1
|
Fontecilla-Camps JC. Reflections on the Origin of Coded Protein Biosynthesis. Biomolecules 2024; 14:518. [PMID: 38785925 PMCID: PMC11117964 DOI: 10.3390/biom14050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions. Instead, structural and functional studies have demonstrated that nucleotidic α-phosphate and β-d-ribosyl 2' OH and 3' OH groups can help their own catalysis, a process which, consequently, has been called "substrate-assisted". Furthermore, upon binding, the substrates significantly lower the entropy of activation, exclude water from these catalysts' active sites, and are readily positioned for a reaction. This binding mode has been described as an "entropy trap". The combination of this effect with substrate-assisted catalysis results in reactions that are stereochemically and mechanistically simpler than the ones found in most modern enzymes. This observation is consistent with the way in which primordial catalysts could have operated; it may also explain why, thanks to their complementary reactivities, β-d-ribose and phosphate were naturally selected to be the central components of early coding polymers.
Collapse
|
2
|
Swaminathan L, Kaatz S, Chubb H, Tae K, Ramesh MS, Fadel R, Big C, Jones J, Flanders SA, Prescott HC. Impact of Early Corticosteroids on Preventing Clinical Deterioration in Non-critically Ill Patients Hospitalized with COVID-19: A Multi-hospital Cohort Study. Infect Dis Ther 2022; 11:887-898. [PMID: 35267172 PMCID: PMC8908754 DOI: 10.1007/s40121-022-00615-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/23/2022] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION While guidelines stronglyrecommend dexamethasone in critical COVID-19, the optimal threshold to initiate corticosteroids in non-critically ill patients with COVID-19 remains unclear. Using data from a state-wide COVID-19 registry, we evaluated the effectiveness of early corticosteroids for preventing clinical deterioration among non-critically ill patients hospitalized for COVID-19 and receiving non-invasive oxygen therapy. METHODS This was a target trial using observational data from patients hospitalized for COVID-19 at 39 hospitals participating in the MI-COVID19 registry between March 16, 2020 and August 24, 2020. We studied the impact of corticosteroids initiated within 2 calendar days of hospitalization ("early steroids") versus no early steroids among non-ICU patients with laboratory-confirmed SARS-CoV2 receiving non-invasive supplemental oxygen therapy. Our primary outcome was a composite of in-hospital mortality, transfer to intensive care, and receipt of invasive mechanical ventilation. We used inverse probability of treatment weighting (IPTW) and propensity score-weighted regression to measure the association of early steroids and outcomes. RESULTS Among 1002 patients meeting study criteria, 231 (23.1%) received early steroids. After IPTW, to balance potential confounders between the treatment groups, early steroids were not associated with a decrease in the composite outcome (aOR 1.1, 95%CI 0.8-1.6) or in any components of the primary outcome. CONCLUSION We found no evidence that early corticosteroid therapy prevents clinical deterioration among hospitalized non-critically ill COVID-19 patients receiving non-invasive oxygen therapy. Further studies are needed to determine the optimal threshold for initiating corticosteroids in this population.
Collapse
Affiliation(s)
- Lakshmi Swaminathan
- Division of Hospital Medicine, St. Joseph Mercy Hospital, 5301 McAuley Dr, Ypsilanti, 48197, USA.
| | - Scott Kaatz
- Division of Hospital Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Heather Chubb
- Michigan Arthroplasty Registry Collaborative Quality Initiative (MARCQI), Ann Arbor, USA
| | - Kim Tae
- Michigan Arthroplasty Registry Collaborative Quality Initiative (MARCQI), Ann Arbor, USA
| | - Mayur S Ramesh
- Division of Infectious Disease, Henry Ford Hospital, Detroit, MI, USA
| | - Raef Fadel
- Division of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Cecilia Big
- Division of Infectious Disease, Beaumont Hospital-Dearborn, Dearborn, MI, USA
| | - Jessica Jones
- Department of Pharmacy, Beaumont Hospital-Dearborn, Dearborn, MI, USA
| | - Scott A Flanders
- Division of Hospital Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Hospital Medicine Safety Consortium, Ann Arbor, MI, USA
| | - Hallie C Prescott
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Kurian P, Capolupo A, Craddock TJA, Vitiello G. Water-mediated correlations in DNA-enzyme interactions. PHYSICS LETTERS. A 2018; 382:33-43. [PMID: 29403145 PMCID: PMC5796540 DOI: 10.1016/j.physleta.2017.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to "scan" or "read" the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.
Collapse
Affiliation(s)
- P. Kurian
- Quantum Biology Laboratory, National Human Genome Center and Department of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| | - A. Capolupo
- Università degli Studi di Salerno and INFN Gruppo Collegato di Salerno, 84084 Fisciano (Salerno), Italy
| | - T. J. A. Craddock
- Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, and Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - G. Vitiello
- Università degli Studi di Salerno and INFN Gruppo Collegato di Salerno, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
4
|
Kurian P, Dunston G, Lindesay J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J Theor Biol 2016; 391:102-12. [PMID: 26682627 PMCID: PMC4746125 DOI: 10.1016/j.jtbi.2015.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/29/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
Abstract
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism.
Collapse
Affiliation(s)
- P Kurian
- National Human Genome Center, Howard University College of Medicine, Washington, DC 20059, USA; Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA; Computational Physics Laboratory, Howard University, Washington, DC 20059, USA.
| | - G Dunston
- National Human Genome Center, Howard University College of Medicine, Washington, DC 20059, USA; Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - J Lindesay
- Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA; Computational Physics Laboratory, Howard University, Washington, DC 20059, USA
| |
Collapse
|
5
|
Zhang J, Pan X, Bell CE. Crystal structure of λ exonuclease in complex with DNA and Ca(2+). Biochemistry 2014; 53:7415-25. [PMID: 25370446 DOI: 10.1021/bi501155q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteriophage λ exonuclease (λexo) is a ring-shaped homotrimer that resects double-stranded DNA ends in the 5'-3' direction to generate a long 3'-overhang that is a substrate for recombination. λexo is a member of the type II restriction endonuclease-like superfamily of proteins that use a Mg(2+)-dependent mechanism for nucleotide cleavage. A previous structure of λexo in complex with DNA and Mg(2+) was determined using a nuclease defective K131A variant to trap a stable complex. This structure revealed the detailed coordination of the two active site Mg(2+) ions but did not show the interactions involving the side chain of the conserved active site Lys-131 residue. Here, we have determined the crystal structure of wild-type (WT) λexo in complex with the same DNA substrate, but in the presence of Ca(2+) instead of Mg(2+). Surprisingly, there is only one Ca(2+) bound in the active site, near the position of Mg(A) in the structure with Mg(2+). The scissile phosphate is displaced by 2.2 Å relative to its position in the structure with Mg(2+), and the network of interactions involving the attacking water molecule is broken. Thus, the structure does not represent a catalytic configuration. However, the crystal structure does show clear electron density for the side chain of Lys-131, which is held in place by interactions with Gln-157 and Glu-129. By combining the K131A-Mg(2+) and WT-Ca(2+) structures, we constructed a composite model to show the likely interactions of Lys-131 during catalysis. The implications with regard to the catalytic mechanism are discussed.
Collapse
Affiliation(s)
- Jinjin Zhang
- Ohio State Biochemistry Program, ‡Department of Molecular and Cellular Biochemistry, and §Department of Chemistry and Biochemistry, The Ohio State University , 1645 Neil Avenue, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
6
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
7
|
Pingoud V, Wende W, Friedhoff P, Reuter M, Alves J, Jeltsch A, Mones L, Fuxreiter M, Pingoud A. On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. J Mol Biol 2009; 393:140-60. [PMID: 19682999 DOI: 10.1016/j.jmb.2009.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022]
Abstract
Restriction endonucleases of the PD...D/EXK family need Mg(2+) for DNA cleavage. Whereas Mg(2+) (or Mn(2+)) promotes catalysis, Ca(2+) (without Mg(2+)) only supports DNA binding. The role of Mg(2+) in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg(2+) involved in catalysis. To address this problem, we measured the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me(2+) per active site. DNA cleavage experiments were carried out at various Mg(2+) and Mn(2+) concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg(2+) and Mn(2+) concentration dependence. In general, the Mg(2+) concentration optimum (between approximately 1 and 10 mM) is higher than the Mn(2+) concentration optimum (between approximately 0.1 and 1 mM). At still higher Mg(2+) or Mn(2+) concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca(2+). Based on these results, we propose that one Mg(2+) or Mn(2+) is critical for restriction enzyme activation, and binding of a second Me(2+) plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg(2+) or Mn(2+) mainly leads to an increase in K(m), such that the inhibitory effect of excess Mg(2+) or Mn(2+) can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me(2+) binding to these enzymes.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stivers JT, Nagarajan R. Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens. Chem Rev 2007; 106:3443-67. [PMID: 16895336 PMCID: PMC2729714 DOI: 10.1021/cr050317n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
9
|
Subramaniam S, Kamadurai HB, Foster MP. Trans cooperativity by a split DNA recombinase: the central and catalytic domains of bacteriophage lambda integrase cooperate in cleaving DNA substrates when the two domains are not covalently linked. J Mol Biol 2007; 370:303-14. [PMID: 17531268 PMCID: PMC2034338 DOI: 10.1016/j.jmb.2007.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Site-specific recombinases of the lambda-integrase family recognize and cleave their cognate DNA sites through cooperative binding to opposite sides of the DNA substrate by a C-terminal catalytic domain and a flexibly linked "core-binding" domain; regulation of this cleavage is achieved via the formation of higher-order complexes. We report that the core-binding domain of lambda-integrase is able to stimulate the activity of the catalytic domain even when the two domains are not linked. This trans stimulation is accomplished without significantly increasing the affinity of the catalytic domain for its DNA substrate. Moreover, we show that mutations in the DNA substrate can abrogate this effect while retaining specificity determinants for cleavage. Since the domains do not significantly interact directly, this finding implies that trans activation is achieved via the DNA substrate in a manner that may be mechanistically important in this and similar DNA binding and cleaving enzymes.
Collapse
Affiliation(s)
| | | | - Mark P. Foster
- * Corresponding author contact: (614) 292-1377, FAX: (614) 292-6773,
| |
Collapse
|
10
|
Mones L, Simon I, Fuxreiter M. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism. Biol Chem 2007; 388:73-8. [PMID: 17214552 DOI: 10.1515/bc.2007.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.
Collapse
Affiliation(s)
- Letif Mones
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | |
Collapse
|
11
|
Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. MutH Complexed with Hemi- and Unmethylated DNAs: Coupling Base Recognition and DNA Cleavage. Mol Cell 2005; 20:155-66. [PMID: 16209953 DOI: 10.1016/j.molcel.2005.08.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/29/2005] [Accepted: 08/17/2005] [Indexed: 11/24/2022]
Abstract
MutH initiates mismatch repair by nicking the transiently unmethylated daughter strand 5' to a GATC sequence. Here, we report crystal structures of MutH complexed with hemimethylated and unmethylated GATC substrates. Both structures contain two Ca2+ ions jointly coordinated by a conserved aspartate and the scissile phosphate, as observed in the restriction endonucleases BamHI and BglI. In the hemimethylated complexes, the active site is more compact and DNA cleavage is more efficient. The Lys residue in the conserved DEK motif coordinates the nucleophilic water in conjunction with the phosphate 3' to the scissile bond; the same Lys is also hydrogen bonded with a carbonyl oxygen in the DNA binding module. We propose that this Lys, which is conserved in many restriction endonucleases and is replaced by Glu or Gln in BamHI and BglII, is a sensor for DNA binding and the linchpin that couples base recognition and DNA cleavage.
Collapse
Affiliation(s)
- Jae Young Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
12
|
Etzkorn C, Horton NC. Mechanistic insights from the structures of HincII bound to cognate DNA cleaved from addition of Mg2+ and Mn2+. J Mol Biol 2004; 343:833-49. [PMID: 15476804 DOI: 10.1016/j.jmb.2004.08.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/24/2004] [Accepted: 08/27/2004] [Indexed: 11/16/2022]
Abstract
The three-dimensional X-ray crystal structures of HincII bound to cognate DNA containing GTCGAC and Mn(2+) or Mg(2+), at 2.50A and 2.95A resolution, respectively, are presented. In both structures, the DNA is found cleaved, and the positions of the active-site groups, cleaved phosphate group, and 3' oxygen atom of the leaving group are in very similar positions. Two highly occupied Mn(2+) positions are found in each active site of the four crystallographically independent subunit copies in the HincII/DNA/Mn(2+) structure. The manganese ion closest to the previously identified single Ca(2+) position of HincII is shifted 1.7A and has lost direct ligation to the active-site aspartate residue, Asp127. A Mn(2+)-ligated water molecule in a position analogous to that seen in the HincII/DNA/Ca(2+) structure, and proposed to be the attacking nucleophile, is beyond hydrogen bonding distance from the active-site lysine residue, Lys129, but remains within hydrogen bonding distance from the proRp oxygen atom of the phosphate group 3' to the scissile phosphate group. In addition, the position of the cleaved phosphate group is on the opposite side of the axis connecting the two metal ions relative to that found in the BamHI/product DNA/Mn(2+) structure. Mechanistic implications are discussed, and a model for the two-metal-ion mechanism of DNA cleavage by HincII is proposed.
Collapse
Affiliation(s)
- Christopher Etzkorn
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
13
|
Rauch C, Trieb M, Flader W, Wellenzohn B, Winger RH, Mayer E, Hallbrucker A, Liedl KR. PvuII-endonuclease induces structural alterations at the scissile phosphate group of its cognate DNA. J Mol Biol 2002; 324:491-500. [PMID: 12445784 DOI: 10.1016/s0022-2836(02)01089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the PvuII endonuclease with its cognate DNA by means of molecular dynamics simulations. Comparing the complexed DNA with a reference simulation of free DNA, we saw structural changes at the scissile phosphodiester bond. At this GpC step, the enzyme induces the highest twist and axial rise, inclination is increased and the minor groove widened. The distance between the scissile phosphate group and the phosphate group of the following thymine base is shortened significantly, indicating a substrate-assisted catalysis. A feasible reason for this vicinity is the catalytically important amino acid residue lysine 70, which bridges the free oxygen atoms of the successive phosphate groups. Due to this geometry, a compact reaction pocket is formed where a water molecule can be held, thus bringing the reaction partners for hydrolysis into contact. The O1-P-O2 angle of the scissile nucleotide is decreased, probably due to a complexation of the negative oxygen atoms through protein and solvent contacts.
Collapse
Affiliation(s)
- Christine Rauch
- Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Acharya AS, Roy KB. Reduced activity of bamhi variants c54i, c64w, and c54d/c64r is consistent with the substrate-assisted catalysis model. Biochem Biophys Res Commun 2001; 287:153-9. [PMID: 11549269 DOI: 10.1006/bbrc.2001.5558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three specific mutants, C54I, C54W, and a double-mutant C54D:C64R of restriction endonuclease BamHI, were generated and studied to investigate the role, if any, of the 54th and 64th cysteine residues in the catalysis of BamHI. The mutation was achieved using the megaprimer approach for PCR. The mutant genes were cloned and characterized by sequencing. The mutant and the wild-type proteins were expressed and purified and their kinetic parameters were determined using short synthetic oligonucleotides as substrates. All mutants had higher K(m) values than that of the wild-type enzyme suggesting a decrease in the affinity of the enzyme for its substrate. The mutant protein C54W showed significant changes in the CD spectra vis-a-vis wild-type enzyme and had the lowest K(m)/K(cat) value among the mutants indicative of changes in the secondary structure of the protein. The melting curves of the mutant proteins overlapped that of the wild-type enzyme. Analysis of the K(cat) values in the context of cocrystal structure suggests that the effect of Cys54 mutation is probably through the perturbation of the local structure whereas reduced activity of the double mutant is consistent with the substrate-assisted catalysis mechanism.
Collapse
Affiliation(s)
- A S Acharya
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
15
|
Dall'Acqua W, Carter P. Substrate-assisted catalysis: molecular basis and biological significance. Protein Sci 2000; 9:1-9. [PMID: 10739241 PMCID: PMC2144443 DOI: 10.1110/ps.9.1.1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Substrate-assisted catalysis (SAC) is the process by which a functional group in a substrate contributes to catalysis by an enzyme. SAC has been demonstrated for representatives of three major enzyme classes: serine proteases, GTPases, and type II restriction endonucleases, as well as lysozyme and hexose-1-phosphate uridylyltransferase. Moreover, structure-based predictions of SAC have been made for many additional enzymes. Examples of SAC include both naturally occurring enzymes such as type II restriction endonucleases as well as engineered enzymes including serine proteases. In the latter case, a functional group from a substrate can substitute for a catalytic residue replaced by site-directed mutagenesis. From a protein engineering perspective, SAC provides a strategy for drastically changing enzyme substrate specificity or even the reaction catalyzed. From a biological viewpoint, SAC contributes significantly to the activity of some enzymes and may represent a functional intermediate in the evolution of catalysis. This review focuses on advances in engineering enzyme specificity and activity by SAC, together with the biological significance of this phenomenon.
Collapse
Affiliation(s)
- W Dall'Acqua
- Department of Molecular Oncology, Genentech Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
16
|
Smith BJ, Lawrence MC, Barbosa JARG. Substrate-Assisted Catalysis in Sialic Acid Aldolase. J Org Chem 1999; 64:945-949. [PMID: 11674166 DOI: 10.1021/jo981960v] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sialic acid aldolase catalyses the reversible aldol condensation of pyruvate and N-acetylmannosamine with an apparent lack of stereospecificity. Consistent with this, modeling of Schiff base and enamine intermediates in the active site of this enzyme yields two conformations, corresponding to si- and re-face attack in the aldol condensation reaction. The acceptor-aldehyde group is found on different sides of the enamine in the two conformations, but with the remainder of the substrate having very similar geometries in the protein. No histidine residue previously speculated to function as a general base in the mechanism is found near the enzyme active site. In the absence of functionally active groups in the active site, the carboxylate of the substrate is proposed to function as the general acid/base. Molecular orbital calculations indicate that the barrier to aldol cleavage via this mechanism in the gas phase of the related system, 4-hydroxy-2-methyiminopentanoic acid, is 74 kJ mol(-)(1).
Collapse
Affiliation(s)
- Brian J. Smith
- Biomolecular Research Institute, Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
17
|
Horton NC, Newberry KJ, Perona JJ. Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Proc Natl Acad Sci U S A 1998; 95:13489-94. [PMID: 9811827 PMCID: PMC24846 DOI: 10.1073/pnas.95.23.13489] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1998] [Accepted: 09/14/1998] [Indexed: 11/18/2022] Open
Abstract
The 2.15-A resolution cocrystal structure of EcoRV endonuclease mutant T93A complexed with DNA and Ca2+ ions reveals two divalent metals bound in one of the active sites. One of these metals is ligated through an inner-sphere water molecule to the phosphate group located 3' to the scissile phosphate. A second inner-sphere water on this metal is positioned approximately in-line for attack on the scissile phosphate. This structure corroborates the observation that the pro-SP phosphoryl oxygen on the adjacent 3' phosphate cannot be modified without severe loss of catalytic efficiency. The structural equivalence of key groups, conserved in the active sites of EcoRV, EcoRI, PvuII, and BamHI endonucleases, suggests that ligation of a catalytic divalent metal ion to this phosphate may occur in many type II restriction enzymes. Together with previous cocrystal structures, these data allow construction of a detailed model for the pretransition state configuration in EcoRV. This model features three divalent metal ions per active site and invokes assistance in the bond-making step by a conserved lysine, which stabilizes the attacking hydroxide ion nucleophile.
Collapse
Affiliation(s)
- N C Horton
- Department of Chemistry and Interdepartmental Program in Biochemistry and Molecular Biology, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
18
|
Stahl F, Wende W, Jeltsch A, Pingoud A. The mechanism of DNA cleavage by the type II restriction enzyme EcoRV: Asp36 is not directly involved in DNA cleavage but serves to couple indirect readout to catalysis. Biol Chem 1998; 379:467-73. [PMID: 9628339 DOI: 10.1515/bchm.1998.379.4-5.467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three different mechanisms have been proposed to describe DNA cleavage by the type II restriction endonuclease EcoRV, which differ in the number and function of metal ions directly involved in catalysis and the different roles assigned to amino acid residues in the active sites and a phosphate group of the substrate. There are only four acidic amino acid residues close to the scissile bond: the essential Asp74 and Asp90, the non-essential Glu45, and Asp36. We show here that Asp36 can be exchanged for alanine, with only minor effects on the cleavage rate of the nearby phosphodiester bond, excluding that Asp36 could be directly involved in catalysis. Hence, the two versions of the two-metal-ion mechanism are not compatible with the experimental data, because too few ligands for two metal ions are present near the active site of EcoRV. Our result, thus, supports the one-metal-ion mechanism for EcoRV. We suggest that Asp36 has an allosteric effect by which specific contacts between one strand of the DNA and one subunit of the enzyme trigger the activation of one catalytic center. Given the similar structures of the active sites of EcoRV, EcoRI, BamHI, PvuII and FokI, as well as the occurrence of a characteristic catalytic motif in several other restriction enzymes, we conclude that these enzymes most likely share a similar mechanism of DNA cleavage, whose characteristic feature is the involvement of only one Mg2+ ion in catalysis.
Collapse
Affiliation(s)
- F Stahl
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
19
|
Horton JR, Bonventre J, Cheng X. How is modification of the DNA substrate recognized by the PvuII restriction endonuclease? Biol Chem 1998; 379:451-8. [PMID: 9628337 DOI: 10.1515/bchm.1998.379.4-5.451] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In restriction-modification systems, cleavage of substrate sites in cellular DNA by the restriction endonuclease is prevented by the action of a cognate methyltransferase that acts on the same substrate sites. The PvuII restriction endonuclease (R.PvuII) has been structurally characterized in a complex with substrate DNA (Cheng et al., 1994) and as an apoenzyme (Athanasiadis et al., 1994). We report here a structure, determined to 1.9 A resolution by crystallography, of a complex between R.PvuII and iodinated DNA. The presence of an iodine at the 5-carbon of the methylatable cytosine results in the following changes in the protein: His84 moved away from the modified base; this movement was amplified in His85 and disrupts an intersubunit hydrogen bond; and the base modification disturbs the distribution of water molecules that associate with these histidine residues and the area of the scissile bond. Considering these observations, hypotheses are given as to why a similar oligonucleotide, where a methyl group resides on the 5-carbon of the methylatable cytosine, is slowly cleaved by R.PvuII (Rice et al., 1995).
Collapse
Affiliation(s)
- J R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
20
|
Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:1-22. [PMID: 9210460 DOI: 10.1111/j.1432-1033.1997.t01-6-00001.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Restriction endonucleases are enzymes which recognize short DNA sequences and cleave the DNA in both strands. Depending on the enzymological properties different types are distinguished. Type II restriction endonucleases are homodimers which recognize short palindromic sequences 4-8 bp in length and, in the presence of Mg2+, cleave the DNA within or next to the recognition site. They are capable of non-specific binding to DNA and make use of linear diffusion to locate their target site. Binding and recognition of the specific site involves contacts to the bases of the recognition sequence and the phosphodiester backbone over approximately 10-12 bp. In general, recognition is highly redundant which explains the extreme specificity of these enzymes. Specific binding is accompanied by conformational changes over both the protein and the DNA. This mutual induced fit leads to the activation of the catalytic centers. The precise mechanism of cleavage has not yet been established for any restriction endonuclease. Currently two models are discussed: the substrate-assisted catalysis mechanism and the two-metal-ion mechanism. Structural similarities identified between EcoRI, EcoRV, BamHI, PvuII and Cfr10I suggest that many type II restriction endonucleases are not only functionally but also evolutionarily related.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
21
|
Lamm G, Wong L, Pack GR. DNA-Mediated Acid Catalysis: Calculations of the Rates of DNA-Catalyzed Hydrolyses of Diol Epoxides1. J Am Chem Soc 1996. [DOI: 10.1021/ja953724x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gene Lamm
- Contribution from the Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois 61107
| | - Linda Wong
- Contribution from the Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois 61107
| | - George R. Pack
- Contribution from the Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois 61107
| |
Collapse
|
22
|
Grabowski G, Maass G, Alves J. Asp-59 is not important for the catalytic activity of the restriction endonuclease EcoRI. FEBS Lett 1996; 381:106-10. [PMID: 8641414 DOI: 10.1016/0014-5793(96)00075-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The amino acid Asp-59 was proposed to be involved in EcoRI catalyzed DNA cleavage (Cheng et al., EMBO J. 13, 3927-35, 1994). We have tested this hypothesis by site directed mutagenesis experiments. The four mutants D59A, D59E, D59G, and D59N bind with similar stability to the specific recognition sequence as wild type EcoRI. The D59E mutant cleaves DNA as fast as the wild type enzyme. Specific activities of the other three mutants are five to tenfold lower. Therefore, we conclude that Asp-59 is not involved in catalysis of the EcoRI restriction endonuclease. Consequences for catalytic mechanisms of EcoRI and other restriction enzymes are discussed.
Collapse
Affiliation(s)
- G Grabowski
- Zentrum Biochemie, Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Germany
| | | | | |
Collapse
|
23
|
Grabowski G, Jeltsch A, Wolfes H, Maass G, Alves J. Site-directed mutagenesis in the catalytic center of the restriction endonuclease EcoRI. Gene 1995; 157:113-8. [PMID: 7607470 DOI: 10.1016/0378-1119(94)00714-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The catalytic center of the restriction endonuclease (ENase) EcoRI is structurally homologous to that of EcoRV, BamHI and PvuII. Each of these ENases contains a short motif of three to four amino acid (aa) residues which are positioned in a similar orientation to the scissile phosphodiester bond. We have mutated these aa (Pro90, Asp91, Glu111 and Lys113) in EcoRI to determine their individual roles in catalysis. The replacement of Asp91 and Lys113, respectively, by conservative mutations (Ala91, Asn91, Ala113, Gln113, His113 and Leu113) resulted in a reduction of binding affinity and complete loss of cleavage activity. Only Lys113-->Arg substitution still allows to cleave DNA, albeit with a rate reduced by at least four orders of magnitude. Lys113 seems to stabilize the structure of the wild-type (wt) ENase since all five ENase variants with mutations at this position show a strongly enhanced tendency to aggregate. The Ala and Gln mutants of Glu111 bind the recognition sequence slightly stronger than wt EcoRI and cleave it with a low, but detectable rate. Only the Glu111-->Lys mutant, in which the charge is reversed, shows neither binding nor cleavage activity. Pro90 is not important for catalysis, because the Ala90 mutant cleaves DNA with an only slightly reduced rate. Under star conditions, however, this mutant is even more active than wt EcoRI. Therefore, the charged aa Asp91, Glu111 and Lys113 are essential for catalytic activity of the EcoRI ENase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Grabowski
- Zentrum Biochemie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | |
Collapse
|