1
|
Kinetic Basis of the Bifunctionality of SsoII DNA Methyltransferase. Molecules 2018; 23:molecules23051192. [PMID: 29772716 PMCID: PMC6100179 DOI: 10.3390/molecules23051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/04/2022] Open
Abstract
Type II restriction–modification (RM) systems are the most widespread bacterial antiviral defence mechanisms. DNA methyltransferase SsoII (M.SsoII) from a Type II RM system SsoII regulates transcription in its own RM system in addition to the methylation function. DNA with a so-called regulatory site inhibits the M.SsoII methylation activity. Using circular permutation assay, we show that M.SsoII monomer induces DNA bending of 31° at the methylation site and 46° at the regulatory site. In the M.SsoII dimer bound to the regulatory site, both protein subunits make equal contributions to the DNA bending, and both angles are in the same plane. Fluorescence of TAMRA, 2-aminopurine, and Trp was used to monitor conformational dynamics of DNA and M.SsoII under pre-steady-state conditions by stopped-flow technique. Kinetic data indicate that M.SsoII prefers the regulatory site to the methylation site at the step of initial protein–DNA complex formation. Nevertheless, in the presence of S-adenosyl-l-methionine, the induced fit is accelerated in the M.SsoII complex with the methylation site, ensuring efficient formation of the catalytically competent complex. The presence of S-adenosyl-l-methionine and large amount of the methylation sites promote efficient DNA methylation by M.SsoII despite the inhibitory effect of the regulatory site.
Collapse
|
2
|
Khomyakova EA, Kazanova EV, Zubin EM, Kubareva EA, Molochkov NV, Ryazanova EM, Oretskaya TS. 2′-aldehyde oligonucleotides: Synthesis and use for affinity modification of DNA-recognizing proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1068162010030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Fedorova OE, Liubchenko LN, Paiadini IG, Kazubskaia TP, Amosenko FA, Gar'kavtseva RF, Zasedatelev AS, Nasedkina TV. [Analysis of BRCA1/2 and CHEK2 mutations in ovarian cancer and primary multiple tumors involving the ovaries. Patients of Russian population using biochips]. Mol Biol (Mosk) 2007; 41:37-42. [PMID: 17380889 DOI: 10.1134/s0026893307010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) is one of the leading cause of cancer death in women. Inherited BRCA1 and BRCA2 mutations strikingly increase OC risk (with lifetime risk estimates ranging at 10-60%). Mutation 1100delC in CHEK2 gene was shown to be associated with breast cancer in women carrying this mutation. Knowledge of the nature and frequency of population-specific mutations in these genes is a critical step in the development of simple and inexpensive diagnostic approaches to DNA analysis. The frequencies of 185delAG, 300T>G, 4153delA, 4158A>G, 5382insC mutations in BRCA1 gene, 695insT and 6174delT mutations in BRCA2 gene and 1100delC mutation in CHEK2 gene were analyzed using biochips in Russian OC patients. We studied 68 women who received a diagnosis of epithelial OC and 19 women with primary multiple tumors involving the ovaries. The 185delAG, 300T>G, 4153delA and 5382insC in BRCA1 gene were identified. The most prevailing mutation was 5382insC in BRCA1 gene (87.5% of all BRCA1 mutations OC patients, 50.0% in patients with primary multiple tumors involving the ovaries). No mutations in BRCA2 and CHEK2 genes were detected.
Collapse
|
4
|
Romanenkov AS, Kisil OV, Zatsepin TS, Iamskova OV, Kariagina AS, Metelev VG, Oretskaia TS, Kubareva EA. DNA-methyltransferase SsoII as a bifunctional protein: Features of the interaction with the promoter region of SsoII restriction-modification genes. BIOCHEMISTRY (MOSCOW) 2006; 71:1341-9. [PMID: 17223787 DOI: 10.1134/s0006297906120091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA duplexes bearing an aldehyde group at the 2'-position of the sugar moiety were used for affinity modification of (cytosine-5)-DNA methyltransferase SsoII. It is shown that lysine residues of M.SsoII N-terminal region are located in proximity to DNA sugar-phosphate backbone of a regulatory sequence of promoter region of SsoII restriction-modification enzyme coding genes. The ability of the two M.SsoII subunits to interact with DNA regulatory sequence has been demonstrated by affinity modification using DNA duplexes with two 2'-aldehyde groups. Changes in nucleotide sequence of one half of the regulatory region prevented cross-linking of the second M.SsoII subunit. The results on sequential affinity modification of M.SsoII by two types of modified DNA ligands (i.e. by 2'-aldehyde-containing and phosphoryldisulfide-containing) have demonstrated the possibility of covalent attachment of the protein to two different DNA recognition sites: regulatory sequence and methylation site.
Collapse
Affiliation(s)
- A S Romanenkov
- Chemical Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bochtler M, Szczepanowski RH, Tamulaitis G, Grazulis S, Czapinska H, Manakova E, Siksnys V. Nucleotide flips determine the specificity of the Ecl18kI restriction endonuclease. EMBO J 2006; 25:2219-29. [PMID: 16628220 PMCID: PMC1462983 DOI: 10.1038/sj.emboj.7601096] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023] Open
Abstract
Restricion endonuclease Ecl18kI is specific for the sequence /CCNGG and cleaves it before the outer C to generate 5 nt 5'-overhangs. It has been suggested that Ecl18kI is evolutionarily related to NgoMIV, a 6-bp cutter that cleaves the sequence G/CCGGC and leaves 4 nt 5'-overhangs. Here, we report the crystal structure of the Ecl18kI-DNA complex at 1.7 A resolution and compare it with the known structure of the NgoMIV-DNA complex. We find that Ecl18kI flips both central nucleotides within the CCNGG sequence and buries the extruded bases in pockets within the protein. Nucleotide flipping disrupts Watson-Crick base pairing, induces a kink in the DNA and shifts the DNA register by 1 bp, making the distances between scissile phosphates in the Ecl18kI and NgoMIV cocrystal structures nearly identical. Therefore, the two enzymes can use a conserved DNA recognition module, yet recognize different sequences, and form superimposable dimers, yet generate different cleavage patterns. Hence, Ecl18kI is the first example of a restriction endonuclease that flips nucleotides to achieve specificity for its recognition site.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland. Tel.: +48 22 5970732; Fax: +48 22 5970715; E-mail:
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius, Lithuania
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania. Tel.: +370 5 2602108; Fax: +370 5 2602116; E-mail:
| |
Collapse
|
6
|
Szatmari G, Hua NM, Vzdornov D, Daigle F, Smoragiewicz W, Mamet-Bratley MD, Karska-Wysocki B. In vitro expression of the restriction endonucleases LlaMI and ScrFI isolated from Lactococcus lactis M19 and UC503. J Biotechnol 2005; 121:144-53. [PMID: 16144727 DOI: 10.1016/j.jbiotec.2005.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/11/2005] [Accepted: 08/02/2005] [Indexed: 11/22/2022]
Abstract
A new restriction endonuclease LlaMI has been characterized in Lactococcus lactis subsp. cremoris M19. LlaMI recognizes the sequence 5'-CCNGG-3' and cuts after the second cytosine. This restriction endonuclease is related to commercially available ScrFI but not identical to it. Comparative analysis of the predicted amino acid sequences of LlaMI and ScrFI indicates five non-conservative amino acid changes between these two restriction enzymes. These two enzymes were expressed in vitro as histidine-tagged fusion proteins. LlaMI was shown to be more sensitive to high salt concentration than ScrFI. Southern blotting and hybridization analysis indicate that the gene for LlaMI R/M system is chromosomally encoded.
Collapse
Affiliation(s)
- George Szatmari
- Département de Microbiologie et Immunologie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Que., Canada H3C 3J7.
| | | | | | | | | | | | | |
Collapse
|
7
|
Pingoud V, Conzelmann C, Kinzebach S, Sudina A, Metelev V, Kubareva E, Bujnicki JM, Lurz R, Lüder G, Xu SY, Pingoud A. PspGI, a type II restriction endonuclease from the extreme thermophile Pyrococcus sp.: structural and functional studies to investigate an evolutionary relationship with several mesophilic restriction enzymes. J Mol Biol 2003; 329:913-29. [PMID: 12798682 DOI: 10.1016/s0022-2836(03)00523-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gregorova D, Pravcova M, Karpiskova R, Rychlik I. Plasmid pC present in Salmonella enterica serovar Enteritidis PT14b strains encodes a restriction modification system. FEMS Microbiol Lett 2002; 214:195-8. [PMID: 12351230 DOI: 10.1111/j.1574-6968.2002.tb11346.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) possesses plasmids of different sizes and roles. Besides the serovar-specific virulence plasmid present in most field strains, S. Enteritidis can harbour plasmids of low molecular mass whose biological role is poorly understood. We therefore sequenced plasmid pC present in S. Enteritidis strains belonging to phage type PT14b. The size of plasmid was determined to be 5,269 bp and it was predicted to encode four open reading frames (ORFs). The first two ORFs were found (initial 3,230 bp) to be highly homologous to rom and mbeA genes of ColE1 plasmid of Escherichia coli. Proteins encoded by the other two ORFs were 99% homologous to a restriction methylase and restriction endonuclease encoded by plasmid pECO29 of a field strain of E. coli. Using insertional mutagenesis we confirmed experimentally that the plasmid pC-encoded restriction modification system was functional and could explain the high resistance of S. Enteritidis PT14b strains to phage infection.
Collapse
Affiliation(s)
- Daniela Gregorova
- Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic
| | | | | | | |
Collapse
|
9
|
Tamulaitis G, Solonin AS, Siksnys V. Alternative arrangements of catalytic residues at the active sites of restriction enzymes. FEBS Lett 2002; 518:17-22. [PMID: 11997010 DOI: 10.1016/s0014-5793(02)02621-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A catalytic sequence motif PDX10-30(E/D)XK is found in many restriction enzymes. On the basis of sequence similarities and mapping of the conserved residues to the crystal structure of NgoMIV we suggest that residues D160, K182, R186, R188 and E195 contribute to the catalytic/DNA binding site of the Ecl18kI restriction endonuclease. Mutational analysis confirms the functional significance of the conserved residues of Ecl18kI. Therefore, we conclude that the active site motif 159VDX21KX12E of Ecl18kI differs from the canonical PDX10-30(E/D)XK motif characteristic for most of the restriction enzymes. Moreover, we propose that two subfamilies of endonucleases Ecl18kI/PspGI/EcoRII and Cfr10I/Bse634I/NgoMIV, specific, respectively, for CCNGG/CCWGG and RCCGGY/GCCGGC sites, share conserved active site architecture and DNA binding elements.
Collapse
|
10
|
Pingoud V, Kubareva E, Stengel G, Friedhoff P, Bujnicki JM, Urbanke C, Sudina A, Pingoud A. Evolutionary relationship between different subgroups of restriction endonucleases. J Biol Chem 2002; 277:14306-14. [PMID: 11827971 DOI: 10.1074/jbc.m111625200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type II restriction endonuclease SsoII shows sequence similarity with 10 other restriction endonucleases, among them the type IIE restriction endonuclease EcoRII, which requires binding to an effector site for efficient DNA cleavage, and the type IIF restriction endonuclease NgoMIV, which is active as a homotetramer and cleaves DNA with two recognition sites in a concerted reaction. We show here that SsoII is an orthodox type II enzyme, which is active as a homodimer and does not require activation by binding to an effector site. Nevertheless, it shares with EcoRII and NgoMIV a very similar DNA-binding site and catalytic center as shown here by a mutational analysis, indicative of an evolutionary relationship between these three enzymes. We suggest that a similar relationship exists between other orthodox type II, type IIE, and type IIF restriction endonucleases. This may explain why similarities may be more pronounced between members of different subtypes of restriction enzymes than among the members of a given subtype.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Butler D, Fitzgerald GF. Transcriptional analysis and regulation of expression of the ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503. J Bacteriol 2001; 183:4668-73. [PMID: 11443105 PMCID: PMC95365 DOI: 10.1128/jb.183.15.4668-4673.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ScrFI is a type II restriction-modification system from Lactococcus lactis which recognizes the nucleotide sequence 5'-CC downward arrow NGG-3', cleaving at the point indicated by the arrow, and it comprises an endonuclease gene that is flanked on either side by genes encoding two 5-methylcytosine methylases. An open reading frame (orfX) of unknown function is located immediately upstream of these genes. In this study Northern analysis was performed, and it revealed that orfX, scrFIBM, and scrFIR are cotranscribed as a single polygenic mRNA molecule, while scrFIAM is transcribed independently. 5' extension analysis indicated that the start site for the scrFIAM promoter was a thymine located 4 bp downstream of the -10 motif. The transcriptional start site for the orfX promoter was also found to be a thymine which is more atypically located 24 bp downstream of the -10 motif proximal to the start codon. A helix-turn-helix motif was identified at the N-terminal end of one of the methylases (M.ScrFIA). In order to determine if this motif played a role in regulation of the ScrFI locus, M.ScrFIA was purified. It was then employed in gel retardation assays using fragments containing the two promoters found on the ScrFI operon, one located upstream of orfX and the other located just upstream of scrFIAM. M.ScrFIA was found to bind to the promoter region upstream of the gene encoding it, indicating that it may have a regulatory role. In further studies the two putative promoters were introduced into a vector (pAK80) upstream of a promoterless lacZ gene, and cloned fragments of the ScrFI locus were introduced in trans with each of these promoter constructs to investigate the effect on promoter activity. These results implicated M.ScrFIA in regulation of both promoters on the ScrFI locus.
Collapse
Affiliation(s)
- D Butler
- National Food Biotechnology Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | | |
Collapse
|
12
|
Nobusato A, Uchiyama I, Kobayashi I. Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 2000; 259:89-98. [PMID: 11163966 DOI: 10.1016/s0378-1119(00)00455-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The complete genome sequences of two Helicobacter pylori strains have recently become available. We have searched them for homologues of restriction-modification genes. One strain (26695) carried 52 such homologues, and the other (J99) carried 53. Their sequence alignments were arranged in the form of a phylogenetic tree and compared with the tree based on rRNA. The trees showed that the homologues are scattered among diverse groups of bacteria. They also revealed high polymorphism within the species--there are 42 pairs with high homology, 10 specific to 26695, and 11 specific to J99. Many of the restriction-modification homologues were characterized by a GC content lower than that of the average gene in the genome. Some of the restriction-modification homologues showed a different codon use bias from the average genes. These observations are interpreted in terms of horizontal transfer of the restriction-modification genes.
Collapse
Affiliation(s)
- A Nobusato
- Institute of Medical Science, University of Tokyo, Shiroganedai, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
13
|
Chinen A, Uchiyama I, Kobayashi I. Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 2000; 259:109-21. [PMID: 11163968 DOI: 10.1016/s0378-1119(00)00459-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent work suggests that restriction-modification gene complexes are mobile genetic elements that insert themselves into the genome and cause various genome rearrangements. In the present work, the complete genome sequences of Pyrococcus horikoshii and Pyrococcus abyssi, two species in a genus of hyperthermophilic archaeon (archaebacterium), were compared to detect large genome polymorphisms linked with restriction-modification gene homologs. Sequence alignments, GC content analysis, and codon usage analysis demonstrated the diversity of these homologs and revealed a possible case of relatively recent acquisition (horizontal transfer). In two cases out of the six large polymorphisms identified, there was insertion of a DNA segment with a modification gene homolog, accompanied by target deletion (simple substitution). In two other cases, homologous DNA segments carrying a modification gene homolog were present at different locations in the two genomes (transposition). In both cases, substitution (insertion/deletion) in one of the two loci was accompanied by inversion of adjacent chromosomal segment. In the fifth case, substitution by a DNA segment carrying type I restriction, modification, and specificity gene homologs was likewise accompanied by adjacent inversion. In the last case, two homologous DNA segments, were found at different loci in the two genomes (transposition), but only one of them had insertion of a modification homolog and an unknown ORF. The possible relationship of these polymorphisms to attack by restriction enzymes on the chromosome will be discussed.
Collapse
Affiliation(s)
- A Chinen
- National Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
14
|
Kubareva EA, Thole H, Karyagina AS, Oretskaya TS, Pingoud A, Pingoud V. Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Nucleic Acids Res 2000; 28:1085-91. [PMID: 10666447 PMCID: PMC102617 DOI: 10.1093/nar/28.5.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A target sequence-specific DNA binding region of the restriction endonuclease Sso II was identified by photocross-linking with an oligodeoxynucleotide duplex which was substituted with 5-iododeoxy-uridine (5-IdU) at the central position of the Sso II recognition site (CCNGG). For this purpose the Sso II-DNA complex was irradiated with a helium/cadmium laser (325 nm). The cross-linking yield obtained was approximately 50%. In the presence of excess unmodified oligodeoxynucleotide or with oligode-oxynucleotides substituted with 5-IdU elsewhere, no cross-linking was observed, indicating the specificity of the cross-linking reaction. The cross-linked Sso II-oligodeoxynucleotide complex was digested with chymotrypsin, a cross-linked peptide-oligodeoxy-nucleotide complex isolated and the site of cross-linking identified by Edman sequencing to be Trp61. In line with this identification is the finding that the W61A variant cannot be cross-linked with the IdU-substituted oligodeoxynucleotide, shows a decrease in affinity towards DNA and is inactive in cleavage. It is concluded that the region around Trp61 is involved in specific binding of Sso II to its DNA substrate.
Collapse
Affiliation(s)
- E A Kubareva
- A. N. Belozersky Institute of Physical and Chemical Biology and Chemistry Department, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Morgan R, Xiao JP, Xu SY. Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl Environ Microbiol 1998; 64:3669-73. [PMID: 9758783 PMCID: PMC106503 DOI: 10.1128/aem.64.10.3669-3673.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5' CCWGG 3' (W is A or T). PspGI digestion can be carried out at 65 to 85 degrees C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia coli. M.PspGI contains the conserved sequence motifs of alpha-aminomethyltransferases; therefore, it must be an N4-cytosine methylase. M.PspGI shows 53% similarity to (44% identity with) its isoschizomer, M.MvaI from Micrococcus variabilis. In a segment of 87 amino acid residues, PspGI shows significant sequence similarity to EcoRII and to regions of SsoII and StyD4I which have a closely related recognition sequence (5' CCNGG 3'). PspGI was expressed in E. coli via a T7 expression system. Recombinant PspGI was purified to near homogeneity and had a half-life of 2 h at 95 degrees C. PspGI remained active following 30 cycles of thermocycling; thus, it can be used in DNA-based diagnostic applications.
Collapse
Affiliation(s)
- R Morgan
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
16
|
Denjmukhametov MM, Brevnov MG, Zakharova MV, Repyk AV, Solonin AS, Petrauskene OV, Gromova ES. The Ecl18kI restriction-modification system: cloning, expression, properties of the purified enzymes. FEBS Lett 1998; 433:233-6. [PMID: 9744801 DOI: 10.1016/s0014-5793(98)00921-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ecl18kI is a type II restriction-modification system isolated from Enterobacter cloaceae 18kI strain. Genes encoding Ecl18kI methyltransferase (M.Ecl18kI) and Ecl18kI restriction endonuclease (R.Ecl18kI) have been cloned and expressed in Escherichia coli. These enzymes recognize the 5'.../CCNGG...3' sequence in DNA; M.Ecl18kI methylates the C5 carbon atom of the inner dC residue and R.Ecl18kI cuts DNA as shown by the arrow. The restriction endonuclease and the methyltransferase were purified from E. coli B834 [p18Ap1] cells to near homogeneity. The restriction endonuclease is present in the solution as a tetramer, while the methyltransferase is a monomer. The interactions of M.Ecl18kI and R.Ecl18kI with 1,2-dideoxy-D-ribofuranose containing DNA duplexes were investigated. The target base flipping-out mechanism is applicable in the case of M.Ecl18kI. Correct cleavage of the abasic substrates by R.Ecl18kI is accompanied by non-canonical hydrolysis of the modified strand.
Collapse
Affiliation(s)
- M M Denjmukhametov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
17
|
Madsen A, Josephsen J. Cloning and characterization of the lactococcal plasmid-encoded type II restriction/modification system, LlaDII. Appl Environ Microbiol 1998; 64:2424-31. [PMID: 9647810 PMCID: PMC106406 DOI: 10.1128/aem.64.7.2424-2431.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5'-GC decreases NGC-3', where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5'-GCGGC-3' and 5'-GCCGC-3') forming a putative stemloop structure spanning part of the presumed -35 sequence and part of the intervening region between the -35 and -10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization.
Collapse
Affiliation(s)
- A Madsen
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | |
Collapse
|
18
|
Shilov I, Tashlitsky V, Khodoun M, Vasil'ev S, Alekseev Y, Kuzubov A, Kubareva E, Karyagina A. DNA-methyltransferase SsoII interaction with own promoter region binding site. Nucleic Acids Res 1998; 26:2659-64. [PMID: 9592151 PMCID: PMC147609 DOI: 10.1093/nar/26.11.2659] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The investigation of Sso II DNA-methyltransferase (M.Sso II) interaction with the intergenic region of Sso II restriction-modification system was carried out. Seven guanine residues protected by M. Sso II from methylation with dimethylsulfate and thus probably involved in enzyme-DNA recognition were identified. Six of them are located symmetrically within the 15 bp inverted repeat inside the Sso II promoter region. The crosslinking of Sso II methyltransferase with DNA duplexes containing 5-bromo-2'-deoxyuridine (br5dU) instead of thymidine was performed. The crosslinked products were obtained in all cases, thus proving that tested thymines were in proximity with enzyme. The ability to produce the crosslinked products in one case was 2-5-fold higher than in other ones. This allowed us to imply that thymine residue in this position of the inverted repeat could be in contact with M. Sso II. Based on the experimental data, two symmetrical 4 bp clusters (GGAC), which could be involved in the interaction with M. Sso II in the DNA-protein complex, were identified. The model of M. Sso II interaction with its own promoter region was proposed.
Collapse
Affiliation(s)
- I Shilov
- Institute of Agricultural Biotechnology, 42 Timiryazevskaya Street, Moscow 127550, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ibáñez M, Alvarez I, Rodríguez-Peña JM, Rotger R. A ColE1-type plasmid from Salmonella enteritidis encodes a DNA cytosine methyltransferase. Gene X 1997; 196:145-58. [PMID: 9322752 DOI: 10.1016/s0378-1119(97)00220-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The multicopy plasmid pFM366 was isolated from a virulent Salmonella enteritidis strain and was found to code for DNA methylase activity (Ibáñez and Rotger, 1993). The present work was aimed at characterizing the genetic organization and functional features of this 5.6 kb plasmid. We found pFM366 almost identical to the plasmid P4 isolated from Shigella sonnei, that encodes the SsoII restriction-modification system (Karyagina et al., 1993), and related to other ColE1-type plasmids. Examination of these plasmids revealed a common organization which suggests they were the result of similar recombinational events. The cytosine methylase of pFM366 is nearly identical to M. SsoII, whereas the gene encoding the restrictase homologous to R. SsoII is truncated and its product is inactive. The expression of the cytosine methylase encoded by pFM366 is strongly affected by deletion of regions located upstream and downstream of its ORF, and is negatively controlled by the rpoS gene in Escherichia coli. The methylase activity encoded by pFM366 induces the SOS response, which could be responsible for the observed delay in the growth of E. coli.
Collapse
Affiliation(s)
- M Ibáñez
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Metherell LA, Hurst C, Bruce IJ. Rapid, sensitive, microbial detection by gene amplification using restriction endonuclease target sequences. Mol Cell Probes 1997; 11:297-308. [PMID: 9281417 DOI: 10.1006/mcpr.1997.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of primers synthesized to eight class II restriction endonuclease target sequences, from Haemophilus parainfluenzae, Escherichia coli, Staphylococcus aureus, Salmonella infantis, Rhodobacter sphaeroides, Klebsiella pneumoniae, Bacillus amyloliquefaciens and Proteus vulgaris for single and multiplex PCR identification of the organisms is discussed. Results indicate that the method is sensitive and specific enough to detect single cells and attogram amounts of target DNA. It has also been demonstrated that the primers can be used in whole cell PCR for identification and whole cell PCR product recovery could be enhanced by the addition of gelatin or DMSO to PCR reaction mixtures. Other results have indicated that the method can be used for the definite identification of specific individuals present in mixed cultures or suspensions of organisms. The applicability of the method for detection of a specific strain within a group of closely related organisms has also been investigated and for that sequence/organism the results suggest that the proposed method is indeed very specific and discriminative. It is suggested that as more information becomes available regarding such sequences and their distribution, this approach could form the basis of a widescale, rapid, simple and cheap identification and/or typing system for bacteria.
Collapse
Affiliation(s)
- L A Metherell
- School of Chemical and Life Sciences, University of Greenwich, London, SE18 6PF, UK
| | | | | |
Collapse
|
21
|
Twomey DP, Gabillet N, Daly C, Fitzgerald GF. Molecular characterization of the restriction endonuclease gene (scrFIR) associated with the ScrFI restriction/modification system from Lactococcus lactis subsp. cremoris UC503. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2277-2286. [PMID: 9245816 DOI: 10.1099/00221287-143-7-2277] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleotide sequence of the chromosomally encoded type II ScrFI restriction/modification system from Lactococcus lactis subsp. cremoris UC503 was completed. The ScrFI restriction endonuclease (ENase) has previously been shown to specifically recognize 5' CCNGG 3' sites, cleaving after the second cytosine and the degenerate central base. The ENase gene (scrFIR; 362 bp) was located between, and co-directionally transcribed with, two formerly characterized 5-methylcytosine methyltransferase genes, which encodes proteins that independently confer protection against ScrFI digestion. scrFIR codes for a protein of 272 amino acids with a predicted molecular mass of 31470 Da, which agrees favourably with a previously estimated molecular mass of 34 kDa for this enzymes. The deduced sequence of this protein did not show any significant homology with known protein sequences, including the isoschizomeric Ssoll ENase from Shigella sonnei. The ENase gene was cloned and expressed in Escherichia coli and Lactococcus; however, no in vivo restriction of phage was observed, suggesting that expression of the ENase gene may be repressed, or that the appropriate expression signals may be absent in the cloned constructs. The ability of ScrFI to cleave non-canonically modified 5' CCNGG 3' sequences suggested that some ScrFI sites may require complex modifications to fully impair digestion by this enzyme.
Collapse
Affiliation(s)
- Denis P Twomey
- Department of Microbiology University College, Cork, Ireland
| | - Nathalie Gabillet
- National Food Biotechnology Centre University College, Cork, Ireland
- Department of Microbiology University College, Cork, Ireland
| | - Charles Daly
- National Food Biotechnology Centre University College, Cork, Ireland
- Department of Microbiology University College, Cork, Ireland
| | - Gerald F Fitzgerald
- National Food Biotechnology Centre University College, Cork, Ireland
- Department of Microbiology University College, Cork, Ireland
| |
Collapse
|
22
|
Karyagina A, Shilov I, Tashlitskii V, Khodoun M, Vasil'ev S, Lau PC, Nikolskaya I. Specific binding of sso II DNA methyltransferase to its promoter region provides the regulation of sso II restriction-modification gene expression. Nucleic Acids Res 1997; 25:2114-20. [PMID: 9153310 PMCID: PMC146720 DOI: 10.1093/nar/25.11.2114] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of the Sso II restriction-modification system from Shigella sonnei was studied in vivo and in vitro . In lacZ fusion experiments, Sso II methyltransferase (M. Sso II) was found to repress its own synthesis but stimulate expression of the cognate restriction endonuclease (ENase). The N-terminal 72 amino acids of M. Sso II, predicted to form a helix-turn-helix (HTH) motif, was found to be responsible for the specific DNA-binding and regulatory function of M. Sso II. Similar HTH motifs are predicted in the N-terminus of a number of 5-methylcytosine methyltransferases, particularly M. Eco RII, M.dcm and M. Msp I, of which the ability to regulate autogenously has been proposed. In vitro, the binding of M. Sso II to its target DNA was investigated using a mobility shift assay. M. Sso II forms a specific and stable complex with a 140 bp DNA fragment containing the promoter region of Sso II R-M system. The dissociation constant (Kd) was determined to be 1.5x10(-8) M. DNaseI footprinting experiments demonstrated that M. Sso II protects a 48-52 bp region immediately upstream of the M. Sso II coding sequence which includes the predicted -10 promoter sequence of M. Sso II and the -10 and -35 sequences of R. Sso II.
Collapse
Affiliation(s)
- A Karyagina
- Institute of BioMedical Chemistry, 10 Pogodinskaya st., Moscow 119832, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kubareva EA, Kuznetsova SA, Karyagina AS, Nikolskaya II, Gromova ES, Shabarova ZA. Cross-linking of SsoII restriction endonuclease to cognate and non-cognate DNAs. FEBS Lett 1996; 390:307-10. [PMID: 8706883 DOI: 10.1016/0014-5793(96)00645-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Specific and non-specific interactions of SsoII restriction endonuclease (R.SsoII) were probed by the method of covalent attachment to modified DNA containing an active monosubstituted pyrophosphate internucleotide bond instead of a phosphodiester one. R.SsoII with six N-terminal His residues was shown to be cross-linked to duplexes with this type of modification, either containing or not the recognition sequence. Competition experiments with covalent attachment of R.SsoII to activated DNAs demonstrated the similar affinity of the enzyme to cognate and non-cognate DNAs in the absence of cofactor, Mg2+ ions.
Collapse
|
24
|
Karyagina AS, Lunin VG, Labbé D, Brousseau R, Lau PC, Nikolskaya II. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene X 1995; 157:93-6. [PMID: 7607533 DOI: 10.1016/0378-1119(94)00667-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overproduction of the NlaX DNA methyltransferase (M.NlaX) in an Escherichia coli host conferred resistance to SsoII restriction endonuclease (R.SsoII) digestion. This suggested an overlap of sequence specificity between M.NlaX and M.SsoII, the latter of which modifies the internal cytosine of the target sequence 5'-CCNGG-3'. A variant of M.NlaX (M.Sso/Nla), containing an N-terminal extension from M.SsoII, was also enzymatically active. Using deletion analysis, the N-terminal 71 amino-acid residues of M.SsoII were shown to be essential for modification activity.
Collapse
|
25
|
Brevnov MG, Kubareva EA, Romanova EA, Volkov EM, Karyagina AS, Nikolskaya II, Gromova ES. Interaction of the MvaI and SsoII methyltransferases with DNAs altered at the central base pair of the recognition sequence. Gene 1995; 157:149-52. [PMID: 7607480 DOI: 10.1016/0378-1119(94)00738-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of the MvaI and SsoII DNA methyltransferases (MTases; M.MVaI and M.SsoII, respectively) with a set of synthetic DNA duplexes, containing a M.MvaI and M.SsoII recognition site (CCWGG), was investigated. In these DNA duplexes dA or dT of the recognition site was replaced by nucleoside analogs with modified sugar moieties and heterocyclic bases (2'-deoxy-2'-fluorouridine (flU), 1-(beta-D-2'-deoxy-threo-pentofuranosyl)thymine (xT), 1-(beta-D-3'-deoxy-threo-pentofuranosyl)uracil (tU)), or by 1,3-propanediol (Prd). A new approach for monitoring methylation of each strand of DNA duplexes by MTases was developed. It allowed the determination of the influence of the modification in one DNA strand on the methylation of the other. In most cases, for both M.MvaI and M.SsoII, sugar analog-containing duplexes showed inhibition of methylation of only the modified strand. Prd-containing DNA duplexes were not substrates for M.MvaI. M.SsoII did not methylate DNA duplexes in which the dT residue was replaced by Prd.
Collapse
Affiliation(s)
- M G Brevnov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
26
|
Garvey P, van Sinderen D, Twomey D, Hill C, Fitzgerald G. Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. Int Dairy J 1995. [DOI: 10.1016/0958-6946(95)00038-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Gopal J, Yebra MJ, Bhagwat AS. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhai methyltransferase that is in contact with DNA bases. Nucleic Acids Res 1994; 22:4482-8. [PMID: 7971279 PMCID: PMC308483 DOI: 10.1093/nar/22.21.4482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework.
Collapse
Affiliation(s)
- J Gopal
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | | | | |
Collapse
|
28
|
Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 1994; 22:1-10. [PMID: 8127644 PMCID: PMC307737 DOI: 10.1093/nar/22.1.1] [Citation(s) in RCA: 336] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The m5C-MTases form a closely-knit family of enzymes in which common amino acid sequence motifs almost certainly translate into common structural and functional elements. These common elements are located predominantly in a single structural domain that performs the chemistry of the reaction. Sequence-specific DNA recognition is accomplished by a separate domain that contains recognition elements not seen in other structures. This, combined with the novel and unexpected mechanistic feature of trapping a base out of the DNA helix, makes the m5C-MTases an intriguing class of enzymes for further study. The reaction pathway has suddenly become more complicated because of the base-flipping and much remains to be learned about the DNA recognition elements in the family members for which structural information is not yet available.
Collapse
Affiliation(s)
- S Kumar
- New England Biolabs, Beverly, MA 01915
| | | | | | | | | | | | | |
Collapse
|