1
|
Tiefenbacher S, Pezo V, Marlière P, Roberts TM, Panke S. Systematic analysis of tRNA transcription unit deletions in E. coli reveals insights into tRNA gene essentiality and cellular adaptation. Sci Rep 2024; 14:24102. [PMID: 39406725 PMCID: PMC11480407 DOI: 10.1038/s41598-024-73407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Transfer ribonucleic acids (tRNAs) are essential for protein synthesis, decoding mRNA sequences into amino acids. In E. coli K-12 MG1655, 86 tRNA genes are organized in 43 transcription units (TUs) and the essentiality of individual tRNA TUs in bacterial physiology remains unclear. To address this, we systematically generated 43 E. coli tRNA deletion strains in which each tRNA TU was replaced by a kanamycin resistance gene. We found that 33 TUs are not essential for survival, while 10 are essential and require the corresponding TU to be provided on plasmid. The analysis revealed E. coli's tolerance to alterations in tRNA gene copy number and the loss of non-essential tRNAs, as most strains exhibited minimal to no growth differences under various conditions compared to the parental strain. However, deletions metZWV, alaWX and valVW led to significant growth defects under specific conditions. RNA-seq analysis of ∆alaWX and ∆valVW revealed upregulation of genes involved in translation and pilus assembly. Our results provide valuable insights into tRNA dynamics and the cellular response to tRNA TU deletions, paving the way for deeper understanding of tRNA pool complexity.
Collapse
Affiliation(s)
- Sanja Tiefenbacher
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland
| | - Valérie Pezo
- Genoscope, Génomique Métabolique, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002, Paris, France
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Sahu AK, Shah RA, Nashier D, Sharma P, Varada R, Lahry K, Singh S, Shetty S, Hussain T, Varshney U. Physiological significance of the two isoforms of initiator tRNAs in Escherichia coli. J Bacteriol 2024; 206:e0025124. [PMID: 39171914 PMCID: PMC11411947 DOI: 10.1128/jb.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Escherichia coli possesses four initiator tRNA (i-tRNA) genes, three of which are present together as metZWV and the fourth one as metY. In E. coli B, all four genes (metZWV and metY) encode i-tRNAfMet1, in which the G at position 46 is modified to m7G46 by TrmB (m7G methyltransferase). However, in E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of m7G46. We generated E. coli strains to explore the importance of this polymorphism in i-tRNAs. The strains were sustained either on metYA46 (metY of E. coli K origin encoding i-tRNAfMet2) or its derivative metYG46 (encoding i-tRNAfMet1) in single (chromosomal) or plasmid-borne copies. We show that the strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. The growth fitness advantages are more pronounced for the strains sustained on i-tRNAfMet1 in nutrient-rich media than in nutrient-poor media. The growth fitness of the strains correlates well with the relative stabilities of the i-tRNAs in vivo. Furthermore, the atomistic molecular dynamics simulations support the higher stability of i-tRNAfMet1 than that of i-tRNAfMet2. The stability of i-tRNAfMet1 remains unaffected upon the deletion of TrmB. These studies highlight how metYG46 and metYA46 alleles might influence the growth fitness of E. coli under certain nutrient-limiting conditions. IMPORTANCE Escherichia coli harbors four initiator tRNA (i-tRNA) genes: three of these at metZWV and the fourth one at metY loci. In E. coli B, all four genes encode i-tRNAfMet1. In E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of G at position 46 of i-tRNA sequence in metY. We show that G46 confers stability to i-tRNAfMet1. The strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. Strains harboring metYG46 (B mimic) or metYA46 (K mimic) show that while in the nutrient-rich media, the K mimic is outcompeted rapidly; in the nutrient-poor medium, the K mimic is outcompeted less rapidly.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Divya Nashier
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Rajagopal Varada
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sunil Shetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
3
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10 -formyl-tetrahydrofolate (N10 -fTHF), respectively. Both methionine and N10 -fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
4
|
Brandi A, Giangrossi M, Paoloni S, Spurio R, Giuliodori AM, Pon CL, Gualerzi CO. Transcriptional and post-transcriptional events trigger de novo infB expression in cold stressed Escherichia coli. Nucleic Acids Res 2019; 47:4638-4651. [PMID: 30916329 PMCID: PMC6511841 DOI: 10.1093/nar/gkz187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
After a 37 to 10°C temperature downshift the level of translation initiation factor IF2, like that of IF1 and IF3, increases at least 3-fold with respect to the ribosomes. To clarify the mechanisms and conditions leading to cold-stress induction of infB expression, the consequences of this temperature shift on infB (IF2) transcription, infB mRNA stability and translation were analysed. The Escherichia coli gene encoding IF2 is part of the metY-nusA-infB operon that contains three known promoters (P-1, P0 and P2) in addition to two promoters P3 and P4 identified in this study, the latter committed to the synthesis of a monocistronic mRNA encoding exclusively IF2. The results obtained indicate that the increased level of IF2 following cold stress depends on three mechanisms: (i) activation of all the promoters of the operon, P-1 being the most cold-responsive, as a likely consequence of the reduction of the ppGpp level that follows cold stress; (ii) a large increase in infB mRNA half-life and (iii) the cold-shock induced translational bias that ensures efficient translation of infB mRNA by the translational apparatus of cold shocked cells. A comparison of the mechanisms responsible for the cold shock induction of the three initiation factors is also presented.
Collapse
Affiliation(s)
- Anna Brandi
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Mara Giangrossi
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Silvia Paoloni
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Roberto Spurio
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Anna M Giuliodori
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Cynthia L Pon
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
5
|
Govindan A, Ayyub SA, Varshney U. Sustenance of Escherichia coli on a single tRNAMet. Nucleic Acids Res 2019; 46:11566-11574. [PMID: 30256973 PMCID: PMC6265465 DOI: 10.1093/nar/gky859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
Living organisms possess two types of tRNAs for methionine. Initiator tRNAs bind directly into the ribosomal P-site to initiate protein synthesis, and the elongators bind to the A-site during the elongation step. Eubacterial initiators (tRNAfMet) are unique in that the methionine attached to them is formylated to facilitate their binding to initiation factor 2 (IF2), and to preclude them from binding to elongation factor Tu (EFTu). However, in mammalian mitochondria, protein synthesis proceeds with a single dual function tRNAMet. Escherichia coli possesses four tRNAfMet (initiator) and two tRNAMet (elongator) genes. Free-living organisms possessing the mitochondrion like system of single tRNAMet are unknown. We characterized mutants of E. coli tRNAfMet that function both as initiators and elongators. We show that some of the tRNAfMet mutants sustain E. coli lacking all four tRNAfMet and both tRNAMet genes, providing a basis for natural occurrence of mitochondria like situation in free living organisms. The tRNA mutants show in vivo binding to both IF2 and EFTu, indicating how they carry out these otherwise mutually exclusive functions by precise regulation of their in vivo formylation. Our results provide insights into how distinct initiator and elongator methionine tRNAs might have evolved from a single ‘dual function’ tRNA.
Collapse
Affiliation(s)
- Ashwin Govindan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
6
|
Abstract
Multiple copies of a gene require enhanced investment on the part of the cell and, as such, call for an explanation. The observation that Escherichia coli has four copies of initiator tRNA (tRNAi) genes, encoding a special tRNA (tRNA(fMet)) required to start protein synthesis, is puzzling particularly because the cell appears to be unaffected by the removal of one copy. However, the fitness of an organism has both absolute and relative connotations. Thus, we carried out growth competition experiments between E. coli strains that differ in the number of tRNAi genes they contain. This has enabled us to uncover an unexpected link between the number of tRNAi genes and protein synthesis, nutritional status, and fitness. Wild-type strains with the canonical four tRNAi genes are favored in nutrient-rich environments, and those carrying fewer are favored in nutrient-poor environments. Auxotrophs behave as if they have a nutritionally poor internal environment. A heuristic model that links tRNAi gene copy number, genetic stress, and growth rate accounts for the findings. Our observations provide strong evidence that natural selection can work through seemingly minor quantitative variations in gene copy number and thereby impact organismal fitness.
Collapse
|
7
|
Turner R, Shefer K, Ares M. Safer one-pot synthesis of the 'SHAPE' reagent 1-methyl-7-nitroisatoic anhydride (1m7). RNA (NEW YORK, N.Y.) 2013; 19:1857-63. [PMID: 24141619 PMCID: PMC3884660 DOI: 10.1261/rna.042374.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Estimating the reactivity of 2'-hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2'-hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro.
Collapse
Affiliation(s)
- Rushia Turner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Kinneret Shefer
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding authorE-mail
| |
Collapse
|
8
|
Abstract
Of all tRNAs, initiator tRNA is unique in its ability to start protein synthesis by directly binding the ribosomal P-site. This ability is believed to derive from the almost universal presence of three consecutive G-C base (3G-C) pairs in the anticodon stem of initiator tRNA. Consistent with the hypothesis, a plasmid-borne initiator tRNA with one, two, or all 3G-C pairs mutated displays negligible initiation activity when tested in a WT Escherichia coli cell. Given this, the occurrence of unconventional initiator tRNAs lacking the 3G-C pairs, as in some species of Mycoplasma and Rhizobium, is puzzling. We resolve the puzzle by showing that the poor activity of unconventional initiator tRNAs in E. coli is because of competition from a large pool of the endogenous WT initiator tRNA (possessing the 3G-C pairs). We show that E. coli can be sustained on an initiator tRNA lacking the first and third G-C pairs; thereby reducing the 3G-C rule to a mere middle G-C requirement. Two general inferences following from our findings, that the activity of a mutant gene product may depend on its abundance in the cell relative to that of the WT, and that promiscuous initiation with elongator tRNAs has the potential to enhance phenotypic diversity without affecting genomic integrity, have been discussed.
Collapse
|
9
|
Das G, Dineshkumar TK, Thanedar S, Varshney U. Acquisition of a stable mutation in metY allows efficient initiation from an amber codon in Escherichia coli. Microbiology (Reading) 2005; 151:1741-1750. [PMID: 15941983 DOI: 10.1099/mic.0.27915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia colistrains harbouring elongator tRNAs that insert amino acids in response to a termination codon during elongation have been generated for various applications. Additionally, it was shown that expression of an initiator tRNA containing a CUA anticodon from a multicopy plasmid inE. coliresulted in initiation from an amber codon. Even though the initiation-based system remedies toxicity-related drawbacks, its usefulness has remained limited for want of a strain with a chromosomally encoded initiator tRNA ‘suppressor’.E. coliK strains possess four initiator tRNA genes: themetZ,metWandmetVgenes, located at a single locus, encode tRNA1fMet, and a distantly locatedmetYgene encodes a variant, tRNA2fMet. In this study, a stable strain ofE. coliK-12 that affords efficient initiation from an amber initiation codon was isolated. Genetic analysis revealed that themetYgene in this strain acquired mutations to encode tRNA2fMetwith a CUA anticodon (a U35A36 mutation). The acquisition of the mutations depended on the presence of a plasmid-borne copy of the mutantmetYandrecA+host background. The mutations were observed when the plasmid-borne gene encoded tRNA2fMet(U35A36) with additional changes in the acceptor stem (G72; G72G73) but not in the anticodon stem (U29C30A31/U35A36/ψ39G40A41). The usefulness of this strain, and a possible role for multiple tRNA1fMetgenes inE. coliin safeguarding their intactness, are discussed.
Collapse
Affiliation(s)
- Gautam Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - T K Dineshkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Swapna Thanedar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Krin E, Laurent-Winter C, Bertin PN, Danchin A, Kolb A. Transcription regulation coupling of the divergent argG and metY promoters in Escherichia coli K-12. J Bacteriol 2003; 185:3139-46. [PMID: 12730174 PMCID: PMC154083 DOI: 10.1128/jb.185.10.3139-3146.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cAMP-catabolite activator protein (CAP) complex is a pleiotropic regulator that regulates a vast number of Escherichia coli genes, including those involved in carbon metabolism. We identified two new targets of this complex: argG, which encodes the arginosuccinate synthase involved in the arginine biosynthetic pathway, and metY, which encodes one of the two methionine tRNA initiators, tRNAf2Met. The cAMP-CAP complex activates argG transcription and inhibits metY transcription from the same DNA position. We also show that ArgR, the specific repressor of the arginine biosynthetic pathway, together with its arginine cofactor, acts on the regulation of metY mediated by CAP. The regulation of the two divergent promoters is thus simultaneously controlled not only by the cAMP-CAP complex, a global regulator, but also by a specific regulator of arginine metabolism, suggesting a previously unsuspected link between carbon metabolism and translation initiation.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
11
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
12
|
Mandal N, RajBhandary UL. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol 1992; 174:7827-30. [PMID: 1447149 PMCID: PMC207499 DOI: 10.1128/jb.174.23.7827-7830.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We show that the metY locus which specifies tRNA(2fMet) in Escherichia coli K-12 specifies tRNA(1fMet) in E. coli B. This conclusion is based on results of Southern blot analysis of E. coli B and K-12 DNAs and on polymerase chain reaction amplification, cloning, and sequencing of an approximately 200-bp region of DNA corresponding to the metY loci of E. coli B and E. coli K-12. We also show that the metY locus of E. coli B is transcriptionally active. E. coli strains transformed with the multicopy plasmid vector pUC19 carrying the metY locus of E. coli B overproduce tRNA(1fMet) in E. coli B and E. coli K-12 in contrast to strains transformed with pUC19 carrying the corresponding locus from E. coli K-12, which overproduce tRNA(2fMet).
Collapse
Affiliation(s)
- N Mandal
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|