1
|
Peng Y, She X, Peng Y. Characterization of key genes and immune cell infiltration associated with endometriosis through integrating bioinformatics and experimental analyses. Hereditas 2025; 162:49. [PMID: 40165344 PMCID: PMC11956255 DOI: 10.1186/s41065-025-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUNDS Endometriosis (EM) is the most common gynecological disease in women of childbearing age. This study aims to identify key genes and screen drugs that may contribute to EM treatment. METHODS The differentially expressed genes (DEGs) were identified using limma analysis in the GSE11691 dataset. The protein-protein network (PPI) was constructed. Four machine learning methods, including LASSO, SVM-RFE, random forest, and Boruta, were applied to identify the key genes associated with EM. Flow cytometry, wound healing, and migration assays were applied to assess the cell functions of APLNR on hEM15A. The immune cell infiltration of each sample in EM was calculated using a single-sample gene set enrichment analysis (ssGSEA) algorithm. The potential drugs were screened using the Connectivity Map (CMAP) database, based on the DEGs. Finally, the expression levels of the three genes were further validated in the GSE23339 dataset. RESULTS One hundred thirty-seven down-regulated genes and 304 up-regulated genes were identified. We identified three key genes associated with EM: APLNR, HLA-DPA1, and AP1S2. The ssGSEA analysis results indicated that these genes play an important role in the development of EM. Moreover, EM immune cell infiltration was tightly associated with these three genes. Finally, several molecular compounds targeting EM were screened with the connectivity map (CMAP) database. ShAPLNR decreased the cell viability of hEM15A, increased the number of apoptotic cells, and significantly decreased the proportion of callus through APLNR in vitro studies. DISCUSSION Three genes (APLNR, HLA-DPA1, and AP1S2) may serve as novel therapeutic targets for diagnosing and treating patients with EM.
Collapse
Affiliation(s)
- Ying Peng
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong She
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Peng
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Wagenaar GTM, Moll GN. Advances in the therapeutic potentials of ligands of the apelin receptor APJ. Eur J Pharmacol 2025; 991:177302. [PMID: 39870231 DOI: 10.1016/j.ejphar.2025.177302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Angiotensin II protein J receptor, APJ, is a type A G protein coupled receptor. Endogenous apelin and elabela peptides stimulate APJ via distinct signalling profiles. A complex signalling map of elabela-stimulated APJ was published in 2022. Dimerization or oligomerization of APJ with itself or other receptor(s) can affect APJ signalling. Apelin has been shown to tolerate mutations and/or modifications at multiple sites without abolishing activity. This offers a great opportunity to design and engineer variants with desired signalling profiles and enhanced resistance to breakdown by peptidases. Several biased agonists with enhanced therapeutic potential have been generated. APJ agonists have therapeutic potential in multiple diseases including cardiovascular, renal, pulmonary and metabolic diseases, and viral infections. APJ antagonists may have therapeutic potential in cancer and retinopathy, and in related diseases in which unwanted angiogenesis is to be halted. A growing understanding of APJ signalling pathways and the robust therapeutic potential of associated ligands for many serious diseases will stimulate the clinical development of APJ ligands.
Collapse
Affiliation(s)
- Gerry T M Wagenaar
- Division of VitalTissue, Multi Tissue Center ETB-BISLIFE, Jan van Krimpenweg 17, 2031 CG, Haarlem, the Netherlands
| | - Gert N Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
3
|
Chen Z, Cheng J, Zhou Q, Wu LL, Chen JW, Duan XN, Yan JL, Cao JG, Xia XD, Li LF, Chen LX. SEC62-dependent ER-phagy contributes to apelin-13/APJ-induced monocyte-vascular endothelial cell adhesion in atherosclerosis pathogenesis. Acta Pharmacol Sin 2025:10.1038/s41401-024-01471-w. [PMID: 39930135 DOI: 10.1038/s41401-024-01471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/24/2024] [Indexed: 03/17/2025]
Abstract
The monocyte adhesion to vascular endothelial cells constitutes a key step in atherosclerosis pathogenesis. We previously found that ROS-autophagy pathway participated in the monocyte-endothelial cell adhesion induced by angiotensin domain type 1 receptor-associated proteins (APJ) and its endogenous ligand apelin-13. In this study, we investigated what specific type of autophagy apelin-13 regulated in this process. By conducting full-scale transcriptomic analysis in apelin-13-treated human umbilical vein endothelial cells (HUVECs), we found that the transcription levels of ER-phagy receptor protein SEC62 were significantly elevated. Importantly, SEC62 was also upregulated in human atherosclerotic lesions. Thus, we investigated the effects of SEC62-dependent ER-phagy on apelin-13-induced monocyte-endothelial cell adhesion and atherosclerosis pathogenesis. We demonstrated that Apelin-13 (0.001-1 μM) dose-dependently upregulated SEC62 expression thereby inducing ER-phagy in HUVECs. This effect was reversed by autophagy inhibitor 3MA (10 mM) and endoplasmic reticulum stress inhibitor salubrinal (10 μM). The siRNA-Sec62, 3MA (10 mM), and salubrinal (10 μM) all inhibited apelin-13-induced monocyte-endothelial cells adhesion, whereas vascular endothelial cells specific SEC62 deletion alleviated atherosclerotic plaques area, intercellular adhesion molecules expression and lesional macrophages in apelin-13-treated APOE-/- mice with high-fat and high-cholesterol diet. Moreover, we demonstrated that ubiquitin-like modification of ALDH1L1 was involved in SEC62-dependent ER-phagy in apelin-13-treated HUVECs: apelin-13 upregulated small ubiquitin-like protein UBL4A, which mediated the ubiquitination-like modification of ALDH1L1 at 812-lysine site. This, in turn, promoted insertion of ALDH1L1 into ER membrane and led to SEC62-dependent ER-phagy. We showed that siRNA-UBL4A, siRNA-ALDH1L1, siRNA-ASNA1, and the mutant of 812 lysine site of ALDH1L1 all decreased apelin-13-induced monocyte-endothelial cell adhesion. We conclude that apelin-13 induces SEC62-dependent ER-phagy to promote monocyte-endothelial cell adhesion and atherosclerosis. This study reveals new mechanisms underlying atherosclerosis and identifies a potential therapeutic target.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Cheng
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Qun Zhou
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Le-le Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jia-Wei Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiang-Ning Duan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jia-Long Yan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian-Gang Cao
- The Affiliated Nanhua Hospital, Clinical Pharmacy Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xiao-Dan Xia
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
| | - Lan-Fang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China.
| | - Lin-Xi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Couvineau P, Llorens-Cortes C. Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function. Clin Sci (Lond) 2025; 139:131-149. [PMID: 39879076 DOI: 10.1042/cs20240955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present. Apelin and vasopressin interact at the brain and renal levels to maintain body fluid homeostasis by regulating diuresis in opposite directions. Apelin and angiotensin II have opposite effects on the regulation of blood pressure (BP). Angiotensin II, by binding to AT1 receptors present in VSMCs, induces intracellular calcium mobilization and vasoconstriction, while apelin, by binding to Apelin-R present on vascular endothelium, increases nitric oxide production and induces vasodilation. Apelin also plays a crucial role in the regulation of cardiac function. Apelin-deficient and Apelin-R-deficient mice develop progressive myocardial dysfunction with ageing and are susceptible to heart failure in response to pressure overload. Since the half-life of apelin is very short in vivo (in the minute range), several metabolically stable apelin analogs and non-peptidic Apelin-R agonists have been developed, with potential applications in diverse diseases. In this review, we highlight the interaction between apelin and vasopressin in the regulation of water balance and that between apelin and angiotensin II in the regulation of BP. Additionally, we underline the protective effects of apelin in cardiac function. Lastly, we discuss the beneficial effects of Apelin-R activation in different pathological states such as hyponatremia, hypertension, and heart failure.
Collapse
Affiliation(s)
- Pierre Couvineau
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Department of Medicines and Healthcare Technologies, CEA Paris-Saclay, Frédéric Joliot Institute for Life and Sciences, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Xu W, Yan J, Travis ZD, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Shao A, Yu J. Apelin/APJ system: a novel promising target for anti-oxidative stress in stroke. Front Pharmacol 2025; 15:1352927. [PMID: 39881878 PMCID: PMC11775478 DOI: 10.3389/fphar.2024.1352927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS). However, the distribution of the apelin/APJ system varies across different regions and subcellular organelles of the brain. Additionally, the neuroprotective effects of the apelin/APJ system have been reported to inhibit oxidative and nitrative stresses via various signaling pathways. Despite this, the clinical application of the apelin/APJ system remains distant, as apelin has numerous active forms and signaling pathways. The development of a range of drugs targeting the apelin/APJ system holds promise for treating stroke.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zachary D. Travis
- Department of Medical Science Education, College of Health Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yue Y, Liu L, Wu L, Xu C, Na M, Liu S, Liu Y, Li F, Liu J, Shi S, Lei H, Zhao M, Yang T, Ji W, Wang A, Hanson MA, Stevens RC, Liu J, Xu F. Structural insights into the regulation of monomeric and dimeric apelin receptor. Nat Commun 2025; 16:310. [PMID: 39747115 PMCID: PMC11697037 DOI: 10.1038/s41467-024-55555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The apelin receptor (APJR) emerges as a promising drug target for cardiovascular health and muscle regeneration. While prior research unveiled the structural versatility of APJR in coupling to Gi proteins as a monomer or dimer, the dynamic regulation within the APJR dimer during activation remains poorly understood. In this study, we present the structures of the APJR dimer and monomer complexed with its endogenous ligand apelin-13. In the dimeric structure, apelin-13 binds exclusively to one protomer that is coupled with Gi proteins, revealing a distinct ligand-binding behavior within APJR homodimers. Furthermore, binding of an antagonistic antibody induces a more compact dimerization by engaging both protomers. Notably, structural analyses of the APJR dimer complexed with an agonistic antibody, with or without Gi proteins, suggest that G protein coupling may promote the dissociation of the APJR dimer during activation. These findings underscore the intricate interplay between ligands, dimerization, and G protein coupling in regulating APJR signaling pathways.
Collapse
Affiliation(s)
- Yang Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lier Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Man Na
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuxuan Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Songting Shi
- Structure Therapeutics, South San Francisco, CA, USA
| | - Hui Lei
- Structure Therapeutics, South San Francisco, CA, USA
| | - Minxuan Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianjie Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Michael A Hanson
- Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, USA
| | | | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- JiKang Therapeutics, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
7
|
Williams TL, Verdon G, Kuc RE, Currinn H, Bender B, Solcan N, Schlenker O, Macrae RGC, Brown J, Schütz M, Zhukov A, Sinha S, de Graaf C, Gräf S, Maguire JJ, Brown AJH, Davenport AP. Structural and functional determination of peptide versus small molecule ligand binding at the apelin receptor. Nat Commun 2024; 15:10714. [PMID: 39730334 PMCID: PMC11680790 DOI: 10.1038/s41467-024-55381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T892.64 as important in the ELA binding site, and R1684.64 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H1684.64 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function. Additionally, we present an apelin receptor crystal structure bound to the G protein-biased, small molecule agonist, CMF-019, which reveals a deeper binding mode versus the endogenous peptides at lipophilic pockets between transmembrane helices associated with GPCR activation. Overall, the data provide proof-of-principle for using genetic variation to identify key sites regulating receptor-ligand engagement.
Collapse
Affiliation(s)
- Thomas L Williams
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Grégory Verdon
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Heather Currinn
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Brian Bender
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Nicolae Solcan
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Oliver Schlenker
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Robyn G C Macrae
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jason Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Marco Schütz
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Andrei Zhukov
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Chris de Graaf
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant, Long Road, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK.
| | - Anthony P Davenport
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Girault-Sotias PE, Deloux R, De Mota N, Riché S, Daubeuf F, Iturrioz X, Parlakian A, Berdeaux A, Agbulut O, Bonnet D, Boitard SE, Llorens-Cortes C. The Metabolically Resistant Apelin-17 Analogue LIT01-196 Reduces Cardiac Dysfunction and Remodelling in Heart Failure After Myocardial Infarction. Can J Cardiol 2024:S0828-282X(24)01258-3. [PMID: 39674544 DOI: 10.1016/j.cjca.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND To protect patients after myocardial infarction (MI) and preserve cardiac function, the development of new therapeutics remains an important issue. Apelin, a neuro-vasoactive peptide, increases aqueous diuresis and cardiac contractility while reducing vascular resistance. However, its in vivo half-life is very short. We therefore developed a metabolically resistant apelin-17 analogue, LIT01-196 and investigated its effects on cardiac function and remodelling in a murine MI model. METHODS The selectivity of LIT01-196 toward the apelin receptor was checked in vitro. Its in vivo half-life was assessed in male Swiss mice using radioimmunoassay. After permanent coronary artery ligation to induce MI, mice received subcutaneous administration of LIT01-196 (MI + LIT01-196, 9 mg/kg/d) or saline (MI + vehicle) for 4 weeks. Left ventricular (LV) function was assessed using echocardiography and Millar (Houston, TX) catheter, vascular density using immunofluorescence, and cardiac fibrosis using Sirius red staining. Real-time quantitative PCR was used to measure mRNA expression of heart failure (HF) fibrosis biomarkers and sarco/endoplasmic reticulum Ca2+-ATPase-2. RESULTS The in vivo half-life of LIT01-196, a specific and selective apelin receptor agonist, was 2.5 hours. MI + LIT01-196 showed significantly improved LV function, reduced HF biomarkers, and enhanced cardiac contractility and sarco/endoplasmic reticulum Ca2+-ATPase-2 expression compared with MI + vehicle. LIT01-196 treatment almost doubled cardiac vascular density and maintained LV wall thickness post MI. It also significantly reduced cardiac fibrosis and fibrosis biomarkers, without decreasing arterial blood pressure. CONCLUSIONS Chronic LIT01-196 treatment post MI improves LV function without decreasing blood pressure, increases cardiac vascular density, and reduces cardiac remodelling. This suggests that apelin receptor activation by LIT01-196 might constitute an original pharmacological approach for HF treatment after MI.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France. https://twitter.com/PiGirault
| | - Robin Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Stephanie Riché
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Xavier Iturrioz
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Alain Berdeaux
- INSERM U955-IMRB Equipe 03 Université Paris Est Créteil, 94010 Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France; Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Zhou Y, Meng Z, Han Y, Yang X, Kuai J, Bao H. The effects of apelin-13 in a mouse model of post-traumatic stress disorder. Neuroreport 2024; 35:1098-1106. [PMID: 39423326 DOI: 10.1097/wnr.0000000000002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Zijun Meng
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Yuqing Han
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Xiaofang Yang
- Department of Histology and Embryology, Fenyang College, Shanxi Medical University, Fenyang
| | - Jinxia Kuai
- Department of Science and Technology, Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - Haijun Bao
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| |
Collapse
|
11
|
Landzhov B, Gaydarski L, Stanchev S, Kostadinova I, Iliev A, Kotov G, Rashev P, Mourdjeva M, Pupaki D, Stamenov N. A Morphological and Behavioral Study of Demyelination and Remyelination in the Cuprizone Model: Insights into APLNR and NG2+ Cell Dynamics. Int J Mol Sci 2024; 25:13011. [PMID: 39684720 DOI: 10.3390/ijms252313011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disorder involving demyelination. The cuprizone model is commonly used to study MS by inducing oligodendrocyte stress and demyelination. The subventricular zone (SVZ) plays a key role in neurogenesis, while the neuronal/glial antigen 2 (NG2) is a marker for immature glial cells, involved in oligodendrocyte differentiation. The apelin receptor (APLNR) is linked to neurogenesis and behavior modulation. This study explores the role of APLNR in NG2-positive cells during de- and remyelination phases in the experimental cuprizone mouse model. Thirty male C57BL/6 mice were divided into control (not treated), demyelination (5 weeks cuprizone administration), and remyelination (5 weeks cuprizone administration + 5 weeks recovery) groups. Histological examinations, immunohistochemistry, and immunofluorescence on serial coronal sections were conducted to evaluate corpus callosum (CC) morphology and APLNR and NG2 expression in the SVZ, in addition to behavioral assessments. The histological analysis showed a significant reduction in the CC's thickness and area after five weeks of cuprizone exposure, followed by recovery five weeks post-exposure. During the demyelination phase, APLNR-expressing cells peaked while NG2-positive cells decreased. In the remyelination phase, APLNR-expressing cells declined, and NG2-positive cells increased. Confocal microscopy confirmed the co-localization of NG2 and APLNR markers. Statistically significant differences were observed across experimental groups. Correlation analyses highlighted associations between APLNR/NG2 cell counts and CC changes. Behavioral tests revealed impaired motor coordination and memory during demyelination, with gradual recovery during remyelination. Significant changes in the CC structure and the number of APLNR and NG2-positive cells were observed during de- and remyelination, suggesting that NG2-positive cells expressing APLNR may play a key role in remyelination.
Collapse
Affiliation(s)
- Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivanka Kostadinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Georgi Kotov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Pavel Rashev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Despina Pupaki
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
12
|
Karpuz MA, Kale İ, Helvacıoğlu Ç, Muhcu M. Investigation of serum apelin-13 and apelin-36 concentrations in pregnancies complicated by preeclampsia; a prospective case-control study. J Matern Fetal Neonatal Med 2024; 37:2341298. [PMID: 38626005 DOI: 10.1080/14767058.2024.2341298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE We aimed to investigate the relationship between preeclampsia and maternal serum apelin-13 and apelin-36 concentrations. METHODS This cross-sectional study was carried out in the Gynecology and Obstetrics Clinic of Umraniye Training and Research Hospital. The preeclampsia group consisted of 40 pregnant women diagnosed with preeclampsia, and the control group consisted of 40 healthy pregnant women matched with the preeclampsia group in terms of age and body mass index. The two groups were compared in terms of maternal serum apelin-13 and apelin-36 concentrations. RESULTS Both groups were similar in terms of demographic characteristics and the gestational week at blood sampling. Maternal serum apelin-13 and apelin-36 concentrations were significantly lower in the preeclampsia group than in the control group (p = 0.005, p = 0.001, respectively). The optimal cutoff value for the prediction of preeclampsia in receiver operator curve analysis for apelin-13 was determined as 1781.67 pg/ml with 60% sensitivity and 60% specificity, and 885.5 pg/ml for apelin-36 with 67% sensitivity and 65% specificity. We divided the preeclampsia group into two groups mild and severe and compared the three groups in terms of maternal serum apelin-13 and apelin-36 concentrations. The lowest apelin-13 concentration was detected in the severe preeclampsia group, while the lowest apelin-36 concentration was detected in the mild preeclampsia group (p = 0.020, p = 0.003, respectively). Considering the onset of the disease, we divided the preeclampsia group into two groups early and late-onset, then compared the three groups in terms of maternal serum apelin-13 and apelin-36 concentrations. The lowest maternal serum apelin-13 and apelin-36 concentrations were detected in the early-onset preeclampsia group (p = 0.016, p = 0.001, respectively). CONCLUSION It was determined that serum apelin-13 and apelin-36 concentrations were significantly lower in preeclamptic pregnant women, this decrease was more significant in early-onset preeclampsia, and low maternal serum apelin-13 concentration was more associated with the severity of preeclampsia.
Collapse
Affiliation(s)
- Mahmut Ali Karpuz
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Çağlar Helvacıoğlu
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Department of Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Kisielewska K, Gudelska M, Kiezun M, Dobrzyn K, Zaobidna E, Rytelewska E, Kopij G, Wasilewska B, Smolinska N, Kaminski T. Expression of the apelin system in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of apelin on LH and FSH secretion. Theriogenology 2024; 230:263-277. [PMID: 39357165 DOI: 10.1016/j.theriogenology.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Reproductive success requires considerable energy investment. Research has shown that some adipokines, i.e. the hormones produced in adipose tissue, affect reproductive functions by influencing all structures of the hypothalamic-pituitary-ovarian axis. Apelin is a recently identified member of the adipokine family. To the best of the authors' knowledge, this is the first study to investigate the gene and protein expression of the apelin system (the apelin hormone and the apelin receptor, APJ) in the anterior (AP) and posterior (PP) pituitary lobes of the domestic pig during different phases of the oestrous cycle (days 2 to 3, 10 to 12, 14 to 16, and 17 to 19) and in early pregnancy (days 10 to 11, 12 to 13, 15 to 16, and 27 to 28). It was also assumed that apelin participates in the regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and influences Akt, MAPK/Erk1/2, and AMPK signalling pathways in the AP during the oestrous cycle. Apelin, APJ mRNAs and proteins were detected in both pituitary lobes. Apelin was identified in gonadotropes, somatotropes, lactotropes, and thyrotropes. The study also revealed that apelin and APJ mRNA/protein levels fluctuate during the oestrous cycle and early gestation. Apelin affects basal, GnRH- and/or insulin-stimulated gonadotropin secretion in some phases of the cycle, as well as the phosphorylation of Akt, MAPK/Erk1/2, and AMPK proteins in AP cells. These findings suggest that apelin may be produced locally in the pituitary and that this gland is receptive to apelin's action. The study also suggest that apelin may influence female reproductive functions by controlling the release of LH and FSH from AP cells, and that it affects Akt, MAPK/Erk1/2, and AMPK signalling pathways.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Barbara Wasilewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
14
|
Iliev A, Gaydarski L, Kotov G, Landzhov B, Kirkov V, Stanchev S. The vascular footprint in cardiac homeostasis and hypertensive heart disease-A link between apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase. Anat Rec (Hoboken) 2024; 307:3548-3563. [PMID: 38618880 DOI: 10.1002/ar.25453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.
Collapse
Affiliation(s)
- Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health "Prof. Dr. Tzekomir Vodenicharov", Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
15
|
Xu LJ, Zhi MT, Lin XX, Li X, Li ZY, Cui X. Cholecystokinin regulates atrial natriuretic peptide secretion through activation of NOX4-Sirt1-LEF1 signaling in beating rat hypoxic atria. Peptides 2024; 181:171299. [PMID: 39326462 DOI: 10.1016/j.peptides.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The mammalian cardiac myocytes not only synthesize and secrete atrial natriuretic peptide (ANP), but also express cholecystokinin (CCK) and its receptors (CCK1R and CCK2R). However, atrial CCK expression patterns and its effects on ANP secretion during hypoxia are unclear. Therefore, this study is aimed to investigate the effect of hypoxia on the expression levels of CCK and its receptors, as well as the underlying mechanisms involved in regulating hypoxia-induced ANP secretion in isolated beating atria. The results of this study showed that acute hypoxia significantly upregulated expression of CCK and CCK1R as well as CCK2R through activation of hypoxia-inducible factor 1α-apelin signaling. Endogenous CCK induced by hypoxia markedly upregulated the expression of silent information regulator factor 2-related enzyme 1 (Sirt1) and its downstream nuclear factor erythroid‑2‑related factor 2 (Nrf2) via the activation of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), leading to increase of activating T cell factor (TCF) 3 and TCF4/ lymphoid enhancer factor (LEF) 1, ultimately promoting hypoxia-induced ANP secretion. In addition, siRNA-mediated knockdown of LEF1 dramatically attenuated hypoxia-induced increase of ANP expression in HL-1 atrial myocytes. These results indicated endogenous CCK induced by hypoxia promoted hypoxia-induced ANP secretion by activation of NOX4-Sirt1-TCF3/4-LEF1 signaling pathway.
Collapse
Affiliation(s)
- Li-Jia Xu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Meng-Tao Zhi
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xiao-Xue Lin
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xiang Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Zhi-Yu Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China; Institute of Clinical Medicine, Yanbian University, Yanji, 133-000, China.
| | - Xun Cui
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China; Cellular Function Research Center, Yanbian University, Yanji 133-002, China.
| |
Collapse
|
16
|
Loukas N, Vrachnis D, Antonakopoulos N, Stavros S, Machairiotis N, Fotiou A, Christodoulaki C, Lolos M, Maroudias G, Potiris A, Drakakis P, Vrachnis N. Decoding Apelin: Its Role in Metabolic Programming, Fetal Growth, and Gestational Complications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1270. [PMID: 39457235 PMCID: PMC11506081 DOI: 10.3390/children11101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Placental insufficiency and gestational diabetes, which are both serious pregnancy complications, are linked to altered fetal growth, whether restricted or excessive, and result in metabolic dysfunction, hypoxic/oxidative injury, and adverse perinatal outcomes. Although much research has been carried out in this field, the underlying pathogenetic mechanisms have not as yet been fully elucidated. Particularly because of the role it plays in cardiovascular performance, glucose metabolism, inflammation, and oxidative stress, the adipokine apelin was recently shown to be a potential regulator of fetal growth and metabolic programming. This review investigated the numerous biological actions of apelin in utero and aimed to shed more light on its role in fetal growth and metabolic programming. The expression of the apelinergic system in a number of tissues indicates its involvement in many physiological mechanisms, including angiogenesis, cell proliferation, energy metabolism, inflammation, and oxidative stress. Moreover, it appears that apelin has a major function in disorders such as diabetes mellitus, fetal growth abnormalities, fetal hypoxia, and preeclampsia. We herein describe in detail the regulatory effects exerted by the adipokine apelin on fetal growth and metabolic programming while stressing the necessity for additional research into the therapeutic potential of apelin and its mechanisms of action in pregnancy-related disorders.
Collapse
Affiliation(s)
- Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 185 36 Piraeus, Greece
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | | | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Chryssi Christodoulaki
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Markos Lolos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Georgios Maroudias
- Department of Obstetrics and Gynecology, Santorini General Hospital, 847 00 Thira, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
17
|
Torkamani-Dordshaikh S, Darabi S, Norouzian M, Bahar R, Beirami A, Moghaddam MH, Fathi M, Vakili K, Tahmasebinia F, Bahrami M, Abbaszadeh HA, Aliaghaei A. Exploring the therapeutic potential: Apelin-13's neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington's disease. Anat Cell Biol 2024; 57:419-430. [PMID: 39079710 PMCID: PMC11424562 DOI: 10.5115/acb.23.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Huntington's disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
Collapse
Affiliation(s)
- Shaysteh Torkamani-Dordshaikh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bahar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Beirami
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foozhan Tahmasebinia
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bahrami
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Tang L, Qiu H, Xu B, Su Y, Nyarige V, Li P, Chen H, Killham B, Liao J, Adam H, Yang A, Yu A, Jang M, Rubart M, Xie J, Zhu W. Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice. Circ Res 2024; 135:777-798. [PMID: 39145385 PMCID: PMC11392624 DOI: 10.1161/circresaha.124.324608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI). METHODS A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot. RESULTS The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression. CONCLUSIONS Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.
Collapse
Affiliation(s)
- Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Huiliang Qiu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Bing Xu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Verah Nyarige
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Houjia Chen
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Brady Killham
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Henderson Adam
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Aaron Yang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Alexander Yu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (M.R.)
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| |
Collapse
|
19
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Anima B, Gurusubramanian G, Roy VK. Hormonal dependent expression of apelin and apelin receptor in the ovary and uterus of mice. Reprod Biol 2024; 24:100918. [PMID: 38924877 DOI: 10.1016/j.repbio.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 μg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
21
|
Lei J, Zheng F, Chen L, Zhang R, Yang Y, Yin Z, Luo L. Gstp1 negatively regulates blood pressure in hypertensive rat via promoting APLNR ubiquitination degradation mediated by Nedd4. Clin Sci (Lond) 2024; 138:883-900. [PMID: 38959295 DOI: 10.1042/cs20241113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.
Collapse
Affiliation(s)
- Jianzhen Lei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fen Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luyao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
22
|
Anima B, Gurusubramanian G, Roy VK. Apelin receptor modulation mitigates letrozole-induced polycystic ovarian pathogenesis in mice. Cytokine 2024; 179:156639. [PMID: 38733946 DOI: 10.1016/j.cyto.2024.156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
AIMS Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl-796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl-796004, Mizoram, India.
| |
Collapse
|
23
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
24
|
Dobrzyn K, Kiezun M, Kopij G, Zarzecka B, Gudelska M, Kisielewska K, Zaobidna E, Makowczenko KG, Dall'Aglio C, Kamiński T, Smolińska N. Apelin-13 modulates the endometrial transcriptome of the domestic pig during implantation. BMC Genomics 2024; 25:501. [PMID: 38773369 PMCID: PMC11106924 DOI: 10.1186/s12864-024-10417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland.
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Marlena Gudelska
- Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Aleja Warszawska 30, Olsztyn, 10-082, Poland
| | - Katarzyna Kisielewska
- Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Aleja Warszawska 30, Olsztyn, 10-082, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Karol G Makowczenko
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Reproductive Immunology and Pathology, Tuwima 10, Olsztyn, 10-748, Poland
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Tadeusz Kamiński
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| | - Nina Smolińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland
| |
Collapse
|
25
|
Liu C, Xiong J, Yi X, Song S, Yang H, Tan W, Yang X, Zheng L, Yu J, Xu C. Decreased plasma ELABELA level as a novel screening indicator for heart failure: a cohort and observational study. Sci Rep 2024; 14:11333. [PMID: 38760403 PMCID: PMC11101417 DOI: 10.1038/s41598-024-61480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
The predictive power of B-type natriuretic peptide (BNP) and left ventricular ejection fraction (LVEF) is limited by its low specificity in patients with heart failure (HF). Discovery of more novel biomarkers for HF better diagnosis is necessary and urgent. ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (Apelin peptide jejunum, Apelin receptor), exhibits cardioprotective actions. However, the relationship between plasma ELABELA and cardiac function in HF patients is unclear. To evaluate plasma ELABELA level and its diagnostic value in HF patients, a total of 335 patients with or without HF were recruited for our monocentric observational study. Plasma ELABELA and Apelin levels were detected by immunoassay in all patients. Spearman correlation analysis was used to analyze the correlation between plasma ELABELA or Apelin levels and study variables. The receiver operating characteristic curves were used to access the predictive power of plasma ELABELA or Apelin levels. Plasma ELABELA levels were lower, while plasma Apelin levels were higher in HF patients than in non-HF patients. Plasma ELABELA levels were gradually decreased with increasing New York Heart Association grade or decreasing LVEF. Plasma ELABELA levels were negatively correlated with BNP, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness and positively correlated with LVEF in HF patients. In contrast, the correlation between plasma Apelin levels and these parameters is utterly opposite to ELABELA. The diagnostic value of ELABELA, Apelin, and LVEF for all HF patients was 0.835, 0.673, and 0.612; the sensitivity was 62.52, 66.20, and 32.97%; and the specificity was 95.92, 67.23, and 87.49%, respectively. All these parameters in HF patients with preserved ejection fraction were comparable to those in total HF patients. Overall, plasma ELABELA levels were significantly reduced and negatively correlated with cardiac function in HF patients. Decreased plasma ELABELA levels may function as a novel screening biomarker for HF. A combined assessment of BNP and ELABELA may be a good choice to increase the accuracy of the diagnosis of HF.
Collapse
Affiliation(s)
- Chunju Liu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenting Tan
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaojun Yang
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Lixiang Zheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
26
|
Franchini L, Orlandi C. Deorphanization of G Protein Coupled Receptors: A Historical Perspective. Mol Pharmacol 2024; 105:374-385. [PMID: 38622017 DOI: 10.1124/molpharm.124.000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Counting over 800 members, G protein coupled receptors (GPCRs) form the largest family of membrane receptors encoded in the human genome. Since the discovery of G proteins and GPCRs in the late 1970s and early 1980s, a significant portion of the GPCR research has been focused on identifying ligand/receptor pairs in parallel to studies related to their signaling properties. Despite significant advancements, about a fourth of the ∼400 nonodorant GPCRs are still considered orphan because their natural or endogenous ligands have yet to be identified. We should consider that every GPCR was once an orphan and that endogenous ligands have often been associated with biologic effects without a complete understanding of the molecular identity of their target receptors. Within this framework, this review offers a historical perspective on deorphanization processes for representative GPCRs, including the ghrelin receptor, γ aminobutyric acid B receptor, apelin receptor, cannabinoid receptors, and GPR15. It explores three main scenarios encountered in deorphanization efforts and discusses key questions and methodologies employed in elucidating ligand-receptor interactions, providing insights for future research endeavors. SIGNIFICANCE STATEMENT: Understanding how scientists have historically approached the issue of GPCR deorphanization and pairing of biologically active ligands with their cognate receptors are relevant topics in pharmacology. In fact, the biology of each GPCR, including its pathophysiological involvement, has often been uncovered only after its deorphanization, illuminating druggable targets for various diseases. Furthermore, uncovered endogenous ligands have therapeutic value as many ligands-or derivates thereof-are developed into drugs.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
27
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
28
|
Williams TL, Nwokoye P, Kuc RE, Smith K, Paterson AL, Allinson K, Maguire JJ, Davenport AP. Expression of the apelin receptor, a novel potential therapeutic target, and its endogenous ligands in diverse stem cell populations in human glioblastoma. Front Neurosci 2024; 18:1379658. [PMID: 38803685 PMCID: PMC11128631 DOI: 10.3389/fnins.2024.1379658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and lethal forms of brain cancer, carrying a very poor prognosis (median survival of ~15 months post-diagnosis). Treatment typically involves invasive surgical resection of the tumour mass, followed by radiotherapy and adjuvant chemotherapy using the alkylating agent temozolomide, but over half of patients do not respond to this drug and considerable resistance is observed. Tumour heterogeneity is the main cause of therapeutic failure, where diverse progenitor glioblastoma stem cell (GSC) lineages in the microenvironment drive tumour recurrence and therapeutic resistance. The apelin receptor is a class A GPCR that binds two endogenous peptide ligands, apelin and ELA, and plays a role in the proliferation and survival of cancer cells. Here, we used quantitative whole slide immunofluorescent imaging of human GBM samples to characterise expression of the apelin receptor and both its ligands in the distinct GSC lineages, namely neural-progenitor-like cells (NPCs), oligodendrocyte-progenitor-like cells (OPCs), and mesenchymal-like cells (MES), as well as reactive astrocytic cells. The data confirm the presence of the apelin receptor as a tractable drug target that is common across the key cell populations driving tumour growth and maintenance, offering a potential novel therapeutic approach for patients with GBM.
Collapse
Affiliation(s)
- Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Peter Nwokoye
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kieran Smith
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anna L. Paterson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
29
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
30
|
Wang M, Gao Q, Guo S. Diagnostic and prognostic significance of apelin-13, APJ for sepsis in the emergency department: A prospective study. Heliyon 2024; 10:e28620. [PMID: 38590887 PMCID: PMC11000005 DOI: 10.1016/j.heliyon.2024.e28620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Objectives This study aimed to assess the diagnostic, risk stratification, and prognostic capabilities of apelin-13 and APJ in comparison to procalcitonin (PCT) for septic patients presenting to the emergency department (ED). Methods Two hundred and thirty-eight patients meeting the Third International Consensus Definition (Sepsis-3) criteria were enrolled from Beijing Chaoyang Hospital's ED, along with a control group of forty healthy individuals. Patients were categorized into two groups based on disease severity: those with sepsis or septic shock. Plasma levels of apelin-13, CD4+ Th cells, and PCT were measured. The expression levels of plasma APJ mRNA were quantified using real-time fluorescence quantitative PCR (RT-qPCR) methodology. The Sequential Organ Failure Assessment (SOFA) score was determined at the time of enrollment. The prognostic values of apelin-13 and APJ was evaluated in comparison to that of PCT and the SOFA score. All patients were followed up for a duration of 28 days. Results The plasma concentrations of apelin-13 and APJ exhibited a positive correlation with the severity of sepsis, while the number of CD4+ T cells decreased in septic patients. The areas under the receiver operating characteristic (AUC) curves for apelin-13 and APJ in the diagnosis and prediction of 28-day mortality were greater than that of PCT. In non-survivors at the 28-day follow-up, the plasma levels of apelin-13 and APJ were significantly higher compared to survivors. Furthermore, apelin-13 levels were notably higher in cases of sepsis-induced cardiomyopathy (SICM) than in those without SICM. Apelin-13 and APJ emerged as independent predictors of 28-day mortality among septic patients. Conclusions Apelin-13 and APJ demonstrate value in the assessment of risk stratification, early diagnosis, and prognosis of sepsis in the ED. Apelin-13 also proves to be an effective biomarker for assessing the prognosis of SICM in the ED. Sepsis may lead to immune function suppression.
Collapse
Affiliation(s)
- Miaomiao Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| | - Qian Gao
- Emergency Department, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, No. 8, South Road of Worker's Stadium, Chaoyang District, Beijing, 100020, China
| |
Collapse
|
31
|
Yan Z, Shi Y, Yang R, Xue J, Fu C. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways. J Zhejiang Univ Sci B 2024; 25:341-353. [PMID: 38584095 PMCID: PMC11009446 DOI: 10.1631/jzus.b2300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024]
Abstract
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
Collapse
Affiliation(s)
- Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
32
|
Williams TL, Nyimanu D, Kuc RE, Foster R, Glen RC, Maguire JJ, Davenport AP. The biased apelin receptor agonist, MM07, reverses Sugen/hypoxia-induced pulmonary arterial hypertension as effectively as the endothelin antagonist macitentan. Front Pharmacol 2024; 15:1369489. [PMID: 38655187 PMCID: PMC11035786 DOI: 10.3389/fphar.2024.1369489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.
Collapse
Affiliation(s)
- Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Richard Foster
- School of Chemistry, Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Robert C. Glen
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery and Cancer, Biomolecular Medicine, Imperial College London, London, United Kingdom
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
33
|
Anima B, Gurusubramanian G, Roy VK. Possible role of apelin on the ovarian steroidogenesis and uterine apoptosis of infantile mice: An in vitro study. J Steroid Biochem Mol Biol 2024; 238:106463. [PMID: 38246202 DOI: 10.1016/j.jsbmb.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The expression of adipokines is well-known in the ovary and uterus. Recently we have shown that apelin and its receptor, APJ are developmentally regulated in the ovary and uterus of mice with elevation at postnatal day 14 (PND14). However, its role in the ovary and uterus of PND14 has not been investigated. Thus, we aimed to unravel the role of the apelin system (by APJ antagonist, ML221) on ovarian steroid secretion, proliferation, and apoptosis along with its role in uterine apoptosis in PND14 mice by in vitro approaches. The treatment of ML221 decreased estrogen, testosterone, and androstenedione secretion while increasing the progesterone secretion from the infantile ovary. These results suggest that apelin signaling would be important for ovarian estrogen synthesis in infantile mice (PND14). The abundance of 3β-HSD, 17β-HSD, aromatase, and active caspase3 increased in the infantile ovary after ML221 treatment. The expression of ERs and BCL2 were also down-regulated by ML221 treatment. The decreased BCL2 and increased active caspase3 by ML221 suggest the suppressive role of apelin on ovarian apoptosis. The APJ antagonist treatment also down-regulated the ER expression in the uterus along with increased active caspase3 and decreased BCL2 expression. In conclusion, apelin signaling inhibits the ovarian and uterine apoptosis via estrogen signaling in the ovary and uterus.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
34
|
Phạm TTT, Murza A, Marsault É, Frampton JP, Rainey JK. Localized apelin-17 analogue-bicelle interactions as a facilitator of membrane-catalyzed receptor recognition and binding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184289. [PMID: 38278504 DOI: 10.1016/j.bbamem.2024.184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexandre Murza
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - John P Frampton
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
35
|
Tian G, Zheng Q, Zhang Q, Liu X, Lu X. Serum Elabela expression is decreased in hypertensive patients and could be associated with the progression of hypertensive renal damage. Eur J Med Res 2024; 29:94. [PMID: 38297369 PMCID: PMC10832183 DOI: 10.1186/s40001-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Elabela, a recently discovered hormonal peptide containing 32 amino acids, is a ligand for the apelin receptor. It can lower blood pressure and attenuate renal fibrosis. However, the clinicopathological relationship between Elabela level and renal damage caused by benign hypertension (BHT) and malignant hypertension (MHT) has not been elucidated. Therefore, we investigated the clinicopathological correlation between serum Elabela level and renal damage caused by BHT and MHT. METHODS The participants comprised 50 patients and 25 age-matched healthy adults. The 50 patients were separated into two groups: MHT (n = 25) and BHT groups (n = 25). We analyzed their medical histories, demographics, and clinical examinations, including physical and laboratory tests. RESULTS The results showed that serum Elabela level decreased gradually with a continuous increase in blood pressure from the healthy control group, BHT, to MHT. Moreover, Elabela levels negatively correlated with BMI (R = - 0.27, P = 0.02), SBP (r = - 0.64, P < 0.01), DBP (r = - 0.58, P < 0.01), uric acid (r = - 0.39, P < 0.01), bun (r = - 0.53, P < 0.01), and Scr (r = - 0.53 P < 0.01) but positively correlated with eGFR (r = 0.54, P < 0.01). Stepwise multivariate linear regression analysis showed that SBP was the variable most related to Elabela (t = - 5.592, P < 0.01). CONCLUSIONS Serum Elabela levels decreased in patients with hypertension, especially malignant hypertension, and has the potential to be a marker of hypertension-related kidney damage.
Collapse
Affiliation(s)
- Geng Tian
- Second Hospital of Jilin University, Changchun, 130041, China
| | - Qian Zheng
- Jiading District Central Hospital Affiliated Shanghai University of Medicine &Health Sciences, Shanghai, 201800, China
| | - Qingru Zhang
- Second Hospital of Jilin University, Changchun, 130041, China
| | - Xiaoyu Liu
- Second Hospital of Jilin University, Changchun, 130041, China
| | - Xuehong Lu
- Second Hospital of Jilin University, Changchun, 130041, China.
- Department of Nephrology, Second Hospital, Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
36
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
37
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
38
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
39
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
40
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Tian Y, Wang R, Liu L, Zhang W, Liu H, Jiang L, Jiang Y. The regulatory effects of the apelin/APJ system on depression: A prospective therapeutic target. Neuropeptides 2023; 102:102382. [PMID: 37716179 DOI: 10.1016/j.npep.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Depression is a debilitating neuropsychological disorder characterized by high incidence, high recurrence, high suicide, and high disability rates, which poses serious threats to human health and imposes heavy psychological and economic burdens on family and society. The pathogenesis of depression is extremely complex, and its etiology is multifactorial. Mounting evidence suggests that apelin and apelin receptor APJ, which compose the apelin/APJ system, are related to the development of depression. However, the specific mechanism is still unclear, and research in this area in human is still insufficient. Acceleration of research into the regulatory effects and underlying mechanisms of the apelin/APJ system in depression may identify attractive therapeutic targets and contribute to the development of novel intervention strategies against this devastating psychological disorder. In this review, we mainly discuss the regulatory effects of apelin/APJ system on depression and its potential therapeutic applications.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Lin Liu
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Wenhuan Zhang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Liqing Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yunlu Jiang
- School of Mental Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
42
|
Pisarenko OI, Studneva IM. Apelin C-Terminal Fragments: Biological Properties and Therapeutic Potential. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1874-1889. [PMID: 38105205 DOI: 10.1134/s0006297923110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.
Collapse
Affiliation(s)
- Oleg I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia.
| | - Irina M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
43
|
Monastero R, Magro D, Venezia M, Pisano C, Balistreri CR. A promising therapeutic peptide and preventive/diagnostic biomarker for age-related diseases: The Elabela/Apela/Toddler peptide. Ageing Res Rev 2023; 91:102076. [PMID: 37776977 DOI: 10.1016/j.arr.2023.102076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.
Collapse
Affiliation(s)
- Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Daniele Magro
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Marika Venezia
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Rome, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
44
|
Rafaqat S. Adipokines and Their Role in Heart Failure: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5657-5669. [PMID: 38058391 PMCID: PMC10697129 DOI: 10.19102/icrm.2023.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/12/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a major risk factor for heart failure (HF). The relationship between adipokines and HF has been implicated in many previous studies and reviews. However, this review article summarizes the basic role of major adipokines, such as apelin, adiponectin, chemerin, resistin, retinol-binding protein 4 (RBP4), vaspin, visfatin, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, progranulin, leptin, omentin-1, lipocalin-2, and follistatin-like 1 (FSTL1), in the pathogenesis of HF. Apelin is reduced in patients with HF and upregulated following favorable left ventricular (LV) remodeling. Higher levels of adiponectin have been found in patients with HF compared to in control patients. Also, high plasma chemerin levels are linked to a higher risk of HF. Serum resistin is related to the severity of HF and associated with a high risk for adverse cardiac events. Evidence indicates that RBP4 can contribute to inflammation and damage heart muscle cells, potentially leading to HF. Vaspin might stop the progression of cardiac degeneration, fibrosis, and HF according to experiments on rats with experimental isoproterenol-induced chronic HF. The serum concentrations of visfatin are significantly lower in patients with systolic HF. Leptin levels were found to be correlated with low LV mass and myocardial stiffness, both of which are significant risk factors for the development of HF with preserved ejection fraction (HFpEF). Measuring serum omentin-1 levels appears to be a novel prognostic indicator for risk stratification in HF patients. Increased expression of neutrophil gelatinase-associated lipocalin in both systemic circulation and myocardium in clinical and experimental HF suggests that innate immune responses may contribute to the development of HF. FSTL1 was elevated in patients with HF with reduced ejection fraction and associated with an increase in the size of the left ventricle of the heart. However, other adipokines, such as plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, and progranulin, have not yet been studied for HF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
45
|
Kinjo T, Ebisawa S, Nokubo T, Hashimoto M, Yamada T, Oshio M, Nakamura R, Uno K, Kuramoto N. Post-translational modifications of the apelin receptor regulate its functional expression. AIMS Neurosci 2023; 10:282-299. [PMID: 38188005 PMCID: PMC10767067 DOI: 10.3934/neuroscience.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/09/2024] Open
Abstract
Post-translational modifications (PTMs) are protein modifications that occur after protein biosynthesis, playing a crucial role in regulating protein function. They are involved in the functional expression of G-protein-coupled receptors (GPCRs), as well as intracellular and secretory protein signaling. Here, we aimed to investigate the PTMs of the apelin receptor (APLNR), a GPCR and their potential influence on the receptor's function. In an in vitro experiment using HEK cells, we only observed glycosylation as a PTM of the APLNR and ineffective receptor signaling by the agonist, (Pyr1)-apelin-13. In contrast, when analyzing mouse spinal cord, we detected glycosylation and other PTMs, excluding isopeptidation. This suggests that additional PTMs are involved in the functional expression of the APLNR in vitro. In summary, these findings suggest that the APLNR in vivo requires multiple PTMs for functional expression. To comprehensively understand the pharmacological effects of the APLNR, it is essential to establish an in vitro system that adequately replicates the receptor's PTM profile. Nonetheless, it is crucial to overcome the challenge of heat-sensitive proteolysis in APLNR studies. By elucidating the regulation of PTMs, further research has the potential to advance the analysis and pharmacological studies of both the apelin/APLNR system and GPCR signal modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
46
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
47
|
Zheng S, Tan W, Li X, Wang L, Zhu C, Pyle WG, Chen J, Wu J, Ren X, Chen H, Zou Y, Backx PH, Yang FH. Apelin receptor inhibition in ischemia-reperfused mouse hearts protected by endogenous n-3 polyunsaturated fatty acids. Front Pharmacol 2023; 14:1145413. [PMID: 37942483 PMCID: PMC10628527 DOI: 10.3389/fphar.2023.1145413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Background: While the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on cardiac ischemia-reperfusion (IR) injury have been previously reported, limited data are available regarding how these fatty acids affect membrane receptors and their downstream signaling following IR injury. We aimed to identify potential receptors activated by n-3 PUFAs in IR hearts to understand the regulatory mechanisms of these receptors. Methods: We used fat-1 mice, which naturally have elevated levels of n-3 PUFAs, and C57BL/6J mice as a control group to create a myocardial IR injury model through Langendorff perfusion. We assessed the impact of endogenous n-3 PUFAs on left ventricular function, myocardial infarct size, myocardial apoptosis, and ATP production. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify molecular targets affected by n-3 PUFAs. Based on these analyses we then treated IR hearts of WT and fat-1 mice with an antagonist (ML221) or an agonist (apelin-13) for the predicted receptor to assess cardiac contractile function and intracellular signaling pathways. An in vitro hypoxia-reoxygenation (HR) model was also used to confirm the effects of n-3 PUFAs on the examined intracellular signaling pathways. Results: Endogenous n-3 PUFAs protected cardiac structure and function in post-IR hearts, and modulated phosphorylation patterns in the PI3K-AKT-mTOR signaling pathways. RNA-seq analysis revealed that n-3 PUFAs affected multiple biological processes as well as levels of the apelin receptor (APLNR). Consistent with a role for the PLNNR, ML221 synchronized the activation of the PI3K-AKT-mTOR signaling axis, suppressed the expression of PKCδ and phosphorylated p38α, upregulated PKCε expression, upregulated or restored the phosphorylation of myofilaments, and prevented myocardial injury and contractile dysfunction in WT IR hearts. By contrast, apelin-13 disrupted the PI3K-AKT-mTOR signaling axis in post-IR fat-1 hearts. The phosphorylation signaling targeted by APLNR inhibition in post-IR fat-1 hearts was also observed after treating HR cells with eicosatetraenoic acid (EPA). Conclusion: Endogenous n-3 PUFAs protect against post-IR injury and preserve cardiac contractile function possibly through APLNR inhibition. This inhibition synchronizes the PI3K-AKT-mTOR axis, suppresses detrimental phosphorylation signaling, and restores or increases myofilament phosphorylation in post-IR hearts. The beneficial effects observed in fat-1 transgenic mouse hearts can be attributed, at least in part, to elevated EPA levels. This study is the first to demonstrate that n-3 PUFAs protect hearts against IR injury through APLNR inhibition.
Collapse
Affiliation(s)
- Shuang Zheng
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiang Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Caiyi Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W. Glen Pyle
- IMPART Investigator Team, Dalhousie Medicine, Saint John, NB, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuecong Ren
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Honghua Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ON, Canada
| | - Feng Hua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
48
|
Gao S, Chen H. Therapeutic potential of apelin and Elabela in cardiovascular disease. Biomed Pharmacother 2023; 166:115268. [PMID: 37562237 DOI: 10.1016/j.biopha.2023.115268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongping Chen
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
49
|
Moretti E, Signorini C, Corsaro R, Noto D, AntonioTripodi S, Menchiari A, Micheli L, Ponchia R, Collodel G. Apelin is found in human sperm and testis and is raised in inflammatory pathological conditions. Cytokine 2023; 169:156281. [PMID: 37352775 DOI: 10.1016/j.cyto.2023.156281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Apelin/APJ receptor (R) is involved in many oxidative stress-induced pathological conditions. Since this system is not yet explored in male reproduction, we studied apelin/APJ-R in human semen and testis. Semen of 41 infertile patients with varicocele, genitourinary infections, unexplained infertility and 12 fertile men was analysed (WHO guidelines, 2021). Apelin was quantified by ELISA in seminal fluid and spermatozoa, interleukin (IL)-1β in seminal fluid. Apelin/APJ-R were immunolocalized in spermatozoa and testis. Apelin was present in spermatozoa and its levels were negatively correlated with normal sperm morphology% (r = -0.857; p < 0.001), and positively with IL-1β levels (r = 0.455; p < 0.001). Apelin and IL-1β concentrations were increased in patients' samples with varicocele (apelin p < 0.01; IL-1β p < 0.05) and infections (apelin p < 0.01; IL-1β p < 0.001). By logistic regression analysis, apelin (OR 1.310; p = 0.011) and IL-1β (OR 1.572; p = 0.005) were predictors of inflammatory diseases (varicocele, infections). Apelin and APJ-R immunofluorescence labels were weak in sperm tail of fertile men and intense along tail, cytoplasmic residues and post-acrosomal sheath of sperm from infertile men. In testis, apelin and APJ-R labels were evident in Leydig cells and weak inside the seminiferous tubule. Apelin/APJ-R system is present in human spermatozoa and testicular tissue and probably involved in human fertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Lucia Micheli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosetta Ponchia
- Unit of Medically Assisted Reproduction, Siena University Hospital, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
50
|
Shokrollahi B, Zheng HY, Ma XY, Shang JH. The effects of apelin on IGF1/FSH-induced steroidogenesis, proliferation, Bax expression, and total antioxidant capacity in granulosa cells of buffalo ovarian follicles. Vet Res Commun 2023; 47:1523-1533. [PMID: 37036601 DOI: 10.1007/s11259-023-10107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Apelin (APLN) was believed to be an adipokine secreted from adipose tissue. However, studies demonstrate that it is a pleiotropic peptide and has several effects on the female reproductive system. In this study, We examined the effects of different doses of IGF1 and FSH in the presence of APLN-13 on the production of progesterone in buffalo ovary granulosa cells. Furthermore, different doses of APLN isoforms (APLN-13 and APLN-17) were tested on proliferation, Bax protein expression, and antioxidant capacity in the same cells. Granulosa cells of buffalo ovaries were cultured in the presence of different doses of IGF1 and FSH with or without APLN-13 (10-9 M) to evaluate its effect on the secretion of progesterone tested by ELISA assay. The WST-1 method was used to survey the effect of APLN on granulosa cell proliferation and cytotoxicity. In addition, the antioxidant capacity of the cells in the presence of APLN was assessed using the FRAP method. mRNA and Bax protein levels were measured in granulosa cells treated with APLN using real-time PCR and western blot techniques. APLN-13 (10-9) stimulated the effect of IGF1 on the production of progesterone, and its levels were affected by APLN-13 dose-dependently. However, it did not significantly stimulate the effect of FSH on the secretion of progesterone. APLN-13 (all doses) and APLN-17 (10-8 and 10-9 M) improved the proliferation of granulosa cells. Moreover, preincubation of the cells for an hour by APLN receptor antagonist (ML221, 10 µM) did not significantly affect the proliferation of cells induced by APLN. Neither APLN-13 nor APLN-17 were not cytotoxic for the cells compared to the control treatment. APLN-13 at the doses of 10-6 and 10-8 M substantially up and down-regulated Bax protein expression; however, such effects were not observed when the cells were preincubated with ML221. In addition, APLN-17 did not influence the expression amount of Bax. Furthermore, both APLN-13 and -17 improved the total antioxidant capacity of the ovarian granulosa cells, but such effects were not seen when the cells were preincubated with ML221. According to these results, APLN enhanced the steroidogenesis induced by IGF1 but did not affect the steroidogenesis induced by FSH. APLN also enhanced the cell proliferation and antioxidant capacity of buffalo ovaries follicular granulosa cells; however, its effect on Bax expression was different.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Kurdistan, Iran
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|