356869 DOI: 10.1007/s00122-006-0481-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/30/2006] [Indexed: 05/14/2023]
Abstract
Milo disease in sorghum is caused by isolates of the soil-borne fungus Periconia circinata that produce PC-toxin. Susceptibility to milo disease is conditioned by a single, semi-dominant gene, termed Pc. The susceptible allele (Pc) converts to a resistant form (pc) spontaneously at a gametic frequency of 10(-3) to 10(-4). A high-density genetic map was constructed around the Pc locus using DNA markers, allowing the Pc gene to be delimited to a 0.9 cM region on the short arm of sorghum chromosome 9. Physically, the Pc-region was covered by a single BAC clone. Sequence analysis of this BAC revealed twelve gene candidates. Several of the predicted genes in the region are homologous to disease resistance loci, including one NBS-LRR resistance gene analogue that is present in multiple tandem copies. Analysis of pc isolines derived from Pc/Pc sorghum suggests that one or more members of this NBS-LRR gene family are the Pc genes that condition susceptibility.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Ascomycota/pathogenicity
- Chromosomes, Artificial, Bacterial
- Chromosomes, Plant
- Cloning, Molecular
- Crosses, Genetic
- DNA, Plant
- Gene Dosage
- Gene Duplication
- Genes, Dominant
- Genes, Plant
- Genetic Markers
- Genotype
- Molecular Sequence Data
- Physical Chromosome Mapping
- Polymorphism, Single-Stranded Conformational
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Sorghum/genetics
- Toxins, Biological/genetics
Collapse
Affiliation(s)
- Ervin D Nagy
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN. Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 2007; 49:825-39. [PMID: 16936791 DOI: 10.1139/g06-033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleolus organizer region (NOR) and 5S ribosomal RNA (rRNA) genes are valuable as chromosome landmarks and in evolutionary studies. The NOR intergenic spacers (IGS) and 5S rRNA nontranscribed spacers (NTS) were PCR-amplified and sequenced from 5 cultivars of the Andean grain crop quinoa (Chenopodium quinoa Willd., 2n = 4x = 36) and a related wild ancestor (C. berlandieri Moq. subsp. zschackei (Murr) A. Zobel, 2n = 4x = 36). Length heterogeneity observed in the IGS resulted from copy number difference in subrepeat elements, small re arrangements, and species-specific indels, though the general sequence composition of the 2 species was highly similar. Fifteen of the 41 sequence polymorphisms identified among the C. quinoa lines were synapomorphic and clearly differentiated the highland and lowland ecotypes. Analysis of the NTS sequences revealed 2 basic NTS sequence classes that likely originated from the 2 allopolyploid subgenomes of C. quinoa. Fluorescence in situ hybridization (FISH) analysis showed that C. quinoa possesses an interstitial and a terminal pair of 5S rRNA loci and only 1 pair of NOR, suggesting a reduction in the number of rRNA loci during the evolution of this species. C. berlandieri exhibited variation in both NOR and 5S rRNA loci without changes in ploidy.
Collapse
Affiliation(s)
- P J Maughan
- Brigham Young University, Department of Plant & Animal Sciences, Provo, UT 84602, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:907-19. [PMID: 17227546 DOI: 10.1111/j.1365-313x.2006.02930.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.
Collapse
Affiliation(s)
- K Yoong Lim
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fulnecek J, Matyasek R, Kovarik A. Plant 5S rDNA has multiple alternative nucleosome positions. Genome 2006; 49:840-50. [PMID: 16936792 DOI: 10.1139/g06-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants, 5S ribosomal DNA (5S rDNA) is typically found in hundreds of copies of tandemly arranged units. Nucleotide database searches revealed that the majority of 5S genes (>90%) have repeat lengths that are not simple multiples of a plant nucleosomal unit, ranging in plants from 175-185 bp. To get insight into the chromatin structure, we have determined positions of nucleosomes in the Nicotiana sylvestris and Nicotiana tomentosiformis 5S rDNA units with repeat lengths of about 430 and 645 bp, respectively. Mapping experiments carried out on isolated nucleo somal DNA revealed many (>50) micrococcal nuclease cleavage sites in each class of repeats. Permutation analysis and theoretical computer prediction showed multiple DNA bend sites, mostly located in the nontranscribed spacer region. The distance between bend sites, however, did not correspond to the average spacing of nucleosomes in 5S chromatin (approximately 180 bp). These data indicate that 5S rDNA does not have fixed nucleosomal positioning sites and that units can be wrapped in a number of alternative nucleosome frames. Consequently, accessibility of transcription factors to cognate motifs might vary across the tandem array, potentially influencing gene expression.
Collapse
Affiliation(s)
- Jaroslav Fulnecek
- Institute of Biophysics, Academy of Scences of Czech Republic, Kralovopolska, Czech Republic
| | | | | |
Collapse
|
16
|
Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR. Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). THE NEW PHYTOLOGIST 2005; 168:241-52. [PMID: 16159337 DOI: 10.1111/j.1469-8137.2005.01480.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we analyze long-term evolution in Nicotiana allopolyploid section Repandae (the closest living diploids are N. sylvestris, the maternal parent, and N. obtusifolia, the paternal parent). We compare data with other more recently formed Nicotiana allopolyploids. We investigated 35S and 5S nuclear ribosomal DNA (rDNA) chromosomal location and unit divergence. A molecular clock was applied to the Nicotiana phylogenetic tree to determine allopolyploid ages. N. tabacum and species of Repandae were c. 0.2 and 4.5 Myr old, respectively. In all Repandae species, the numbers of both 35S and 5S rDNA loci were less than the sum of those of the diploid progenitors. Trees based on 5S rDNA spacer sequences indicated units of only the paternal parent. In recent Nicotiana allopolyploids, the numbers of rDNA loci equal the sum of those of their progenitors. In the Repandae genomes, diploidization is associated with locus loss. Sequence analysis indicates that 35S and 5S units most closely resemble maternal and paternal progenitors, respectively. In Nicotiana, 4.5 Myr of allopolyploid evolution renders genomic in situ hybridization (GISH) unsuitable for the complete resolution of parental genomes.
Collapse
Affiliation(s)
- James J Clarkson
- Jodrell Laboratory, Royal Botanic Gasrdens, Kew, Richmond, Surrey, TW9 3DS, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Lim KY, Matyasek R, Kovarik A, Fulnecek J, Leitch AR. Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploid Nicotiana rustica compared with diploid progenitors N. paniculata and N. undulata. Cytogenet Genome Res 2005; 109:298-309. [PMID: 15753590 DOI: 10.1159/000082413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 03/26/2004] [Indexed: 12/13/2022] Open
Abstract
Nicotiana rustica (2n = 4x = 48) is a natural allotetraploid composed of P and U genomes which are closely related to genomes of diploid species N. paniculata and N. undulata. Genomic in situ hybridization (GISH) also confirms that the diploid parents, or close relatives, are the ancestors of N. rustica. In order to study genetic interactions between ancestral genomes in the allotetraploid, we isolated three families of repetitive sequences, two from N. paniculata (NPAMBE and NPAMBO) and one from N. undulata (NUNSSP). Southern blot hybridization revealed that the sequences are digested with a range of restriction enzymes into regular ladder patterns indicating a tandem arrangement of high copy repeats possessing monomeric units of about 180 bp. The three-tandem sequences belong to a larger Nicotiana tandem repeat family called here the HRS-60 family. Members of this family are found in all Nicotiana species studied. Fluorescence in situ hybridization (FISH) analysis localized the satellite repeats to subtelomeric regions of most chromosomes of N. paniculata and N. undulata. The pattern of sequence distribution on the P- and U-genomes of N. rustica was similar to the putative parents N. paniculata and N. undulata respectively. However, NPAMBO repeats appear to be reduced and rearranged in N. rustica that may suggest evolution within the P genome. GISH and FISH with the tandem repeat probes failed to reveal intergenomic translocations as might be predicted from the nucleocytoplasmic interaction hypothesis.
Collapse
Affiliation(s)
- K Y Lim
- School of Biological Sciences, Queen Mary University of London, London, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Pires JC, Lim KY, Kovarík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE. Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. AMERICAN JOURNAL OF BOTANY 2004; 91:1022-35. [PMID: 21653458 DOI: 10.3732/ajb.91.7.1022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tragopogon mirus and T. miscellus (both 2n = 4x = 24) are recent allotetraploids derived from T. dubius × T. porrifolius and T. dubius × T. pratensis (each 2n = 2x = 12), respectively. The genome sizes of T. mirus are additive of those of its diploid parents, but at least some populations of T. miscellus have undergone genome downsizing. To survey for genomic rearrangements in the allopolyploids, four repetitive sequences were physically mapped. TPRMBO (unit size 160 base pairs [bp]) and TGP7 (532 bp) are tandemly organized satellite sequences isolated from T. pratensis and T. porrifolius, respectively. Fluorescent in situ hybridization to the diploids showed that TPRMBO is a predominantly centromeric repeat on all 12 chromosomes, while TGP7 is a subtelomeric sequence on most chromosome arms. The distribution of tandem repetitive DNA loci (TPRMBO, TGP7, 18S-5.8S-26S rDNA, and 5S rDNA) gave unique molecular karyotypes for the three diploid species, permitting the identification of the parental chromosomes in the polyploids. The location and number of these loci were inherited without apparent changes in the allotetraploids. There was no evidence for major genomic rearrangements in Tragopogon allopolyploids that have arisen multiple times in North America within the last 80 yr.
Collapse
Affiliation(s)
- J Chris Pires
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sýkorová E, Lim KY, Fajkus J, Leitch AR. The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres. Chromosoma 2003; 112:164-72. [PMID: 14530986 DOI: 10.1007/s00412-003-0256-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 08/01/2003] [Accepted: 09/02/2003] [Indexed: 10/26/2022]
Abstract
The genus Cestrumin the Solanaceae family is unusual in lacking Arabidopsis-type telomeres (TTTAGGG)n, although short interstitial telomeric sequences (ITSs) occur scattered throughout the genome in both orientations. To isolate candidate telomeric sequences in Cestrum we assumed that some of the ITSs were residues of the original telomeres and that they may still be located in the vicinity of present-day telomeres. Three sequence types associated with ITSs were cloned and characterized; these were termed NA3G, BR23 and A/T-rich minisatellite. These high copy number sequences are dispersed across the genome and clustered at a number of chromosomal loci. Their association with ITSs, which can act as recombination hotspots, might indicate past recombination and chromosomal fusion events, processes that may have contributed to the large size of Cestrum chromosomes. The sequences are frequently arranged as NA3G-ITS-BR23 blocks embedded in an A/T-rich minisatellite array. The A/T-rich minisatellite is of particular interest because the consensus 5'-T(4-5)AGCAG-3' might be a derivative of "typical" eukaryotic telomeric sequence motifs. The sequence is abundant at the end of some chromosomes in C. parqui and is found not only in Cestrum but also in the closely related genera Sessea and Vestia, which also lack Arabidopsis-type telomeric sequences. However, the sequence is absent from the Solanaceae genera investigated that are outside the group, including the closely related genus Streptosolen, which all have the Arabidopsis-type telomere. The data indicate that the A/T rich minisatellite might have evolved in response to the loss of Arabidopsis-type telomeres.
Collapse
Affiliation(s)
- Eva Sýkorová
- School of Biological Sciences, Queen Mary, University of London, E1 4NS, UK
| | | | | | | |
Collapse
|
20
|
Matyasek R, Lim KY, Kovarik A, Leitch AR. Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity (Edinb) 2003; 91:268-75. [PMID: 12939628 DOI: 10.1038/sj.hdy.6800333] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Genomic in situ hybridisation was used to confirm that Nicotiana rustica (2n=4x=48) is an allotetraploid between N. paniculata (2n=2x=24, maternal P-genome donor) and N. undulata (2n=2x=24, paternal U-genome donor), their progenitors or species closely related to them. Fluorescent in situ hybridisation showed that N. paniculata has one 5S and two 18-5.8-26S rDNA loci whereas N. undulata has an additional 18-5.8-26S rDNA locus. N. rustica has the sum of the loci found in these putative parents. The sizes of the 18-5.8-26S rDNA loci indicate that the number of rDNA units on the U-genome chromosomes has amplified; perhaps this is associated with a concomitant reduction in the number of units on P-genome chromosomes. Restriction fragment length polymorphism analysis of the intergenic spacer (IGS) of the 18-5.8-26S rDNA units in N. rustica and the two progenitor diploids revealed that about 80% of IGS sequences in N. rustica are of an N. undulata type and 20% of N. paniculata type. These data indicate that interlocus sequence homogenisation has caused the replacement of many N. paniculata-type IGSs in N. rustica with an N. undulata-type of sequence. It is probable that subsequent to this replacement there has been sequence divergence at the 5' end of the IGS. As in tobacco, an allotetraploid between N. sylvestris and N. tomentosiformis, the direction of the IGS interlocus conversion is towards the paternal genome donor.
Collapse
Affiliation(s)
- R Matyasek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
21
|
Cloix C, Yukawa Y, Tutois S, Sugiura M, Tourmente S. In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:251-261. [PMID: 12848829 DOI: 10.1046/j.1365-313x.2003.01793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In vivo, we have already shown that only two of the 5S rDNA array blocks of the Arabidopsis thaliana genome produce the mature 5S rRNAs. Deletions and point mutations were introduced in an Arabidopsis 5S rDNA-transcribed region and its 5'- and 3'-flanks in order to analyse their effects on transcription activity. In vitro transcription revealed different transcription control regions. One control region essential for transcription initiation was identified in the 5'-flanking sequence. The major sequence determinants were a TATA-like motif (-28 to -23), a GC dinucleotide (-12 to -11), a 3-bp AT-rich region (-4 to -2) and a C residue at -1. They are important for both accurate transcription initiation and transcription efficiency. Transcription level was regulated by polymerase III (Pol III) re-initiation rate as in tRNA genes in which TATA-like motif is involved. Active 5S rDNA transcription additionally required an intragenic promoter composed of an A-box, an Intermediate Element (IE) and a C-box. Double-stranded oligonucleotides corresponding to different fragments of the transcribed region, used as competitors, revealed the main importance of internal promoter elements. A stretch of four T is sufficient for transcription termination. Transcription of Arabidopsis 5S rDNA requires 30 bp of 5'-flanking region, a promoter internal to the transcribed region, and a stretch of T for transcription termination.
Collapse
Affiliation(s)
- Catherine Cloix
- U. M. R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:283-291. [PMID: 12713535 DOI: 10.1046/j.1365-313x.2003.01731.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using slot-blot and fluorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum species we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini. An analysis of related genera Vestia and Sessea indicates that they too lack the Arabidopsis-type telomere, and the sequences were lost in the common ancestor of these genera. We found that the Cestrum species investigated had particularly large mean chromosome sizes. We discuss whether this is a consequence of alternative telomere end maintenance systems.
Collapse
Affiliation(s)
- Eva Sykorova
- School of Biological Sciences, Queen Mary University of London, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Matyácek R, Fulnecek J, Lim KY, Leitch AR, Kovarík A. Evolution of 5S rDNA unit arrays in the plant genus Nicotiana (Solanaceae). Genome 2002; 45:556-62. [PMID: 12033624 DOI: 10.1139/g02-017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotiana tabacum (tobacco, Solanaceae) has two 5S ribosomal DNA (rDNA) families, one of unit length approximately 646 bp and the other -430 bp, that differ in the length of the 5S rDNA non-transcribed spacer (NTS). The long 5S rDNA family, found on the T genome of tobacco and in Nicotiana tomentosiformis, contains a GC-rich subregion that is absent in the short family. We designed primers for this subregion and generated a probe that we used against a range of Nicotiana and related Solanaceous species. We demonstrated the presence of the GC-rich subregion in a range of Nicotiana species, but it was absent in Nicotiana sylvestris, Nicotiana longiflora, and two closely related genera, Petunia and Solanum. These data suggest that this subregion of the NTS is likely to have evolved with the genus Nicotiana. The absence of the subregion in N. sylvestris and N. longiflora is likely to have arisen by a deletion event in the evolution of section alatae. We demonstrate patterns of evolution in the 5S rDNA unit cluster in relation to a phylogenetic reconstruction of species relationships in section tomentosae. Nicotiana glutinosa diverged early from the section and contains a 5S rDNA family based on a 550-bp unit. After this divergence, 430- and 650-bp rDNA unit families evolved. The 650-bp family is found in all species of tomentosae (except N. glutinosa) and in tobacco. The 430-bp family within tomentosae includes the GC-rich subregion and is thus unrelated to the 430-bp family in N. sylvestris. Nicotiana setchellii is unusual in that it has three 5S rDNA loci, including one locus that is exceptionally large. This species, unique to tomentosae, has a very abundant 900-bp unit family. It is possible that this 900-bp family occurs on this one large locus. In N. tomentosa and N. kawakamii, the 650-bp family is predominant, whereas N. tomentosiformis and N. otophora have only the 650-bp family. There is no clear relationship between the number of 5S families and the number of 5S rDNA loci. Certainly the replacement of 5S rDNA units, perhaps by gene conversion, has occurred repeatedly in the evolution of genus Nicotiana.
Collapse
Affiliation(s)
- R Matyácek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno
| | | | | | | | | |
Collapse
|
24
|
Mathieu O, Yukawa Y, Sugiura M, Picard G, Tourmente S. 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:313-23. [PMID: 11844108 DOI: 10.1046/j.0960-7412.2001.01212.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Methylation has often been correlated with transcriptional inhibition of genes transcribed by polymerase II, but its role on polymerase III genes is less well understood. Using the genomic sequencing technique, we have analysed the methylation pattern of the different 5S-rDNA arrays of the Arabidopsis genome. Every cytosine position within the 5S sequence is highly methylated whatever the context - CpG, CpNpG or non-symmetrical. The methylation pattern of both transcribed and non-transcribed 5S units is similar, with no preferential methylated or unmethylated site. These results, taken together with 5-azacytidine treatments and in vitro transcription experiments using methylated 5S templates, demonstrate that 5S rRNA gene transcription is not inhibited by methylation. Non-transcribed 5S arrays are more subject to transition mutations resulting from deamination of 5-methylcytosines, leading to CpG depletions and an increasing A + T content. As there were no detectable differences in methylation, this implies more efficient repair and/or selection pressure in transcribed 5S-blocks.
Collapse
Affiliation(s)
- Olivier Mathieu
- U.M.R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Fulnecek J, Lim KY, Leitch AR, Kovarík A, Matyásek R. Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity (Edinb) 2002; 88:19-25. [PMID: 11813102 DOI: 10.1038/sj.hdy.6800001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022] Open
Abstract
Nicotiana tabacum (tobacco) is an allotetraploid derived from ancestors of the modern diploids, N. sylvestris and N. tomentosiformis. We identified and characterized two distinct families of 5S ribosomal DNA (rDNA) in N. tabacum; one family had an average 431 bp unit length and the other a 646 bp unit length. In the diploid species, N. sylvestris and N. tomentosiformis, the 5S rDNA unit lengths are 431 bp and 644 bp respectively. The non-coding spacer sequence of the short unit in tobacco had high sequence homology to the spacer of N. sylvestris5S rDNA, while the longer spacer of tobacco had high homology with the 5S spacer of N. tomentosiformis. This suggests that the two 5S families in tobacco have their origin in the diploid ancestors. The longer spacer sequence had a GC rich sub-region (called the T-genome sub-region) that was absent in the short spacer. Pulsed field gel analysis and fluorescent in situ hybridization to tobacco metaphase chromosomes showed that the two families of 5S rDNA units are spatially separate at two chromosomal loci, on chromosomes S8 (short family) and T8 (long family). The repeat copy number at each chromosomal locus showed heterogeneity between different tobacco cultivars, with a tendency for a decrease in the copy number of one family to be compensated by an increase in the copy number of the second family. Sequence analysis reveals there is as much diversity in 5S family units within the diploid species as there is within the T and S-genome 5S family units respectively, suggesting 5S diversification within each family had occurred before tobacco speciation. There is no evidence of interlocus homogenization of the two 5S families in tobacco. This is therefore substantially different to 18-26S rDNA where interlocus gene conversion has substantially influenced most sequences of S and T genome origin; possible reasons are discussed.
Collapse
Affiliation(s)
- J Fulnecek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Cloix C, Tutois S, Yukawa Y, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S. Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 2002; 12:132-44. [PMID: 11779838 PMCID: PMC155267 DOI: 10.1101/gr.181301] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 10/26/2001] [Indexed: 11/25/2022]
Abstract
One major 5S RNA, 120 bases long, was revealed by an analysis of mature 5S RNA from tissues, developmental stages, and polysomes in Arabidopsis thaliana. Minor 5S RNA were also found, varying from the major one by one or two base substitutions; 5S rDNA units from each 5S array of the Arabidopsis genome were isolated by PCR using CIC yeast artificial chromosomes (YACs) mapped on the different loci. By using a comparison of the 5S DNA and RNA sequences, we could show that both major and minor 5S transcripts come from only two of the genomic 5S loci: chromosome 4 and chromosome 5 major block. Other 5S loci are either not transcribed or produce rapidly degraded 5S transcripts. Analysis of the 5'- and 3'-DNA flanking sequence has permitted the definition of specific signatures for each 5S rDNA array.
Collapse
Affiliation(s)
- Catherine Cloix
- U.M.R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Röser M, Winterfeld G, Grebenstein B, Hemleben V. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 2001; 21:198-217. [PMID: 11697916 DOI: 10.1006/mpev.2001.1003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5S rDNA repeats studied in five genera of Aveneae have lengths between 285 and 329 bp (Avena sativa, Avena macrostachya, 26 species of Helictotrichon, Pseudarrhenatherum longifolium, Lagurus ovatus, and Trisetum spicatum). In only a single species (Helictotrichon aetolicum) an additional repeat of 456 bp occurs infrequently. Variation is largely due to insertions or deletions in the nontranscribed spacer as determined from sequences of 163 independent clones. The 5S gene of the Aveneae studied is conserved in length and sequence except for Helictotrichon bromoides and Helictotrichon marginatum in which duplications occur at two different sites. This new type of duplication and all duplications reported to date in 5S genes of angiosperms are shown to center on defined palindromic sequences. The "uncommon" 5S gene sequences detected in some Aveneae are not necessarily nonfunctional as pseudogenes because the essential features of the internal control region are maintained even after such duplication events. In each instance such gene sequences have spacers with unmodified structure, indicating that change in gene sequence is not necessarily coupled with change in adjacent spacers. The value of 5S spacer sequences for genomic identifications in Aveneae is exemplified in A. macrostachya (perennial), A. sativa (annual), and several diploid taxa of the genus Helictotrichon.
Collapse
MESH Headings
- Avena/classification
- Avena/genetics
- Base Composition
- Base Sequence
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Genes, Plant/genetics
- Genetic Variation
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Physical Chromosome Mapping
- RNA, Ribosomal, 5S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M Röser
- Institute of Geobotany, University of Halle-Wittenberg, Neuwerk 21, D-06099 Halle, Germany
| | | | | | | |
Collapse
|
28
|
Adams SP, Hartman TP, Lim KY, Chase MW, Bennett MD, Leitch IJ, Leitch AR. Loss and recovery of Arabidopsis-type telomere repeat sequences 5'-(TTTAGGG)(n)-3' in the evolution of a major radiation of flowering plants. Proc Biol Sci 2001; 268:1541-6. [PMID: 11487399 PMCID: PMC1088775 DOI: 10.1098/rspb.2001.1726] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescent in situ hybridization and Southern blotting were used for showing the predominant absence of the Arabidopsis-type telomere repeat sequence (TRS) 5'-(TTTAGGG)(n)-3' (the 'typical' telomere) in a monocot clade which comprises up to 6300 species within Asparagales. Initially, two apparently disparate genera that lacked the typical telomere were identified. Here, we used the new angiosperm phylogenetic classification for predicting in which other related families such telomeres might have been lost. Our data revealed that 16 species in 12 families of Asparagales lacked typical telomeres. Phylogenetically, these were clustered in a derived clade, thereby enabling us to predict that the typical telomere was lost, probably as a single evolutionary event, following the divergence of Doryanthaceae ca. 80--90 million years ago. This result illustrates the predictive value of the new phylogeny, as the pattern of species lacking the typical telomere would be considered randomly placed against many previous angiosperm taxonomies. Possible mechanisms by which chromosome end maintenance could have evolved in this group of plants are discussed. Surprisingly, one genus, Ornithogalum (Hyacinthaceae), which is central to the group of plants that have lost the typical telomere, appears to have regained the sequences. The mechanism(s) by which such recovery may have occurred is unknown, but possibilities include horizontal gene transfer and sequence reamplification.
Collapse
Affiliation(s)
- S P Adams
- School of Biological Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
James TY, Moncalvo JM, Li S, Vilgalys R. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 2001; 157:149-61. [PMID: 11139499 PMCID: PMC1461461 DOI: 10.1093/genetics/157.1.149] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The common split-gilled mushroom Schizophyllum commune is found throughout the world on woody substrates. This study addresses the dispersal and population structure of this fungal species by studying the phylogeny and evolutionary dynamics of ribosomal DNA (rDNA) spacer regions. Extensive sampling (n = 195) of sequences of the intergenic spacer region (IGS1) revealed a large number of unique haplotypes (n = 143). The phylogeny of these IGS1 sequences revealed strong geographic patterns and supported three evolutionarily distinct lineages within the global population. The same three geographic lineages were found in phylogenetic analysis of both other rDNA spacer regions (IGS2 and ITS). However, nested clade analysis of the IGS1 phylogeny suggested the population structure of S. commune has undergone recent changes, such as a long distance colonization of western North America from Europe as well as a recent range expansion in the Caribbean. Among all spacer regions, variation in length and nucleotide sequence was observed between but not within the tandem rDNA repeats (arrays). This pattern is consistent with strong within-array and weak among-array homogenizing forces. We present evidence for the suppression of recombination between rDNA arrays on homologous chromosomes that may account for this pattern of concerted evolution.
Collapse
Affiliation(s)
- T Y James
- Department of Botany, Duke University, Durham, North Carolina 27708-0338, USA.
| | | | | | | |
Collapse
|
30
|
Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 2000; 10:679-90. [PMID: 10810091 PMCID: PMC310874 DOI: 10.1101/gr.10.5.679] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1999] [Accepted: 03/08/2000] [Indexed: 11/24/2022]
Abstract
A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning approximately 1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units exist: the major variant with 0.5-kb repeats and one with short repeats (251 bp) only detected on YAC 11A3 from chromosome 3. Although the 38 sequences displayed noticeable heterogeneity, we were able to group them according to their 5S array origin. The presence of 5S array-specific variants was confirmed with the restriction polymorphism study of all the YACs carrying 5S units.
Collapse
MESH Headings
- Animals
- Arabidopsis/genetics
- Base Sequence
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Contig Mapping
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic/genetics
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 5S/genetics
- Xenopus
Collapse
Affiliation(s)
- C Cloix
- Unité Mixte de Recherche, 6547 BIOMOVE, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Park YK, Park KC, Park CH, Kim NS. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 2000; 10:18-24. [PMID: 10774742 DOI: 10.1007/s10059-000-0018-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens.
Collapse
MESH Headings
- Base Sequence
- Capsicum/genetics
- Child, Preschool
- Chromosome Mapping
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genes, rRNA/genetics
- Genetic Variation
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Plants, Medicinal
- Polymerase Chain Reaction
- RNA, Ribosomal, 5S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Y K Park
- Division of Applied Plant Sciences, Kangwon National University, Chunchon, Korea
| | | | | | | |
Collapse
|
32
|
Matousek J, Junker V, Vrba L, Schubert J, Patzak J, Steger G. Molecular characterization and genome organization of 7SL RNA genes from hop (Humulus lupulus L.). Gene 1999; 239:173-83. [PMID: 10571047 DOI: 10.1016/s0378-1119(99)00352-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A wide spectrum of hop 7SL RNA-encoding sequences was detected by temperature gradient-gel electrophoresis. Four hop 7SL RNA genes were cloned and characterized. A new subvariant of the upstream sequence element (USE) 5'TCCCACATGG 3' and two distinct variants of TATA signal were found at positions characteristic for RNA polymerase III-driven transcription in plants. In addition, a more distant conserved sequence element 5' CATGTATAAACTTTCTGC 3' was present in all cloned genes, about 160 bp upstream of the 7SL RNA coding sequence. Consensus secondary structures calculated for hop 7SL RNAs revealed characteristic features, although some structure differences from formerly published models were predicted. Specific in-vitro transcription of plant 7SL RNA genes was observed in a heterologous system (HeLa extract). This in-vitro transcription assay showed significant differences among individual clones in transcription rates, suggesting the requirement of complexity of 7SL RNA sequence for its efficient transcription in HeLa extract. Southern blot analysis of hop DNA revealed 12 7SL-specific signals corresponding to HindIII fragments ranging from 0.45 to 7.8 kb. Several 7SL RNA-encoding sequences and various intergenic spacers were amplified from the individual HindIII fragments of about 1.3 and 2.8 kb. These facts suggest that at least some of the hop 7SL RNA genes are organized in genomic clusters.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genes, Plant/genetics
- Genome, Plant
- HeLa Cells
- Humans
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Phylogeny
- RNA, Small Cytoplasmic/genetics
- Rosales/chemistry
- Rosales/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Signal Recognition Particle/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J Matousek
- Institute of Plant Molecular Biology AS CR, Ceske Budejovice, Czech Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Trontin JF, Grandemange C, Favre JM. Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb.) Carr.). Genome 1999. [DOI: 10.1139/g99-015] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S ribosomal DNA unit structure and organization have been investigated in Larix decidua and Larix kaempferi using selective amplification of gene and spacer, sequence analysis and homologous probe hybridization. Two highly divergent unit size classes of approximately 650 and 870 bp were detected in both species. Sequence analysis in Larix decidua revealed that length variations occur in the middle spacer region and are the result of duplications (in the long spacers) and considerable sequence heterogeneity. Conversely, the transcribed region is of uniform length (120 bp), and the nucleotide sequence of one Larix decidua clone is similar to that reported for other gymnosperms. Sequence comparison of the larch spacers with two other Pinaceae species (Pinus radiata and Picea glauca) showed that the 5' and 3' regions flanking the gene (40 and 60 bp, respectively) are quite conserved, suggesting a regulatory role. Moreover, a small element of about 70 bp located in the middle spacer region was found to be common to the larch long units and the six Pinus radiata spacer clones previously sequenced (64% sequence identity). The short and long unit size classes are mainly organized in composite tandem array(s) with evidence of extensive zones of strict alternation in both species. Mechanisms underlying this unusual association of divergent units in larch 5S rDNA arrays are discussed.Key words: 5S rRNA genes, spacer variations, cluster organization, sequence comparison, Gymnosperms.
Collapse
|
34
|
Rasmussen SK, Avato P. Characterization of chromosomes and genome organization of Thapsia garganica L. by localizations of rRNA genes using fluorescent in situ hybridization. Hereditas 1999; 129:231-9. [PMID: 10319718 DOI: 10.1111/j.1601-5223.1998.t01-1-00231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The karyotype (2n = 22) of Thapsia garganica L. (Apiaceae, Apioideae, Laserpitieae) was constructed using molecular cytogenetics. The size of the 22 chromosomes ranged between 5 and 10 microns. Two chromosomes had satellites on the short arms. The 18S-5.8S-26S rDNA genes were located to the two satellites by fluorescent in situ hybridization (FISH). The 5S rDNA repeat unit was amplified and located by FISH to one pair of the non-satellited chromosomes. Sequencing 5S rDNA of T. garganica revealed two classes of genes based on distinct intergenic spacer regions of 191/193-bp and 181-bp. respectively. The ITS1 and ITS2 of the 18S-5.8S-26S repeats were also amplified and phylogenetic analysis placed T. garganica in a distinct clade from the Daucus clade containing Laserpitium sp. The organization of T. garganica L. genome is tentatively divided in group A of 14 chromosomes with median centromere and of which one pair (q/p 1.22) contains single 5S rDNA locus on the long arm. Group B consists of six chromosomes with subterminal centromeres (q/p between 4.23 and 7.92) and finally group C with the satellited chromosome pair containing the 18S-5.8S-26S rDNA locus at the secondary constriction.
Collapse
Affiliation(s)
- S K Rasmussen
- Risø National Laboratory, Plant Biology and Biogeochemistry Department, Roskilde, Denmark.
| | | |
Collapse
|
35
|
Lee Y, Wong WM, Guyer D, Erkine AM, Nazar RN. In vivo analyses of upstream promoter sequence elements in the 5 S rRNA gene from Saccharomyces cerevisiae. J Mol Biol 1997; 269:676-83. [PMID: 9223632 DOI: 10.1006/jmbi.1997.1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Upstream promoter elements of the Saccharomyces cerevisiae 5 S rRNA gene have been characterized by genomic DNase I "footprinting" and by in vivo mutational analyses using base substitutions and deletions. A high copy shuttle-vector was used to efficiently express the mutant 5 S rRNA genes in vivo and a structural mutation in the 5 S rRNA, which was previously shown to be functionally neutral but easily detected by gel electrophoresis, allowed for an accurate measure of gene expression. The results provide direct evidence for upstream regulatory elements which confirms a start site element (sse) from -1 to -8 and identifies a new independent upstream promoter element (upe) centered from about -17 to -20. In contrast to previous reports with reconstituted systems, both elements dramatically affect the efficiency of gene expression and suggest that the saturated conditions which are used in reconstituted studies mask sequence dependence; a dependency that could be physiologically significant and play a role in the regulation of 5 S rRNA expression. The footprint analyses support an extended region of protein interaction as recently observed in reconstituted systems but again provide evidence of significant structural rearrangements when the upstream sequence is changed.
Collapse
Affiliation(s)
- Y Lee
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Danna KJ, Workman R, Coryell V, Keim P. 5S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 1996; 39:445-55. [DOI: 10.1139/g96-056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization of 5S rRNA genes in plants belonging to tribe Phaseoleae was investigated by clamped homogeneous electric field gel electrophoresis and Southern blot hybridization. Representatives of subtribe Glycininae included the diploid species Neonotonia wightii and Teramnus labialis, as well as three soybean accessions: an elite Glycine max (L.) Merr. cultivar (BSR101), an unadapted G. max introduction (PI 437.654), and a wild Glycine soja (PI 468.916). A cultivar of Phaseolus vulgaris (kidney bean), a member of subtribe Phaseolinae, was also examined. We determined the number of 5S rDNA arrays and estimated the size and copy number of the repeat unit for each array. The three soybean accessions all have a single 5S locus, with a repeat unit size of ~345 bp and a copy number ranging from about 600 in 'BSR101' to about 4600 in the unadapted soybean introduction. The size of the 5S gene cluster in 'BSR101' is the same in roots, shoots, and trifoliate leaves. Given that the genus Glycine probably has an allotetraploid origin, our data strongly suggest that one of the two progenitor 5S loci has been lost during diploidization of soybean. Neonotonia wightii, the diploid species most closely related to soybean, also has a single locus but has a repeat unit of 520 bp and a copy number of about 1300. The more distantly related species T. labialis and P. vulgaris exhibited a more complex arrangement of 5S rRNA genes, having at least three arrays, each comprising a few hundred copies of a distinct repeat unit. Although each array in P. vulgaris exhibits a high degree of homogeneity with regard to the sequence of the repeat unit, heterogeneity in array size (copy number) was evident when individual plants were compared. A cis-dependent molecular drive process, such as unequal crossing-over, could account for both the homogenization of repeat units within individual arrays and the observed variation in copy number among individuals. Key words : pulsed-field gel electrophoresis, rRNA genes, soybean, tandem arrays.
Collapse
|
37
|
Zanke C, Borisjuk N, Ruoss B, Schilde-Rentschler L, Ninnemann H, Hemleben V. A specific oligonucleotide of the 5S rDNA spacer and species-specific elements identify symmetric somatic hybrids between Solanum tuberosum and S. pinnatisectum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:720-726. [PMID: 24174033 DOI: 10.1007/bf00222139] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/1994] [Accepted: 07/28/1994] [Indexed: 06/02/2023]
Abstract
The nucleotide sequences of the 5S rRNA genes (5S rDNA) of two Solanum tuberosum breeding lines (R1 and B15) and of the Mexican wild species S. pinnatisectum were determined and compared with each other and to the 5S rDNA of other Solanaceae species (Lycopersicon esculentum, Nicotiana rustica and Petunia hybrida). The 5S rDNA repeats of the Solanum species are 324-329 bp in length, and they exhibit 91-95% sequence identity. Sequence variability is mainly located in a short region of the spacer separating the 5S rRNA coding regions. A synthetic 28-mer oligonucleotide constructed according to this region can be used as a specific hybridization probe to distinguish symmetric somatic hybrids between S. tubersosum breeding line B15 and S. pinnatisectum produced by protoplast fusion. Interestingly, the two Solanum breeding lines R1 and B15 differ also in this spacer region.
Collapse
Affiliation(s)
- C Zanke
- Lehrstuhl für Allgemeine Genetik, Biologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schmidt T, Schwarzacher T, Heslop-Harrison JS. Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:629-36. [PMID: 24186156 DOI: 10.1007/bf01253964] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/1993] [Accepted: 12/07/1993] [Indexed: 05/03/2023]
Abstract
A digoxigenin-labelled 5S rDNA probe (pTa-794) and a rhodamine-labelled 18S-5.8S-25S rDNA probe (pTa71) were used for double-target in-situ hybridization to root-tip metaphase, prophase and interphase chromosomes of cultivated beet,Beta vulgaris L. After in-situ hybridization with the 18S-5.8S-25S rDNA probe, one major pair of sites was detected which corresponded to the secondary constriction at the end of the short arm of chromosome 1. The two rDNA chromosomes were often associated and the loci only contracted in late metaphase. In the majority of the metaphase plates analyzed, we found a single additional minor hybridization site with pTa71. One pair of 5S rRNA gene clusters was localized near the centromere on the short arm of one of the three largest chromosomes which does not carry the 18S-5.8S-25S genes. Because of the difficulties in distinguishing the very similarly-sizedB. vulgaris chromosomes in metaphase preparations, the 5S and the 18S-5.8S-25S rRNA genes can be used as markers for chromosome identification. TwoXbaI fragments (pXV1 and pXV2), comprising the 5S ribosomal RNA gene and the adjacent intergenic spacer, were isolated. The two 5S rDNA repeats were 349 bp and 351 bp long, showing considerable sequence variation in the intergenic spacer. The use of fluorescent in-situ hybridization, complemented by molecular data, for gene mapping and for integrating genetic and physical maps of beet species is discussed.
Collapse
Affiliation(s)
- T Schmidt
- Karyobiology Group, Department of Cell Biology, John Innes Centre, Colney Lane, NR4 7UH, Norwich, UK
| | | | | |
Collapse
|
39
|
Abstract
In order to characterize the transcriptional regulation of the 5S rRNA genes we have isolated a bona fide gene and a pseudogene from mouse cells. These 5S rRNA genes contain a 12-bp sequence designated as the D-box, located in position -33 to -22 bp, and two Sp1-binding sites in the 5'-flanking region. The D-box is conserved in human and hamster 5S rRNA genes although in slightly different upstream positions. The bona fide mouse 5S rRNA gene was transcribed in a HeLa S-100 extract. The transcriptional activity of this gene was only 50% of that of the human gene, indicating the involvement of species-specific transcription factors and/or polymerases. The pseudogene which contains the D-box, but with position +25 to +35 bp deleted, showed no transcriptional activity. Deletion of the D-box in the 5'-flanking sequence abolished transcriptional activity, indicating that this conserved sequence is of importance for gene expression.
Collapse
Affiliation(s)
- C Hallenberg
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
40
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:4109-22. [PMID: 1508704 PMCID: PMC334108 DOI: 10.1093/nar/20.15.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|