1
|
Grefenstette N, Chou L, Colón-Santos S, Fisher TM, Mierzejewski V, Nural C, Sinhadc P, Vidaurri M, Vincent L, Weng MM. Chapter 9: Life as We Don't Know It. ASTROBIOLOGY 2024; 24:S186-S201. [PMID: 38498819 DOI: 10.1089/ast.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.
Collapse
Affiliation(s)
- Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | | | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | | | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Monica Vidaurri
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Howard University, DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
2
|
Mariscal C, Barahona A, Aubert-Kato N, Aydinoglu AU, Bartlett S, Cárdenas ML, Chandru K, Cleland C, Cocanougher BT, Comfort N, Cornish-Bowden A, Deacon T, Froese T, Giovannelli D, Hernlund J, Hut P, Kimura J, Maurel MC, Merino N, Moreno A, Nakagawa M, Peretó J, Virgo N, Witkowski O, James Cleaves H. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. ORIGINS LIFE EVOL B 2019; 49:111-145. [PMID: 31399826 DOI: 10.1007/s11084-019-09580-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.
Collapse
Affiliation(s)
- Carlos Mariscal
- Department of Philosophy, Ecology, Evolution, and Conservation Biology (EECB) Program, and Integrative Neuroscience Program, University of Nevada, Reno (UNR), Reno, Nevada, USA
| | - Ana Barahona
- Department of Evolutionary Biology, School of Sciences, UNAM, 04510, CDMX, Coyoacán, Mexico
| | - Nathanael Aubert-Kato
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Information Sciences, Ochanomizu University, Bunkyoku, Otsuka, 2-1-1, Tokyo, 112-0012, Japan
| | - Arsev Umur Aydinoglu
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA
- Science and Technology Policies Department, Middle East Technical University (METU), 06800, Ankara, Turkey
| | - Stuart Bartlett
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | | | - Kuhan Chandru
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Space Science Centre (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague, 6, Dejvice, Czech Republic
| | - Carol Cleland
- Department of Philosophy, University of Colorado, Boulder, Colorado, USA
| | - Benjamin T Cocanougher
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Nathaniel Comfort
- Department of the History of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Terrence Deacon
- Department of Anthropology & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tom Froese
- Institute for Applied Mathematics and Systems Research (IIMAS), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
- Centre for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Department of Marine and Coastal Science, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
- YHouse, Inc., NY, 10159, New York, USA
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80156, Naples, Italy
| | - John Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Piet Hut
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Jun Kimura
- Department of Earth and Space Science, Osaka University, Machikaneyama-Chou 1-1, Toyonaka City, Osaka, 560-0043, Japan
| | | | - Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Earth Sciences, University of Southern California, California, Los Angeles, 90089, USA
| | - Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country, Avenida de Tolosa 70, 20018, Donostia-San Sebastian, Spain
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology, University of Valéncia and Institute for Integrative Systems Biology I2SysBio (University of Valéncia-CSIC), València, Spain
| | - Nathaniel Virgo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- European Centre for Living Technology, Venice, Italy
| | - Olaf Witkowski
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA.
- Institute for Advanced Study, Princeton, NJ, 08540, USA.
- European Centre for Living Technology, Venice, Italy.
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Barrett C, He Q, Huang FW, Reidys CM. A Boltzmann Sampler for 1-Pairs with Double Filtration. J Comput Biol 2019; 26:173-192. [PMID: 30653353 DOI: 10.1089/cmb.2018.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, a framework considering RNA sequences and their RNA secondary structures as pairs led to some information-theoretic perspectives on how the semantics encoded in RNA sequences can be inferred. This pairing arises naturally from the energy model of RNA secondary structures. Fixing the sequence in the pairing produces the RNA energy landscape, whose partition function was discovered by McCaskill. Dually, fixing the structure induces the energy landscape of sequences. The latter has been considered originally for designing more efficient inverse folding algorithms and subsequently enhanced by facilitating the sampling of sequences. We present here a partition function of sequence/structure pairs, with endowed Hamming distance and base pair distance filtration. This partition function is an augmentation of the previous mentioned (dual) partition function. We develop an efficient dynamic programming routine to recursively compute the partition function with this double filtration. Our framework is capable of dealing with RNA secondary structures as well as 1-structures, where a 1-structure is an RNA pseudoknot structure consisting of "building blocks" of genus 0 or 1. In particular, 0-structures, consisting of only "building blocks" of genus 0, are exactly RNA secondary structures. The time complexity for calculating the partition function of 1-pairs, that is, sequence/structure pairs where the structures are 1-structures, is O(h3b3n6), where h, b, n denote the Hamming distance, base pair distance, and sequence length, respectively. The time complexity for the partition function of 0-pairs is O(h2b2n3).
Collapse
Affiliation(s)
- Christopher Barrett
- 1 Biocomplexity Initiative and Institute, University of Virginia, Charlottesville, Virginia.,2 Department of Computer Science, University of Virginia, Charlottesville, Virginia
| | - Qijun He
- 1 Biocomplexity Initiative and Institute, University of Virginia, Charlottesville, Virginia
| | - Fenix W Huang
- 1 Biocomplexity Initiative and Institute, University of Virginia, Charlottesville, Virginia
| | - Christian M Reidys
- 1 Biocomplexity Initiative and Institute, University of Virginia, Charlottesville, Virginia.,3 Department of Mathematics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
4
|
Kumar P, Cabaj MK, Pazio A, Dominiak PM. Protonated nucleobases are not fully ionized in their chloride salt crystals and form metastable base pairs further stabilized by the surrounding anions. IUCRJ 2018; 5:449-469. [PMID: 30002846 PMCID: PMC6038959 DOI: 10.1107/s2052252518006346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
This paper presents experimental charge-density studies of cytosinium chloride, adeninium chloride hemihydrate and guaninium dichloride crystals based on ultra-high-resolution X-ray diffraction data and extensive theoretical calculations. The results confirm that the cohesive energies of the studied systems are dominated by contributions from intermolecular electrostatic interactions, as expected for ionic crystals. Electrostatic interaction energies (Ees) usually constitute 95% of the total interaction energy. The Ees energies in this study were several times larger in absolute value when compared, for example, with dimers of neutral nucleobases. However, they were not as large as some theoretical calculations have predicted. This was because the molecules appeared not to be fully ionized in the studied crystals. Apart from charge transfer from chlorine to the protonated nucleobases, small but visible charge redistribution within the nucleobase cations was observed. Some dimers of singly protonated bases in the studied crystals, namely a cytosinium-cytosinium trans sugar/sugar edge pair and an adeninium-adeninium trans Hoogsteen/Hoogsteen edge pair, exhibited attractive interactions (negative values of Ees) or unusually low repulsion despite identical molecular charges. The pairs are metastable as a result of strong hydrogen bonding between bases which overcompensates the overall cation-cation repulsion, the latter being weakened due to charge transfer and molecular charge-density polarization.
Collapse
Affiliation(s)
- Prashant Kumar
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Malgorzata Katarzyna Cabaj
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Aleksandra Pazio
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
5
|
Exploration of RNA Sequence Space in the Absence of a Replicase. J Mol Evol 2018; 86:264-276. [PMID: 29748740 DOI: 10.1007/s00239-018-9846-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.
Collapse
|
6
|
Szostak JW. Der schmale Pfad tief in die Vergangenheit: auf der Suche nach der Chemie der Anfänge des Lebens. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jack W. Szostak
- Howard Hughes Medical Institute; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston MA 02114 USA
| |
Collapse
|
7
|
Szostak JW. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angew Chem Int Ed Engl 2017; 56:11037-11043. [PMID: 28514493 DOI: 10.1002/anie.201704048] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/10/2022]
Abstract
The sequence of events that gave rise to the first life on our planet took place in the Earth's deep past, seemingly forever beyond our reach. Perhaps for that very reason the idea of reconstructing our ancient story is tantalizing, almost irresistible. Understanding the processes that led to synthesis of the chemical building blocks of biology and the ways in which these molecules self-assembled into cells that could grow, divide and evolve, nurtured by a rich and complex environment, seems at times insurmountably difficult. And yet, to my own surprise, simple experiments have revealed robust processes that could have driven the growth and division of primitive cell membranes. The nonenzymatic replication of RNA is more complicated and less well understood, but here too significant progress has come from surprising developments. Even our efforts to combine replicating compartments and genetic materials into a full protocell model have moved forward in unexpected ways. Fortunately, many challenges remain before we will be close to a full understanding of the origin of life, so the future of research in this field is brighter than ever!
Collapse
Affiliation(s)
- Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
8
|
Rath AK, Kellermann SJ, Rentmeister A. Programmable Design of Functional Ribonucleoprotein Complexes. Chem Asian J 2014; 9:2045-51. [DOI: 10.1002/asia.201402220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/14/2014] [Indexed: 12/26/2022]
|
9
|
Pinker F, Bonnard G, Gobert A, Gutmann B, Hammani K, Sauter C, Gegenheimer PA, Giegé P. PPR proteins shed a new light on RNase P biology. RNA Biol 2013; 10:1457-68. [PMID: 23925311 PMCID: PMC3858429 DOI: 10.4161/rna.25273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fast growing number of studies identify pentatricopeptide repeat (PPR) proteins as major players in gene expression processes. Among them, a subset of PPR proteins called PRORP possesses RNase P activity in several eukaryotes, both in nuclei and organelles. RNase P is the endonucleolytic activity that removes 5′ leader sequences from tRNA precursors and is thus essential for translation. Before the characterization of PRORP, RNase P enzymes were thought to occur universally as ribonucleoproteins, although some evidence implied that some eukaryotes or cellular compartments did not use RNA for RNase P activity. The characterization of PRORP reveals a two-domain enzyme, with an N-terminal domain containing multiple PPR motifs and assumed to achieve target specificity and a C-terminal domain holding catalytic activity. The nature of PRORP interactions with tRNAs suggests that ribonucleoprotein and protein-only RNase P enzymes share a similar substrate binding process.
Collapse
Affiliation(s)
- Franziska Pinker
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France; Institut de Biologie Moléculaire et Cellulaire du CNRS; Architecture et Réactivité de l'ARN; Université de Strasbourg; Strasbourg, France
| | - Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Bernard Gutmann
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRS; Architecture et Réactivité de l'ARN; Université de Strasbourg; Strasbourg, France
| | | | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
10
|
Abstract
Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Collapse
|
11
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
14
|
Anella F, Chiarabelli C, De Lucrezia D, Luisi PL. Stability Studies on Random Folded RNAs (‘Never Born RNAs’), Implications for the RNA World. Chem Biodivers 2011. [DOI: 10.1002/cbdv.201100224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Abstract
Since the discovery of microRNAs (miRNAs), the study of these small noncoding RNAs has steadily increased and more than 10,000 papers have already been published. The great interest in miRNAs reflects their central role in gene-expression regulation and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, immune-related and other diseases. Another avenue of current research is the study of circulating miRNAs in serum, plasma, and other body fluids--miRNAs may act not only within cells, but also at other sites within the body. The presence of miRNAs in body fluids may represent a gold mine of noninvasive biomarkers in cancer. Since deregulated miRNA expression is an early event in tumorigenesis, measuring circulating miRNA levels may also be useful for early cancer detection, which can contribute greatly to the success of treatment. In this Review, we discuss the role of fluid-expressed miRNAs as reliable cancer biomarkers and treatment-response predictors as well as potential new patient selection criteria for clinical trials. In addition, we explore the concept that miRNAs could function as hormones.
Collapse
|
16
|
Krammer EM, Bernad S, Ullmann GM, Hickman A, Sebban P. Chemical Evidence for the Dawn of Life on Earth. Aust J Chem 2011. [DOI: 10.1071/ch10427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dating of the dawn of life on Earth is a difficult task, requiring an accumulation of evidences from many different research fields. Here we shall summarize findings from the molecular scale (proteins) to cells and photosynthesis-related-fossils (stromatolites from the early and the late Archaean Eon), which indicate that life emerged on Earth 4.2–3.8 Ga (i.e. 4.2–3.8 × 109 years) ago. Among the data supporting this age, the isotopic and palaeontological fingerprints of photosynthesis provide some of the strongest evidence. The reason for this is that photosynthesis, carried out in particular by cyanobacteria, was responsible for massive changes to the Earth’s environment, i.e. the oxygenation of the Earth’s atmosphere and seawater, and the fixation of carbon from atmospheric CO2 in organic material. The possibility of a very early (>3.8 Ga ago) appearance of complex autotrophic organisms, such as cyanobacteria, is a major change in our view of life’s origins.
Collapse
|
17
|
Manapat ML, Chen IA, Nowak MA. The basic reproductive ratio of life. J Theor Biol 2009; 263:317-27. [PMID: 20034501 DOI: 10.1016/j.jtbi.2009.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/26/2009] [Accepted: 12/16/2009] [Indexed: 11/16/2022]
Abstract
Template-directed polymerization of nucleotides is believed to be a pathway for the replication of genetic material in the earliest cells. We assume that activated monomers are produced by prebiotic chemistry. These monomers can undergo spontaneous polymerization, a system that we call "prelife." Adding template-directed polymerization changes the equilibrium structure of prelife if the rate constants meet certain criteria. In particular, if the basic reproductive ratio of sequences of a certain length exceeds one, then those sequences can attain high abundance. Furthermore, if many sequences replicate, then the longest sequences can reach high abundance even if the basic reproductive ratios of all sequences are less than one. We call this phenomenon "subcritical life." Subcritical life suggests that sequences long enough to be ribozymes can become abundant even if replication is relatively inefficient. Our work on the evolution of replication has interesting parallels to infection dynamics. Life (replication) can be seen as an infection of prelife.
Collapse
Affiliation(s)
- Michael L Manapat
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
18
|
Abstract
Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. 'Prevolutionary' dynamics can have mutation and selection prior to replication. Some sequences might have catalytic activity, thereby enhancing the rates of certain prelife reactions. We study the selection criteria for these prelife catalysts. Their catalytic efficiency must be above certain critical values. We find a maintenance threshold and an initiation threshold. The former is a linear function of sequence length, and the latter is an exponential function of sequence length. Therefore, it is extremely hard to select for prelife catalysts that have long sequences. We compare prelife catalysis with a simple model for replication. Assuming fast template-based elongation reactions, we can show that replicators have selection thresholds that are independent of their sequence length. Our calculation demonstrates the efficiency of replication and provides an explanation of why replication was selected over other forms of prelife catalysis.
Collapse
Affiliation(s)
- Hisashi Ohtsuki
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | | |
Collapse
|
19
|
Fujita Y, Furuta H, Ikawa Y. Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalytic unit for beta-nicotinamide mononucleotide-activated RNA ligation. RNA (NEW YORK, N.Y.) 2009; 15:877-88. [PMID: 19307294 PMCID: PMC2673081 DOI: 10.1261/rna.1461309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/04/2009] [Indexed: 05/17/2023]
Abstract
A novel ribozyme that accelerates the ligation of beta-nicotinamide mononucleotide (beta-NMN)-activated RNA fragments was isolated and characterized. This artificial ligase ribozyme (YFL ribozyme) was isolated by a "design and selection" strategy, in which a modular catalytic unit was generated on a rationally designed modular scaffold RNA. Biochemical analyses of the YFL ribozyme revealed that it catalyzes RNA ligation in a template-dependent manner, and its activity is highly dependent on its architecture, which consists of a modular scaffold and a catalytic unit. As the design and selection strategy was used for generation of DSL ribozyme, isolation of the YFL ribozyme indicated the versatility of this strategy for generation of functional RNAs with modular architectures. The catalytic unit of the YFL ribozyme accepts not only beta-NMN but also inorganic pyrophosphate and adenosine monophosphate as leaving groups for RNA ligation. This versatility of the YFL ribozyme provides novel insight into the possible roles of beta-NMN (or NADH) in the RNA world.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
20
|
Manapat M, Ohtsuki H, Bürger R, Nowak MA. Originator dynamics. J Theor Biol 2009; 256:586-95. [PMID: 18996397 PMCID: PMC2674798 DOI: 10.1016/j.jtbi.2008.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/12/2008] [Accepted: 10/01/2008] [Indexed: 11/24/2022]
Abstract
We study the origin of evolution. Evolution is based on replication, mutation, and selection. But how does evolution begin? When do chemical kinetics turn into evolutionary dynamics? We propose "prelife" and "prevolution" as the logical precursors of life and evolution. Prelife generates sequences of variable length. Prelife is a generative chemistry that proliferates information and produces diversity without replication. The resulting "prevolutionary dynamics" have mutation and selection. We propose an equation that allows us to investigate the origin of evolution. In one limit, this "originator equation" gives the classical selection equation. In the other limit, we obtain "prelife." There is competition between life and prelife and there can be selection for or against replication. Simple prelife equations with uniform rate constants have the property that longer sequences are exponentially less frequent than shorter ones. But replication can reverse such an ordering. As the replication rate increases, some longer sequences can become more frequent than shorter ones. Thus, replication can lead to "reversals" in the equilibrium portraits. We study these reversals, which mark the transition from prelife to life in our model. If the replication potential exceeds a critical value, then life replicates into existence.
Collapse
Affiliation(s)
- Michael Manapat
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active monomers that form random polymers. Prelife is a generative system that can produce information. Prevolutionary dynamics have selection and mutation, but no replication. Life marches in with the ability of replication: Polymers act as templates for their own reproduction. Prelife is a scaffold that builds life. Yet, there is competition between life and prelife. There is a phase transition: If the effective replication rate exceeds a critical value, then life outcompetes prelife. Replication is not a prerequisite for selection, but instead, there can be selection for replication. Mutation leads to an error threshold between life and prelife.
Collapse
|
22
|
Abstract
The possibilities of pseudo-peptide-DNA mimics like PNA (peptide nucleic acid) having a role for the prebiotic origin of life prior to an RNA world is discussed on the basis of literature data showing that this type of molecules might have formed on the primitive earth (or other places in the universe), as well as data indicating the possibilities of template-directed PNA chemical replication and ligation. In particular, the merits of an achiral prebiotic genetic material is discussed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, DK-2200 Copenhagen N.
| |
Collapse
|
23
|
Nielsen PE. Question 1: Peptide nucleic acids and the origin and homochirality of life. ORIGINS LIFE EVOL B 2007; 37:323-8. [PMID: 17634745 DOI: 10.1007/s11084-007-9105-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
The possibilities of pseudo peptide DNA mimics like PNA (peptide nucleic acid) having a role for the prebiotic origin of life prior to an RNA world is discussed. In particular a scenario is proposed in which protocells with an achiral genetic material through several generations stepwise is converted into a chiral genetic material, e.g., by incorporation of RNA units. Provided that a sufficiently large sequence space is occupied, a selection process based on catalytic function in which a single cell (first common ancestor) has a definite evolutionary advantage, selection of this cell would by contingency also lock it into homochirality.
Collapse
Affiliation(s)
- Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
24
|
Jortner J. Conditions for the emergence of life on the early Earth: summary and reflections. Philos Trans R Soc Lond B Biol Sci 2006; 361:1877-91. [PMID: 17008225 PMCID: PMC1664691 DOI: 10.1098/rstb.2006.1909] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life.
Collapse
Affiliation(s)
- Joshua Jortner
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
25
|
Kazakov SA, Balatskaya SV, Johnston BH. Ligation of the hairpin ribozyme in cis induced by freezing and dehydration. RNA (NEW YORK, N.Y.) 2006; 12:446-56. [PMID: 16495237 PMCID: PMC1383583 DOI: 10.1261/rna.2123506] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although reducing the temperature slows most chemical reactions, freezing can stimulate some reactions by mechanisms that are only partially understood. Here we show that freezing stimulates the self-ligation (circularization) of linear forms of the hairpin ribozyme (HPR) containing 2',3'-cyclic phosphate and 5'-OH termini. Divalent metal ions (M2+) are not required, but monovalent cations and anions at millimolar concentrations can have various effects on this reaction depending on the specific ion. Under optimal conditions, the observed rate of M2+-independent self-ligation reaches a peak (0.04 min(-1)) at -10 degrees C with a yield of -60% after 1 h. In contrast, no ligation occurs either at above 0 degrees C or in solutions that remain unfrozen when supercooled to subzero temperatures. Under freezing conditions, the cleavage-ligation equilibrium strongly favors ligation. Besides freezing, evaporation of the aqueous solvent as well as the presence of ethanol at levels of 40% or above can also induce M2+-independent HPR ligation at 25 degrees C. We argue that partial RNA dehydration, which is a common feature of freezing, evaporation, and the presence of ethanol, is a key factor supporting HPR ligation activity at both above- and below-freezing temperatures. In the context of the RNA world hypothesis, freezing-induced ligation is an attractive mechanism by which complex RNAs could have evolved under conditions in which RNA was relatively protected against degradation.
Collapse
Affiliation(s)
- Sergei A Kazakov
- Somagenics, Inc., 2161 Delaware Avenue, Santa Cruz, CA 95060, USA.
| | | | | |
Collapse
|
26
|
Abstract
Since the discovery of enzymes as biological catalysts, study of their enormous catalytic power and exquisite specificity has been central to biochemistry. Nevertheless, there is no universally accepted comprehensive description. Rather, numerous proposals have been presented over the past half century. The difficulty in developing a comprehensive description for the catalytic power of enzymes derives from the highly cooperative nature of their energetics, which renders impossible a simple division of mechanistic features and an absolute partitioning of catalytic contributions into independent and energetically additive components. Site-directed mutagenesis has emerged as an enormously powerful approach to probe enzymatic catalysis, illuminating many basic features of enzyme function and behavior. The emphasis of site-directed mutagenesis on the role of individual residues has also, inadvertently, limited experimental and conceptual attention to the fundamentally cooperative nature of enzyme function and energetics. The first part of this review highlights the structural and functional interconnectivity central to enzymatic catalysis. In the second part we ask: What are the features of enzymes that distinguish them from simple chemical catalysts? The answers are presented in conceptual models that, while simplified, help illustrate the vast amount known about how enzymes achieve catalysis. In the last section, we highlight the molecular and energetic questions that remain for future investigation and describe experimental approaches that will be necessary to answer these questions. The promise of advancing and integrating cutting edge conceptual, experimental, and computational tools brings mechanistic enzymology to a new era, one poised for novel fundamental insights into biological catalysis.
Collapse
Affiliation(s)
- Daniel A Kraut
- Department of Biochemistry, Stanford University, B400 Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA.
| | | | | |
Collapse
|
27
|
Halberg F, Cornélissen G, Katinas G, Syutkina EV, Sothern RB, Zaslavskaya R, Halberg F, Watanabe Y, Schwartzkopff O, Otsuka K, Tarquini R, Frederico P, Siggelova J. Transdisciplinary unifying implications of circadian findings in the 1950s. J Circadian Rhythms 2003; 1:2. [PMID: 14728726 PMCID: PMC317388 DOI: 10.1186/1740-3391-1-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 10/29/2003] [Indexed: 01/24/2023] Open
Abstract
Afew puzzles relating to a small fraction of my endeavors in the 1950s are summarized herein, with answers to a few questions of the Editor-in-Chief, to suggest that the rules of variability in time complement the rules of genetics as a biological variability in space. I advocate to replace truisms such as a relative constancy or homeostasis, that have served bioscience very well for very long. They were never intended, however, to lower a curtain of ignorance over everyday physiology. In raising these curtains, we unveil a range of dynamics, resolvable in the data collection and as-one-goes analysis by computers built into smaller and smaller devices, for a continued self-surveillance of the normal and for an individualized detection of the abnormal. The current medical art based on spotchecks interpreted by reference to a time-unqualified normal range can become a science of time series with tests relating to the individual in inferential statistical terms. This is already doable for the case of blood pressure, but eventually should become possible for many other variables interpreted today only based on the quicksand of clinical trials on groups. These ignore individual differences and hence the individual's needs. Chronomics (mapping time structures) with the major aim of quantifying normalcy by dynamic reference values for detecting earliest risk elevation, also yields the dividend of allowing molecular biology to focus on the normal as well as on the grossly abnormal.
Collapse
Affiliation(s)
- Franz Halberg
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | | | - George Katinas
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | - Elena V Syutkina
- Institute of Pediatrics, Scientific Center for Children's Health, Academy of Medical Sciences, Moscow, Russia
| | - Robert B Sothern
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Francine Halberg
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Kuniaki Otsuka
- Tokyo Women Medical University, School of Medicine, Daini Hospital, Division of Neurocardiology and Chronoecology, Nishiogu 2-1-10, Arakawa-ku, Tokyo 116-856, Japan
| | | | | | - Jarmila Siggelova
- Clinic of Functional Diagnostics and Rehabilitation, St. Anna Faculty Hospital and Masaryk University of Brno, Pekaská 53, 656 91, Brno, Czech Republic
| |
Collapse
|
28
|
Mulkidjanian AY, Cherepanov DA, Galperin MY. Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light. BMC Evol Biol 2003; 3:12. [PMID: 12773209 PMCID: PMC165426 DOI: 10.1186/1471-2148-3-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 05/28/2003] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A key event in the origin of life on this planet has been formation of self-replicating RNA-type molecules, which were complex enough to undergo a Darwinian-type evolution (origin of the "RNA world"). However, so far there has been no explanation of how the first RNA-like biopolymers could originate and survive on the primordial Earth. RESULTS As condensation of sugar phosphates and nitrogenous bases is thermodynamically unfavorable, these compounds, if ever formed, should have undergone rapid hydrolysis. Thus, formation of oligonucleotide-like structures could have happened only if and when these structures had some selective advantage over simpler compounds. It is well known that nitrogenous bases are powerful quenchers of UV quanta and effectively protect the pentose-phosphate backbones of RNA and DNA from UV cleavage. To check if such a protection could play a role in abiogenic evolution on the primordial Earth (in the absence of the UV-protecting ozone layer), we simulated, by using Monte Carlo approach, the formation of the first oligonucleotides under continuous UV illumination. The simulations confirmed that UV irradiation could have worked as a selective factor leading to a relative enrichment of the system in longer sugar-phosphate polymers carrying nitrogenous bases as UV-protectors. Partial funneling of the UV energy into the condensation reactions could provide a further boost for the oligomerization. CONCLUSION These results suggest that accumulation of the first polynucleotides could be explained by their abiogenic selection as the most UV-resistant biopolymers.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Division of Biophysics, Department of Biology and Chemistry, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia
| | - Dmitry A Cherepanov
- Division of Biophysics, Department of Biology and Chemistry, Universität Osnabrück, D-49069 Osnabrück, Germany
- Institute of Electrochemistry, Russian Academy of Sciences, Leninskii prosp. 31, 117071 Moscow, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
29
|
Kennelly PJ. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 2003; 370:373-89. [PMID: 12444920 PMCID: PMC1223194 DOI: 10.1042/bj20021547] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/20/2002] [Accepted: 11/22/2002] [Indexed: 01/25/2023]
Abstract
Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'.
Collapse
Affiliation(s)
- Peter J Kennelly
- Department of Biochemistry - 0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
30
|
Radka SF, Pasko C, Haeberli P, Beigelman L. The development of a monoclonal antibody specific for a 2(')-C-allyl modification of uridine, and its use in the localization of ribozymes in vivo. Anal Biochem 2002; 307:40-6. [PMID: 12137777 DOI: 10.1016/s0003-2697(02)00017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribozymes are catalytically active RNA molecules that cleave other RNA molecules in a sequence-specific fashion, with significant turnover. The successful design and synthesis of ribozymes with modifications to increase their stability in biological fluids, while maintaining catalytic activity, has been instrumental in moving this technology from the laboratory into clinical trials. With the entry of ribozymes into the clinical setting, the need has arisen for reagents and/or assays to detect these drugs in tissues. We have developed a monoclonal antibody to the 2(')-deoxy-2(')-C-allyl uridine modification present in our synthetic hammerhead ribozymes. The monoclonal antibody, termed CA1USR, is a murine IgG1(k), whose epitope appears to involve both the 2(')-C-allyl modification, and the uridine base. Use of CA1USR for immunohistochemical detection of ribozymes in the tissues of mice which were administered two structurally different ribozymes has demonstrated its utility as a reagent for in vivo localization of ribozymes containing the 2(')-C-allyl uridine modification.
Collapse
Affiliation(s)
- Susan F Radka
- Ribozyme Pharmaceuticals, Inc., Boulder, CO 80301, USA.
| | | | | | | |
Collapse
|
31
|
Bakalova S, Siebrand W, Fernández-Ramos A, Smedarchina Z, Petkov DD. Theoretical Study of a Model for RNA Solvolysis Catalyzed by Large Ribozymes. J Phys Chem B 2002. [DOI: 10.1021/jp013340v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Snezhana Bakalova
- Steacie Institute of Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6, and Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Willem Siebrand
- Steacie Institute of Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6, and Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Antonio Fernández-Ramos
- Steacie Institute of Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6, and Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Zorka Smedarchina
- Steacie Institute of Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6, and Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - D. D. Petkov
- Steacie Institute of Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6, and Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
32
|
Abstract
Non-covalent compositional assemblies, made of monomeric mutually catalytic molecules, constitute an alternative to alphabet-based informational biopolymers as a mechanism of primordial inheritance. Such assemblies appear implicitly in many "Metabolism First" origin of life scenarios, and more explicitly in the Graded Autocatalysis Replication Domain (GARD) model [Segréet al. (2000). Proc. Natl Acad. Sci. U.S.A.97, 4112-4117]. In the present work, we provide a detailed analysis of the quantitative molecular roots of such behavior. It is demonstrated that the fidelity of reproduction provided by a newly defined heritability measure eta(*)(s), strongly depends on the values of molecular recognition parameters and on assembly size. We find that if the catalytic rate acceleration coefficients are distributed normally, transfer of compositional information becomes impossible, due to frequent "compositional error catastrophes". In contrast, if the catalytic acceleration rates obey a lognormal distribution, as actually predicted by a statistical formalism for molecular repertoires, high reproduction fidelity is obtained. There is also a clear dependence on assembly size N, whereby maximal eta is seen in a narrow range around N approximately 3.5 N(G)/lambda, where N(G)is the size of the primordial molecular repertoire and lambda is a molecular interaction statistical parameter. Such relationships help define the physicochemical conditions that could underlie the early steps in pre-biotic evolution.
Collapse
Affiliation(s)
- D Segré
- Department of Molecular Genetics and The Crown Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
33
|
Kohler H, Murali R, Kieber-Emmons T. The hidden code in genomics: a tool for gene discovery. J Mol Recognit 2001; 14:269-72. [PMID: 11746947 DOI: 10.1002/jmr.545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among new insights coming from the completion of sequencing of the human genome, reported in Nature and Science, are clues of how evolution has increased the complexity of species, and in particular how the genetic code has enabled this process. It is clear that life has not only evolved by increasing the number of genes, but also by ingeniously evolving an efficient code for expressing diversity in the building blocks (i.e. the amino acids). The rules of nucleic acid base pairing and the classification of amino acids according to hydrophobicity/hydrophilicity relationships define a binary DNA code, which determines the general biophysical characteristics of proteins. Sense and antisense strands can encode protein segments having inverted and complementary hydropathy. The underlying binary code controls association and dissociation of proteins and presumably represents a primordial code that might have emerged in the early stages of self-organizing biochemical cycles. It is the purpose of this communication to provide a perspective of the code in the context of a binary language from its primordial origin to its present day format and to propose to use this code as a genomic mining tool.
Collapse
Affiliation(s)
- H Kohler
- University of Kentucky, Lexington, KY 40536-0096, USA.
| | | | | |
Collapse
|
34
|
Breaker RR. Selection for catalytic function with nucleic acids. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 9:Unit 9.4. [PMID: 18428882 DOI: 10.1002/0471142700.nc0904s00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For in vitro selection of catalytic polynucleotides, each new protocol must be designed to harness the desired catalytic activity to help propel the selection process itself. This unit gives guidelines for design of in vitro selection experiments for catalytic function. It outlines several representative protocols as examples of successful selection experiments, providing a conceptual basis for the design and implementation of new selective-amplification protocols for nucleic acids.
Collapse
Affiliation(s)
- R R Breaker
- Yale University, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Abstract
The continuity of abiotically formed bilayer membranes with similar structures in contemporary cellular life, and the requirement for microenvironments in which large and small molecules could be compartmentalized, support the idea that amphiphilic boundary structures contributed to the emergence of life. As an extension of this notion, we propose here a 'Lipid World' scenario as an early evolutionary step in the emergence of cellular life on Earth. This concept combines the potential chemical activities of lipids and other amphiphiles, with their capacity to undergo spontaneous self-organization into supramolecular structures such as micelles and bilayers. In particular, the documented chemical rate enhancements within lipid assemblies suggest that energy-dependent synthetic reactions could lead to the growth and increased abundance of certain amphiphilic assemblies. We further propose that selective processes might act on such assemblies, as suggested by our computer simulations of mutual catalysis among amphiphiles. As demonstrated also by other researchers, such mutual catalysis within random molecular assemblies could have led to a primordial homeostatic system displaying rudimentary life-like properties. Taken together, these concepts provide a theoretical framework, and suggest experimental tests for a Lipid World model for the origin of life.
Collapse
Affiliation(s)
- D Segré
- Dept. of Molecular Genetics, Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
36
|
Abstract
This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.
Collapse
Affiliation(s)
- D E Ingber
- Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Abstract
Textbooks often assert that life began with specialized complex molecules, such as RNA, that are capable of making their own copies. This scenario has serious difficulties, but an alternative has remained elusive. Recent research and computer simulations have suggested that the first steps toward life may not have involved biopolymers. Rather, non-covalent protocellular assemblies, generated by catalyzed recruitment of diverse amphiphilic and hydrophobic compounds, could have constituted the first systems capable of information storage, inheritance and selection. A complex chain of evolutionary events, yet to be deciphered, could then have led to the common ancestors of today's free-living cells, and to the appearance of DNA, RNA and protein enzymes.
Collapse
Affiliation(s)
- D Segré
- Department of Molecular Genetics and The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
38
|
Tchurikov NA, Chistyakova LG, Zavilgelsky GB, Manukhov IV, Chernov BK, Golova YB. Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli. J Biol Chem 2000; 275:26523-9. [PMID: 10849423 DOI: 10.1074/jbc.m002833200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene-specific silencing refers to a phenomenon in which expression of an individual gene can be specifically repressed by different mechanisms on the levels of transcription, RNA splicing, transport, degradation in nuclei or cytoplasm, or blocking of translation. In different species gene-specific silencing was observed by expression or injections of antiparallel double-stranded RNA formed by a fragment of mRNA and antisense RNA. Here we show a potent and specific gene silencing in bacteria by expression of RNA, that is complementary in a parallel orientation to Escherichia coli lon mRNA. Moreover, the expression of parallel RNA is more effective at producing interference than expression of antisense RNA corresponding to the same mRNA region. Both effects of interference mediated either by parallel RNA or antiparallel RNA gradually decrease up to the 40th generation. Together with in vitro nuclease protection studies these results indicate that a parallel RNA duplex might be formed in vivo and both types of duplexes, antiparallel or parallel, can induce gene-specific silencing by similar mechanisms.
Collapse
Affiliation(s)
- N A Tchurikov
- Department of Genome Organization and Group of Genes Chemical Synthesis, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, Moscow 117984, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies KU. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 2000; 19:1900-6. [PMID: 10775273 PMCID: PMC302021 DOI: 10.1093/emboj/19.8.1900] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early stages of cotranslational protein translocation across the endoplasmic reticulum (ER) membrane the ribosome is targeted to the heterotrimeric Sec61p complex, the major component of the protein-conducting channel. We demonstrate that this interaction is mediated by the 28S rRNA of the eukaryotic large ribosomal subunit. Bacterial ribosomes also bind via their 23S rRNA to the bacterial homolog of the Sec61p complex, the SecYEG complex. Eukaryotic ribosomes bind to the SecYEG complex, and prokaryotic ribosomes to the Sec61p complex. These data indicate that rRNA-mediated interaction of ribosomes with the translocation channel occurred early in evolution and has been conserved.
Collapse
Affiliation(s)
- A Prinz
- Abteilung Biochemie II, Zentrum Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Segré D, Ben-Eli D, Lancet D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 2000; 97:4112-7. [PMID: 10760281 PMCID: PMC18166 DOI: 10.1073/pnas.97.8.4112] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (e.g., lipid vesicles or micelles) demonstrated self-replication properties resembling those of living cells. Combining these approaches, we analyze here the kinetic behavior of small heterogeneous assemblies of spontaneously aggregating molecules, of the type that could form readily under prebiotic conditions. A statistical formalism for mutual rate enhancement is used to numerically simulate the detailed chemical kinetics within such assemblies. We demonstrate that a straightforward set of assumptions about kinetically enhanced recruitment of simple amphiphilic molecules, as well as about the spontaneous growth and splitting of assemblies, results in a complex population behavior. The assemblies manifest a significant degree of homeostasis, resembling the previously predicted quasi-stationary states of biopolymer ensembles (Dyson, F. J. (1982) J. Mol. Evol. 18, 344-350). Such emergent catalysis-driven, compositionally biased entities may be viewed as having rudimentary "compositional genomes." Our analysis addresses the question of how mutually catalytic metabolic networks, devoid of sequence-based biopolymers, could exhibit transfer of chemical information and might undergo selection and evolution. This computed behavior may constitute a demonstration of natural selection in populations of molecules without genetic apparatus, suggesting a pathway from random molecular assemblies to a minimal protocell.
Collapse
Affiliation(s)
- D Segré
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
41
|
Giordano V, Jin DY, Rekosh D, Jeang KT. Intravirion targeting of a functional anti-human immunodeficiency virus ribozyme directed to pol. Virology 2000; 267:174-84. [PMID: 10662613 DOI: 10.1006/viro.1999.0112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribozymes are catalytic RNAs that offer several advantages as specific therapeutic genes against human immunodeficiency virus type 1 (HIV-1). Significant challenges in antiviral uses of ribozymes include (1) how best to express and to deliver this agent and (2) what is the best locale to target ribozymes against HIV-1 RNA. To explore the former, we have previously characterized several vector systems for efficient expression/delivery of anti-HIV-1 ribozymes (Dropulic et al., 1992; Dropulic and Jeang, 1994a; Smith et al., 1997). Here, to investigate an optimal locale for ribozyme-targeting, we asked whether it might be advantageous to direct ribozymes into HIV-1 virions as opposed to the more conventional approach of targeting ribozymes into infected cells. Two series of experiments were performed. First, we demonstrated that anti-HIV-1 ribozymes could indeed be packaged specifically and efficiently into virions. Second, we compared the virus suppressing activity of a packageable ribozyme with its counterpart, which cannot be packaged into HIV-1 virions. Our results showed that although both ribozymes cleaved HIV-1 genomic RNA in vitro with equivalent efficiencies, the former ribozyme demonstrated significantly higher virus-suppressing activity than the latter. These findings provide proof-of-principle that to combat productive HIV-1 replication, intravirion targeting is more effective than intracellular targeting of ribozymes.
Collapse
Affiliation(s)
- V Giordano
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
42
|
Abstract
It has been reported recently that naturally occurring catalytic RNAs like hammerhead and hairpin ribozyme do not require metal ions for efficient catalysis. It seems that the folded tertiary structure of the RNA contributes more to the catalytic function than was initially recognized. We found that a highly specific self-cleavage reaction can occur within a small bulge loop of four nucleotides in a mini-substrate derived from Arabidopsis thaliana intron-containing pre-tRNA(Tyr) in the absence of metal ions. NH(4)(+) cations and non-ionic or zwitter-ionic detergents at or above their critical micelle concentration are sufficient to catalyze this reaction. The dependence on micelles for the reaction leads to the assumption that physical properties, i.e. the hydrophobic interior of a micelle, are essential for this self-cleavage reaction. We suggest that NH(4)(+)-ions play a crucial role for the entry of the negatively charged RNA into the hydrophobic interior of a detergent micelle. A change of the pattern of hydration or hydrogen bonds caused by the hydrophobic surrounding enhances the reaction by a factor of 100. These findings suggest that highly structured RNAs may shift pK(a) values towards neutrality via the local environment and thereby enhance their ability to perform general acid-base catalysis without the participation of metal ions.
Collapse
Affiliation(s)
- A Riepe
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074, Würzburg, Germany
| | | | | |
Collapse
|
43
|
Affiliation(s)
- J D Thompson
- Ribozyme Pharmaceuticals Inc., Boulder, Colorado 80301, USA
| |
Collapse
|
44
|
Morales AJ, Swairjo MA, Schimmel P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. EMBO J 1999; 18:3475-83. [PMID: 10369686 PMCID: PMC1171426 DOI: 10.1093/emboj/18.12.3475] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome of the bacterium Aquifex aeolicus encodes a polypeptide which is related to a small portion of a sequence found in one prokaryotic and two eukaryotic tRNA synthetases. It also is related to a portion of Arc1p, a tRNA-binding protein believed to be important for nuclear trafficking of tRNAs. Here we cloned, expressed and purified the 111 amino acid polypeptide (designated Trbp111) and showed by ultracentrifugation analysis that it is a stable dimer in solution. The protein was also crystallized in a monoclinic lattice. X-ray diffraction analysis at 2.8 A resolution revealed a prominent non-crystallographic 2-fold axis, consistent with the presence of a symmetric homodimeric structure. Band-shift analysis with polyacrylamide gels showed that the dimer binds tRNAs, but not RNA duplexes, RNA hairpins, single-stranded RNA nor 5S rRNA. Complex formation with respect to tRNA is non-specific, with a single tRNA bound per dimer. Thus, Trbp111 is a structure-specific tRNA-binding protein. These results and other considerations raise the possibility that Trbp111 is a tRNA-specific chaperone which stabilizes the native L-shaped fold in the extreme thermophile and which has been incorporated into much larger tRNA-binding proteins of higher organisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/genetics
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Base Sequence
- Binding, Competitive
- Cloning, Molecular
- Crystallization
- Crystallography, X-Ray
- Dimerization
- Gram-Negative Aerobic Rods and Cocci/genetics
- Molecular Sequence Data
- Molecular Weight
- Peptides/chemistry
- Peptides/genetics
- Peptides/isolation & purification
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- A J Morales
- Skaggs Institute for Chemical Biology and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA. Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 1998; 95:15212-7. [PMID: 9860948 PMCID: PMC28022 DOI: 10.1073/pnas.95.26.15212] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein component of ribonuclease P (RNase P) binds to the RNA subunit, forming a functional ribonucleoprotein complex in vivo and enhancing the affinity of the precursor tRNA (pre-tRNA) substrate. Photocrosslinking experiments with pre-tRNA bound to RNase P reconstituted with the protein component of Bacillus subtilis ribonuclease P (P protein) site specifically modified with a crosslinking reagent indicate that: (i) the central cleft of P protein directly interacts with the single-stranded 5' leader sequence of pre-tRNA, and (ii) the orientation and register of the pre-tRNA leader sequence in the central cleft places the protein component in close proximity to the active site. This unique mode of interaction suggests that the catalytic active site in RNase P occurs near the interface of RNA and protein. In contrast to other ribonucleoprotein complexes where the protein mainly stabilizes the active tertiary fold of the RNA, a critical function of the protein component of RNase P is to alter substrate specificity and enhance catalytic efficiency.
Collapse
Affiliation(s)
- S Niranjanakumari
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Diegelman AM, Kool ET. Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Res 1998; 26:3235-41. [PMID: 9628924 PMCID: PMC147673 DOI: 10.1093/nar/26.13.3235] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A simple new strategy for the in vitro synthesis of circular RNAs and hairpin ribozymes is described. Circular single-strand DNA oligonucleotides 67-79 nt in length are constructed to encode both hairpin ribozyme sequences and ribozyme-cleavable sequences. In vitro transcription of these small circles by Escherichia coli RNA polymerase produces long repeating RNAs by a rolling circle mechanism. These repetitive RNAsundergo self-processing, eventually yielding unit length circular and linear RNAs as the chief products. The transcription is efficient despite the absence of promoter sequences, with RNA being produced in up to 400 times the amount of DNA circle used. It is shown that the linear monomeric hairpin ribozymes are active in cleaving RNA targets in trans , including one from HIV-1. Several new findings are established: (i) that rolling circle transcription can be extended to the synthesis of catalytic RNAs outside the hammerhead ribozyme motif; (ii) that rolling circle transcription is potentially a very simple and useful strategy for the generation of circular RNAs in preparative amounts; and (iii) that self-processed hairpin ribozymes can be catalytically active in trans despite the presence of self-binding domains.
Collapse
Affiliation(s)
- A M Diegelman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
49
|
Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, DiPaolo JA. Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci U S A 1998; 95:1189-94. [PMID: 9448307 PMCID: PMC18715 DOI: 10.1073/pnas.95.3.1189] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HPV-16 E6 and E7 genes are required to efficiently immortalize a broad spectrum of cell types including cervical keratinocytes. Therefore, the E6/E7 genes can be considered relevant targets for anti-cancer therapy. We produced several engineered hairpin (HP) ribozymes to specifically disrupt HPV-16 E6/E7 mRNA. After extensive biochemical characterization, one anti-E6 HP ribozyme (R434) was selected for in vivo testing because of its superior catalytic capabilities. When expressed in cis, R434 efficiently inhibited E6 in vitro translation. Cis-expression of the HP ribozyme with HPV-16 E6/E7 genes in normal human keratinocytes reduced the growth rate and prevented immortalization. RNA analysis by reverse transcription-PCR showed that E6/E7 transcripts were cleaved in post-transfected cells and virtually were eliminated after long term expression. Of interest, an inactive version of the HP also was able to significantly affect the immortalizing ability of E6/E7, probably through passive hybridization. The combination of passive and cleaving antisense RNA therefore is established as an effective inhibitor of HPV-16 E6/E7 immortalization.
Collapse
Affiliation(s)
- L M Alvarez-Salas
- Laboratory of Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
50
|
Smith SM, Maldarelli F, Jeang KT. Efficient expression by an alphavirus replicon of a functional ribozyme targeted to human immunodeficiency virus type 1. J Virol 1997; 71:9713-21. [PMID: 9371637 PMCID: PMC230281 DOI: 10.1128/jvi.71.12.9713-9721.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intracellular applications of ribozymes have been limited partly by the availability of suitable high-expression systems. For RNA effectors, consideration of an RNA virus vector system for delivery and expression is reasonable. We show that alphavirus replicons can be highly efficient nonintegrating ribozyme-expressing vectors. Using a hammerhead ribozyme targeted to a highly conserved sequence in the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, we demonstrate that a full-length 8.3-kb Semliki Forest virus ribozyme (SFVRz) chimeric RNA maintains catalytic activity. SFVRz is packaged into viral particles, and these particles transduce mammalian cells efficiently. SFVRz-transduced BHK cells were found to produce large amounts of genomic and subgenomic forms of ribozyme-containing RNAs that are functional in cleaving a U5-tagged mRNA. The RNase protection assay shows that HIV-1 U5-chloramphenicol acetyltransferase mRNA expressed intracellularly from an RNA polymerase II promoter is quantitatively eliminated in SFVRz-transduced BHK cells.
Collapse
Affiliation(s)
- S M Smith
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|