1
|
Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY, Kang YH, Kang DH, De Zoysa M, Marasinghe SD, Oh C. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb Cell Fact 2019; 18:122. [PMID: 31286972 PMCID: PMC6615230 DOI: 10.1186/s12934-019-1169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic sequencing of the marine bacterium Ochrovirga pacifica. RESULTS The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 (DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold. CONCLUSION Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and hemicellulose-like complex substrates.
Collapse
Affiliation(s)
- Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Young-Kyung Kwon
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Do-Hyung Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
3
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
4
|
Mattéotti C, Bauwens J, Brasseur C, Tarayre C, Thonart P, Destain J, Francis F, Haubruge E, De Pauw E, Portetelle D, Vandenbol M. Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expr Purif 2012; 83:117-27. [DOI: 10.1016/j.pep.2012.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
|
5
|
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 2012; 30:1575-88. [PMID: 22580218 DOI: 10.1016/j.biotechadv.2012.04.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
Abstract
Several plant polysaccharides are partially esterified with acetic acid. One of the roles of this modification is protection of plant cell walls against invading microorganisms. Acetylation of glycosyl residues of polysaccharides prevents hydrolysis of their glycosidic linkages by the corresponding glycoside hydrolases. In this way the acetylation also represents an obstacle of enzymatic saccharification of plant hemicelluloses to fermentable sugars which appears to be a hot topic of current research. We can eliminate this obstacle by alkaline extraction or pretreatment leading to saponification of ester linkages. However, this task has been accomplished in a different way in the nature. The acetyl groups became targets of microbial carbohydrate esterases that evolved to overcome the complexity of the plant cell walls and that cooperate with glycoside hydrolases in plant polysaccharide degradation. This article concentrates on enzymes deacetylating plant hemicelluloses excluding pectin. They are currently grouped in at least 8 families, specifically in CE families 1-7 and 16, originally assigned as acetylxylan esterases, the enzymes acting on hardwood acetyl glucuronoxylan and its fragments generated by endo-β-1,4-xylanases. There are esterases deacetylating softwood galactoglucomannan, but they have not been classified yet. The enzymes present in CE families 1-7 differ in structure and substrate and positional specificity. There are families behaving as endo-type and exo-type deacetylates, i.e. esterases deacetylating internal sugar residues of partially acetylated polysaccharides and also esterases deacetylating non-reducing end sugar residues in oligosaccharides. With one exception, the enzymes of all mentioned CE families belong to serine type esterases. CE family 4 harbors enzymes that are metal-dependent aspartic esterases. Three-dimensional structures have been solved for members of the first seven CE families, however, there is still insufficient knowledge about their substrate specificity and real physiological role. Current knowledge on catalytic properties of the selected families of CEs is summarized in this review. Some of the families are emerging also as new biocatalysts for regioselective acylation and deacylation of carbohydrates.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
6
|
Liu X, Ding S. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroomVolvariella volvaceawith both de-O-acetylation and de-N-acetylation activity. FEMS Microbiol Lett 2009; 295:50-6. [DOI: 10.1111/j.1574-6968.2009.01585.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MSJ, Prates JAM, Puchart V, Ferreira LMA, Fontes CMGA, Biely P, Davies GJ. Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. J Biol Chem 2006; 281:10968-75. [PMID: 16431911 DOI: 10.1074/jbc.m513066200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a alpha/beta hydrolase fold with a "Ser-His-Asp" catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 A resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a beta-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These "CE4" esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase "superfamily."
Collapse
Affiliation(s)
- Edward J Taylor
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nisole A, Lussier FX, Morley KL, Shareck F, Kazlauskas RJ, Dupont C, Pelletier JN. Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity. Protein Expr Purif 2006; 46:274-84. [PMID: 16256365 DOI: 10.1016/j.pep.2005.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 11/20/2022]
Abstract
Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.
Collapse
Affiliation(s)
- Audrey Nisole
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Qué., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
9
|
Puchart V, Gariépy MC, Shareck F, Dupont C. Identification of catalytically important amino acid residues of Streptomyces lividans acetylxylan esterase A from carbohydrate esterase family 4. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:263-74. [PMID: 16434244 DOI: 10.1016/j.bbapap.2005.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/05/2005] [Accepted: 11/21/2005] [Indexed: 11/16/2022]
Abstract
Multiple sequence alignment of Streptomyces lividans acetylxylan esterase A and other carbohydrate esterase family 4 enzymes revealed the following conserved amino acid residues: Asp-12, Asp-13, His-62, His-66, Asp-130, and His-155. These amino acids were mutated in order to investigate a functional role of these residues in catalysis. Replacement of the conserved histidine residues by alanine caused significant reduction of enzymatic activity. Maintenance of ionizable carboxylic group in side chains of amino acids at positions 12, 13, and 130 seems to be necessary for catalytic efficiency. The absence of conserved serine excludes a possibility that the enzyme is a serine esterase, in contrast to acetylxylan esterases of carbohydrate esterase families 1, 5, and 7. On the contrary, total conservation of Asp-12, Asp-13, Asp-130, and His-155 along with dramatic decrease in enzyme activity of mutants of either of these residues lead us to a suggestion that acetylxylan esterase A from Streptomyces lividans and, by inference, other members of carbohydrate esterase family 4 are aspartic deacetylases. We propose that one component of the aspartate dyad/triad functions as a catalytic nucleophile and the other one(s) as a catalytic acid/base. The ester/amide bond cleavage would proceed via a double displacement mechanism through covalently linked acetyl-enzyme intermediate of mixed anhydride type.
Collapse
Affiliation(s)
- Vladimír Puchart
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | | | | | | |
Collapse
|
10
|
Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP. The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetylxylan. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Biely P, Mastihubová M, la Grange DC, van Zyl WH, Prior BA. Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl beta-D-xylopyranosides. Anal Biochem 2005; 332:109-15. [PMID: 15301955 DOI: 10.1016/j.ab.2004.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 11/21/2022]
Abstract
Three different monoacetates of 4-nitrophenyl beta-D-xylopyranoside were tested as substrates for beta-xylosidase and for microbial carbohydrate esterases and a series of non-hemicellulolytic esterases. The acetyl group in 2-O-acetyl, 3-O-acetyl, and 4-O-acetyl 4-nitrophenyl beta-D-xylopyranoside makes the glycoside resistant to the action of beta-xylosidase (EC 3.2.1.37). This fact was explored to introduce a new enzyme-coupled assay of acetylxylan esterases (EC 3.1.1.72) and other carbohydrate-deacetylating enzymes. The deacetylation converts the monoacetates into the substrate of beta-xylosidase, the auxiliary enzyme. The effect of the acetyl group migration along the xylopyranoid ring in aqueous media can be avoided by shortening the assay duration. The assay enables an easy examination of the positional specificity of the enzymes, which is important for classification of acetylxylan esterases and for elucidation of the structure-function relationship among carbohydrate esterases in general. Non-hemicellulolytic esterases showed different positional specificity of deacetylation than did acetylxylan esterases.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
12
|
Biely P, Mastihubová M, Côté GL, Greene RV. Mode of action of acetylxylan esterase from Streptomyces lividans: a study with deoxy and deoxy-fluoro analogues of acetylated methyl beta-D-xylopyranoside. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1622:82-8. [PMID: 12880945 DOI: 10.1016/s0304-4165(03)00130-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptomyces lividans acetylxylan esterase removes the 2- or 3-O-acetyl groups from methyl 2,4-di-O-acetyl- and 3,4-di-O-acetyl beta-D-xylopyranoside. When the free hydroxyl group was replaced with a hydrogen or fluorine, the rate of deacetylation was markedly reduced, but regioselectivity was not affected. The regioselectivity of deacetylation was found to be independent of the prevailing conformation of the substrates in solution as determined by 1H-NMR spectroscopy. These observations confirm the importance of the vicinal hydroxyl group and are consistent with our earlier hypothesis that the deacetylation of positions 2 and 3 may involve a common ortho-ester intermediate. Another possible role of the free vicinal hydroxyl group could be the activation of the acyl leaving group in the deacetylation mechanism. Involvement of the free hydroxyl group in the enzyme-substrate binding is not supported by the results of inhibition experiments in which methyl 2,4-di-O-acetyl beta-D-xylopyranoside was used as substrate and its analogues or methyl beta-D-xylopyranoside as inhibitors. The enzyme requires for its efficient action the trans arrangement of the free and acetylated hydroxyl groups at positions 2 and 3.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84238 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
13
|
Chung HJ, Park SM, Kim HR, Yang MS, Kim DH. Cloning the gene encoding acetyl xylan esterase from Aspergillus ficuum and its expression in Pichia pastoris. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00122-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Hernández A, Copa-Patiño JL, Soliveri J. xln23 from Streptomyces chattanoogensis UAH23 encodes a putative enzyme with separate xylanase and arabinofuranosidase catalytic domains. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 12:167-77. [PMID: 11762192 DOI: 10.3109/10425170109080771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The xylanase gene xysA of Streptomyces halstedii JM8 was used to isolate a DNA fragment from a gene library of Pstl-digested chromosomal DNA of the lignocellulolytic actinomycete Streptomyces chattanoogensis CECT-3336. Nucleotide sequence analysis revealed a gene (xln23) encoding a bifunctional multimodular enzyme bearing two independent xylanase and alpha-L-arabinofuranosidase domains separated by a Ser/Gly-rich linker. The N terminus of the predicted protein showed high homology to family F xylanases. The C terminus was homologous to amino acid sequences found in enzymes included in the glycosyl hydrolase family 62 and, in particular, to those of alpha-L-arabinofuranosidase AbsB from Streptomyces lividans. PCR and RT-PCR experiments showed that the nucleotide sequences corresponding to each domain are arranged as expected on the chromosomal DNA and that they are cotranscribed. To our knowledge, this is the first description of xylanase and arabinofuranosidase domains in a same open reading frame.
Collapse
Affiliation(s)
- A Hernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, 28871-Alcalá de Henares, Spain
| | | | | |
Collapse
|
15
|
Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 6):1391-1397. [PMID: 10846217 DOI: 10.1099/00221287-146-6-1391] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three enzymes carrying esterase domains have been identified in the rumen cellulolytic anaerobe Ruminococcus flavefaciens 17. The newly characterized CesA gene product (768 amino acids) includes an N-terminal acetylesterase domain and an unidentified C-terminal domain, while the previously characterized XynB enzyme (781 amino acids) includes an internal acetylesterase domain in addition to its N-terminal xylanase catalytic domain. A third gene, xynE, is predicted to encode a multidomain enzyme of 792 amino acids including a family 11 xylanase domain and a C-terminal esterase domain. The esterase domains from CesA and XynB share significant sequence identity (44%) and belong to carbohydrate esterase family 3; both domains are shown here to be capable of deacetylating acetylated xylans, but no evidence was found for ferulic acid esterase activity. The esterase domain of XynE, however, shares 42% amino acid identity with a family 1 phenolic acid esterase domain identified from Clostridum thermocellum XynZ. XynB, XynE and CesA all contain dockerin-like regions in addition to their catalytic domains, suggesting that these enzymes form part of a cellulosome-like multienzyme complex. The dockerin sequences of CesA and XynE differ significantly from those previously described in R. flavefaciens polysaccharidases, including XynB, suggesting that they might represent distinct dockerin specificities.
Collapse
Affiliation(s)
- Vincenzo Aurilia
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Jennifer C Martin
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Sheila I McCrae
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Karen P Scott
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Marco T Rincon
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Harry J Flint
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| |
Collapse
|
16
|
Blum DL, Li XL, Chen H, Ljungdahl LG. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 1999; 65:3990-5. [PMID: 10473406 PMCID: PMC99731 DOI: 10.1128/aem.65.9.3990-3995.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.
Collapse
Affiliation(s)
- D L Blum
- Department of Biochemistry and Molecular Biology and the Center for Biological Resource Recovery, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
17
|
Chen CC, Westpheling J. Partial characterization of the Streptomyces lividans xlnB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima. Appl Environ Microbiol 1998; 64:4217-25. [PMID: 9797268 PMCID: PMC106630 DOI: 10.1128/aem.64.11.4217-4225.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanase activity assays were used to screen a Streptomyces coelicolor genomic library in Escherichia coli, and a xylanase gene that is 99% identical to the xylanase B gene (xlnB) of S. lividans (GenBank accession no. M64552) was identified. The promoter region of this gene was identified by using a transcriptional fusion between the upstream region of the S. coelicolor xlnB gene and the xylE reporter gene. Transcription from the xlnB promoter was found to be induced by xylan and repressed by glucose. A single apparent transcription start site was identified by both primer extension analysis and in vitro run off transcription assays. Analysis of deletions of the promoter identified a region required for glucose repression. By using the transcriptional and protein localization signals of the Streptomyces xlnB gene, an in-frame translational fusion between the end of the xlnB signal sequence and the ATG of the Thermotoga maritima xynA gene was constructed. The xynA gene encodes a thermostable xylanase that has been demonstrated to be useful in the bleaching of Kraft pulp. The xlnB-xynA gene fusion was expressed in Streptomyces, and the activity of the protein produced was thermostable and was localized to the supernatant fraction of harvested cells.
Collapse
Affiliation(s)
- C C Chen
- Department of Genetics, University of Georgia, Athens, Georgia 30602-7223, USA
| | | |
Collapse
|
18
|
Abstract
Ribonuclease P (RNase P) is the endoribonuclease that generates the mature 5'-ends of tRNA by removal of the 5'-leader elements of precursor-tRNAs. This enzyme has been characterized from representatives of all three domains of life (Archaea, Bacteria, and Eucarya) (1) as well as from mitochondria and chloroplasts. The cellular and mitochondrial RNase Ps are ribonucleoproteins, whereas the most extensively studied chloroplast RNase P (from spinach) is composed solely of protein. Remarkably, the RNA subunit of bacterial RNase P is catalytically active in vitro in the absence of the protein subunit (2). Although RNA-only activity has not been demonstrated for the archael, eucaryal, or mitochondrial RNAs, comparative sequence analysis has established that these RNAs are homologous (of common ancestry) to bacterial RNA. RNase P holoenzymes vary greatly in organizational complexity across the phylogenetic domains, primarily because of differences in the RNase P protein subunits: Mitochondrial, archaeal, and eucaryal holoenzymes contain larger, and perhaps more numerous, protein subunits than do the bacterial holoenzymes. However, that the nonbacterial RNase P RNAs retain significant structural similarity to their catalytically active bacterial counterparts indicates that the RNA remains the catalytic center of the enzyme.
Collapse
Affiliation(s)
- D N Frank
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA.
| | | |
Collapse
|
19
|
Hazlewood GP, Gilbert HJ. Structure and function analysis of Pseudomonas plant cell wall hydrolases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:211-41. [PMID: 9752722 DOI: 10.1016/s0079-6603(08)60828-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolysis of the major structural polysaccharides of plant cell walls by the aerobic soil bacterium Pseudomonas fluorescens subsp. cellulosa is attributable to the production of multiple extracellular cellulase and hemicellulase enzymes, which are the products of distinct genes belonging to multigene families. Cloning and sequencing of individual genes, coupled with gene sectioning and functional analysis of the encoded proteins have provided a detailed picture of structure/function relationships and have established the cellulase-hemicellulase system of P. fluorescens subsp. cellulosa as a model for the plant cell wall degrading enzyme systems of aerobic cellulolytic bacteria. Cellulose- and xylan-degrading enzymes produced by the pseudomonad are typically modular in structure and contain catalytic and noncatalytic domains joined together by serine-rich linker sequences. The cellulases include a cellodextrinase; a beta-glucan glucohydrolase and multiple endoglucanases, containing catalytic domains belonging to glycosyl hydrolase families 5, 9, and 45; and cellulose-binding domains of families II and X, both of which are present in each enzyme. Endo-acting xylanases, with catalytic domains belonging to families 10 and 11, and accessory xylan-degrading enzymes produced by P. fluorescens subsp. cellulosa contain cellulose-binding domains of families II, X, and XI, which act by promoting close contact between the catalytic domain of the enzyme and its target substrate. A domain homologous with NodB from rhizobia, present in one xylanase, functions as a deacetylase. Mananase, arabinanase, and galactanase produced by the pseudomonad are single domain enzymes. Crystallographic studies, coupled with detailed kinetic analysis of mutant forms of the enzyme in which key residues have been altered by site-directed mutagenesis, have shown that xylanase A (family 10) has 8-fold alpha/beta barrel architecture, an extended substrate-binding cleft containing at least six xylose-binding pockets and a calcium-binding site that protects the enzyme from thermal inactivation, thermal unfolding, and attack by proteinases. Kinetic studies of mutant and wild-type forms of a mannanase and a galactanase from P. fluorescens subsp. cellulosa have enabled the catalytic mechanisms and key catalytic residues of these enzymes to be identified.
Collapse
Affiliation(s)
- G P Hazlewood
- Laboratory of Molecular Enzymology, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Williamson G, Kroon PA, Faulds CRB. Hairy plant polysaccharides: a close shave with microbial esterases. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2011-2023. [PMID: 9720023 DOI: 10.1099/00221287-144-8-2011] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gary Williamson
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| | - Paul A Kroon
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| | - CRaig B Faulds
- Biochemistry Department, Institute of Food ResearchNorwich Research Park, Colney, Norwich NR4 7UAUK
| |
Collapse
|
21
|
Gutiérrez R, Cederlund E, Hjelmqvist L, Peirano A, Herrera F, Ghosh D, Duax W, Jörnvall H, Eyzaguirre J. Acetyl xylan esterase II from Penicillium purpurogenum is similar to an esterase from Trichoderma reesei but lacks a cellulose binding domain. FEBS Lett 1998; 423:35-8. [PMID: 9506837 DOI: 10.1016/s0014-5793(98)00055-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Penicillium purpurogenum produces at least two acetyl xylan esterases (AXE I and II). The AXE II cDNA, genomic DNA and mature protein sequences were determined and show that the axe 2 gene contains two introns, that the primary translation product has a signal peptide of 27 residues, and that the mature protein has 207 residues. The sequence is similar to the catalytic domain of AXE I from Trichoderma reesei (67% residue identity) and putative active site residues are conserved, but the Penicillium enzyme lacks the linker and cellulose binding domain, thus explaining why it does not bind cellulose in contrast to the Trichoderma enzyme. These results point to a possible common ancestor gene for the active site domain, while the linker and the binding domain may have been added to the Trichoderma esterase by gene fusion.
Collapse
Affiliation(s)
- R Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla, Santiago
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamst E, Spaink HP, Kafetzopoulos D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell Biochem 1998; 29:29-71. [PMID: 9594644 DOI: 10.1007/978-1-4899-1707-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- E Kamst
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands
| | | | | |
Collapse
|
23
|
Biely P, Côté GL, Kremnický L, Greene RV, Tenkanen M. Action of acetylxylan esterase from Trichoderma reesei on acetylated methyl glycosides. FEBS Lett 1997; 420:121-4. [PMID: 9459293 DOI: 10.1016/s0014-5793(97)01500-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Substrate specificity of purified acetylxylan esterase (AcXE) from Trichoderma reesei was investigated on partially and fully acetylated methyl glycopyranosides. Methyl 2,3,4-tri-O-acetyl-beta-D-xylopyranoside was deacetylated at positions 2 and 3, yielding methyl 4-O-acetyl-beta-D-xylopyranoside in almost 90% yield. Methyl 2,3-di-O-acetyl beta-D-xylopyranoside was deacetylated at a rate similar to the fully acetylated derivative. The other two diacetates (2,4- and 3,4-), which have a free hydroxyl group at either position 3 or 2, were deacetylated one order of magnitude more rapidly. Thus the second acetyl group is rapidly released from position 3 or 2 after the first acetyl group is removed from position 2 or 3. The results strongly imply that in degradation of partially acetylated beta-1,4-linked xylans, the enzyme deacetylates monoacetylated xylopyranosyl residues more readily than di-O-acetylated residues. The T. reesei AcXE attacked acetylated methyl beta-D-glucopyranosides and beta-D-mannopyranosides in a manner similar to the xylopyranosides.
Collapse
Affiliation(s)
- P Biely
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava.
| | | | | | | | | |
Collapse
|
24
|
Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H. An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 1997; 326 ( Pt 2):485-90. [PMID: 9291122 PMCID: PMC1218695 DOI: 10.1042/bj3260485] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An inducible acetylesterase was purified from the culture medium of Aspergillus awamori strain IFO4033 growing on wheat-bran culture by ion-exchange, gel-filtration and hydrophobic-interaction chromatographies. The purified enzyme had an Mr of 31000 and contained Asn-linked oligosaccharides. The enzyme liberated acetic acid from wheat bran, hydrolysed only alpha-naphthyl acetate and propionate when aromatic esters were used for the substrate, and was tentatively classified as a carboxylic esterase (EC 3.1.1.1). The gene encoding acetylesterase was cloned and sequenced. The deduced amino acid sequence showed that acetylesterase was produced as a 304-amino-acid-residue precursor, which was converted post-translationally into a 275-amino-acid-residue mature protein. Part of the sequence of acetylesterase was similar to the region near the active-site serine of lipases of Geotrichum candidum and Candida cylindracea. A unique site of putative Asn-linked oligosaccharides was presented.
Collapse
Affiliation(s)
- T Koseki
- National Research Institute of Brewing, Higashihiroshima, Japan
| | | | | | | | | |
Collapse
|
25
|
Lorenz WW, Wiegel J. Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. J Bacteriol 1997; 179:5436-41. [PMID: 9286998 PMCID: PMC179414 DOI: 10.1128/jb.179.17.5436-5441.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genes encoding acetyl xylan esterase 1 (axe1) and a beta-xylosidase (xylB) have been cloned and sequenced from Thermoanaerobacterium sp. strain JW/SL YS485. axe1 is located 22 nucleotides 3' of the xylB sequence. The identity of axe1 was confirmed by comparison of the deduced amino acid sequence to peptide sequence analysis data from purified acetyl xylan esterase 1. The xylB gene was identified by expression cloning and by sequence homology to known beta-xylosidases. Plasmids which independently expressed either acetyl xylan esterase 1 (pAct1BK) or beta-xylosidase (pXylo-1.1) were constructed in Escherichia coli. Plasmid pXylAct-1 contained both genes joined at a unique EcoRI site and expressed both activities. Substrate specificity, pH, and temperature optima were determined for partially purified recombinant acetyl xylan esterase 1 and for crude recombinant beta-xylosidase. Similarity searches showed that the axe1 and xylB genes were homologs of the ORF-1 and xynB genes, respectively, isolated from Thermoanaerobacterium saccharolyticum. Although the deduced sequence of the axe1 product had no significant amino acid sequence similarity to any reported acetyl xylan esterase sequence, it did have strong similarity to cephalosporin C deacetylase from Bacillus subtilis. Recombinant acetyl xylan esterase 1 was found to have thermostable deacetylase activity towards a number of acetylated substrates, including cephalosporin C and 7-aminocephalosporanic acid.
Collapse
Affiliation(s)
- W W Lorenz
- Department of Microbiology, and Center for Biological Resource Recovery, University of Georgia, Athens 30602-2605, USA
| | | |
Collapse
|
26
|
Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2605-2614. [PMID: 9274014 DOI: 10.1099/00221287-143-8-2605] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetylesterase and cinnamoyl ester hydrolase activities were demonstrated in culture supernatant of the anaerobic ruminal fungus Neocallimastix patriciarum. A cDNA expression library from N. patriciarum was screened for esterases using beta-naphthyl acetate and a model cinnamoyl ester compound. cDNA clones representing four different esterase genes (bnaA-D) were isolated. None of the enzymes had cinnamoyl ester hydrolase activity, but two of the enzymes (BnaA and BnaC) had acetylxylan esterase activity, bnaA, bnaB and bnaC encode proteins with several distinct domains. Carboxy-terminal repeats in BnaA and BnaC are homologous to protein-docking domains in other enzymes from Neocallimastix species and another anaerobic fungus, a Piromyces sp. The catalytic domains of BnaB and BnaC are members of a recently described family of Ser/His active site hydrolases [Upton, C. & Buckley, J.T. (1995). Trends Biochem Sci 20, 178-179]. BnaB exhibits 40% amino acid identity to a domain of unknown function in the CelE cellulase from Clostridium thermocellum and BnaC exhibits 52% amino acid identity to a domain of unknown function in the XynB xylanase from Ruminococcus flavefaciens. BnaA, whilst exhibiting less than 10% overall amino acid identity to BnaB or BnaC, or to any other known protein, appears to be a member of the same family of hydrolases, having the three universally conserved amino acid sequence motifs. Several other previously described esterases are also shown to be members of this family, including a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. However, none of the other previously described enzymes with acetylxylan esterase activity are members of this family of hydrolases.
Collapse
Affiliation(s)
- Brian P Dalrymple
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Daisy H Cybinski
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Ingrid Layton
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Christopher S McSweeney
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Gang-Ping Xue
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Crops and Pastures, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Yolande J Swadling
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - J Brian Lowry
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| |
Collapse
|
27
|
Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D. New alpha-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem J 1997; 322 ( Pt 3):845-52. [PMID: 9148759 PMCID: PMC1218265 DOI: 10.1042/bj3220845] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A fully secreted alpha-l-arabinofuranosidase was cloned from the homologous expression system of Streptomyces lividans. The gene, located upstream adjacent to the previously described xylanase A gene, was sequenced. It is divergently transcribed from the xlnA gene and the two genes are separated by an intercistronic region of 391nt which contains a palindromic AT-rich sequence. The deduced amino acid sequence of the protein shows that the enzyme contains a distinct catalytic domain which is linked to a specific xylan-binding domain by a linker region. The purified enzyme has a specific arabinofuranose-debranching activity on xylan from Gramineae, acts synergistically with the S. lividans xylanases and binds specifically to xylan. From small arabinoxylo-oligosides, it liberates arabinose and, after prolonged incubation, the purified enzyme exhibits some xylanolytic activity as well.
Collapse
Affiliation(s)
- P Vincent
- Centre de Recherche en Microbiologie Appliquée, Institut Armand-Frappier, Université du Québec, Ville de Laval, Qué, H7N4Z3, Canada
| | | | | | | | | |
Collapse
|
28
|
Tsujibo H, Ohtsuki T, Iio T, Yamazaki I, Miyamoto K, Sugiyama M, Inamori Y. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 1997; 63:661-4. [PMID: 9023944 PMCID: PMC168356 DOI: 10.1128/aem.63.2.661-664.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three genes encoding two types of xylanases (STX-I and STX-II) and an acetyl xylan esterase (STX-III) from Streptomyces thermoviolaceus OPC-520 were cloned, and their DNA sequences were determined. The nucleotide sequences showed that genes stx-II and stx-III were clustered on the genome. The stx-I, stx-II, and stx-III genes encoded deduced proteins of 51, 35.2, and 34.3 kDa, respectively. STX-I and STX-II bound to both insoluble xylan and crystalline cellulose (Avicel). Alignment of the deduced amino acid sequences encoded by stx-I, stx-II, and stx-III demonstrated that the three enzymes contain two functional domains, a catalytic domain and a substrate-binding domain. The catalytic domains of STX-I and STX-II showed high sequence homology to several xylanases which belong to families F and G, respectively, and that of STX-III showed striking homology with an acetyl xylan esterase from S. lividans, nodulation proteins of Rhizobium sp., and chitin deacetylase of Mucor rouxii. In the C-terminal region of STX-I, there were three reiterated amino acid sequences starting from C-L-D, and the repeats were homologous to those found in xylanase A from S. lividans, coagulation factor G subunit alpha from the horseshoe crab, Rarobacter faecitabidus protease I, beta-1,3-glucanase from Oerskovia xanthineolytica, and the ricin B chain. However, the repeats did not show sequence similarity to any of the nine known families of cellulose-binding domains (CBDs). On the other hand, STX-II and STX-III contained identical family II CBDs in their C-terminal regions.
Collapse
Affiliation(s)
- H Tsujibo
- Osaka University of Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Some aspects of the current knowledge on protein secretion in streptomycetes are presented including recent data on the identification of genes in the general secretory pathway, on the importance of the signal peptide structure and on the number of ribosome-binding sites inside signal peptides which can influence the production level of a gene product.
Collapse
Affiliation(s)
- R Morosoli
- Centre de Recherche en Microbiologie Appliquée, Institut Armand-Frappier, Université du Québec, Ville de Laval, Qué, Canada.
| | | | | |
Collapse
|
30
|
Biely P, Côté GL, Kremnický L, Greene RV, Dupont C, Kluepfel D. Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans. FEBS Lett 1996; 396:257-60. [PMID: 8914998 DOI: 10.1016/0014-5793(96)01080-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The substrate specificity of purified acetylxylan esterase (AcXE) from Streptomyces lividans was investigated on partially and fully acetylated methyl glycopyranosides. The enzyme exhibited deacetylation regioselectivity on model compounds which provided insights pertaining to its function in acetylxylan degradation. The enzyme catalyzed double deacetylation of methyl 2,3,4-tri-O-acetyl-beta-D-xylopyranoside and methyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside at positions 2 and 3. Two methyl xylopyranoside diacetates, which had a free hydroxyl group at position 2 or 3, i.e. the derivatives that most closely mimic monoacetylated xylopyranosyl residues in acetylxylan, were deacetylated 1 to 2 orders of magnitude faster than methyl 2,3,4-tri-O-acetyl-beta-D-xylopyranoside and methyl 2,3-di-O-acetyl-beta-D-xylopyranoside. These observations explain the double deacetylation. The second acetyl group is released immediately after the first one is removed from the fully acetylated methyl beta-D-xylo- and -glucopyranoside. The results suggest that in acetylxylan degradation the enzyme rapidly deacetylates monoacetylated xylopyranosyl residues, but attacks doubly acetylated residues much more slowly. Evidence is also presented that the St. lividans enzyme could be the first real substrate-specific AcXE.
Collapse
Affiliation(s)
- P Biely
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava
| | | | | | | | | | | |
Collapse
|
31
|
Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D. Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 1996; 319 ( Pt 3):881-6. [PMID: 8920994 PMCID: PMC1217870 DOI: 10.1042/bj3190881] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The acetyl xylan esterase cloned homologously from Streptomyces lividans [Shareck, Biely, Morosoli and Kluepfel (1995) Gene 153, 105-109] was purified from culture filtrate of the overproducing strain S. lividans IAF43. The secreted enzyme had a molecular mass of 34 kDa and a pI of 9.0. Under the assay conditions with chemically acetylated birchwood xylan the kinetic constants of the enzyme were: specific activity, 715 units/mg, Km 7.94 mg/ml and Vmax 1977 units/mg. Optimal enzyme activity was obtained at 70 degrees C and pH 7.5. Hydrolysis assays with different acetylated substrates showed that the enzyme is specific for deacetylating the O-acetyl group of polysaccharides and is devoid of N-deacetylation activity. Sequential hydrolysis shows that its action is essential for the complete degradation of acetylated xylan by the xylanases of S. lividans.
Collapse
Affiliation(s)
- C Dupont
- Centre de Recherche en Microbiologie Appliquée, Université du Québec, Laval-des-Rapides, Canada
| | | | | | | | | |
Collapse
|
32
|
Abstract
Microorganisms are efficient degraders of starch, chitin, and the polysaccharides in plant cell walls. Attempts to purify hydrolases led to the realization that a microorganism may produce a multiplicity of enzymes, referred to as a system, for the efficient utilization of a polysaccharide. In order to fully characterize a particular enzyme, it must be obtained free of the other components of a system. Quite often, this proves to be very difficult because of the complexity of a system. This realization led to the cloning of the genes encoding them as an approach to eliminating other components. More than 400 such genes have been cloned and sequenced, and the enzymes they encode have been grouped into more than 50 families of related amino acid sequences. The enzyme systems revealed in this manner are complex on two quite different levels. First, many of the individual enzymes are complex, as they are modular proteins comprising one or more catalytic domains linked to ancillary domains that often include one or more substrate-binding domains. Second, the systems are complex, comprising from a few to 20 or more enzymes, all of which hydrolyze a particular substrate. Systems for the hydrolysis of plant cell walls usually contain more components than systems for the hydrolysis of starch and chitin because the cell walls contain several polysaccharides. In general, the systems produced by different microorganisms for the hydrolysis of a particular polysaccharide comprise similar enzymes from the same families.
Collapse
Affiliation(s)
- R A Warren
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Breton C, Bordenave M, Richard L, Pernollet JC, Huet JC, Pérez S, Goldberg R. PCR cloning and expression analysis of a cDNA encoding a pectinacetylesterase from Vigna radiata L. FEBS Lett 1996; 388:139-42. [PMID: 8690073 DOI: 10.1016/0014-5793(96)00510-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cDNA clone encoding a pectinacetylesterase (PAE) was isolated from 3-day-old mung bean seedlings using PCR-based techniques. Degenerate oligonucleotide primers were designed according to the N-terminus and internal peptides from the purified PAE. The full-length clone of 1453 bp codes for a signal peptide of 24 amino acids and a mature protein of 375 amino acids. The Mr and the pI of the cDNA-deduced amino acid sequence agree with the values estimated for the purified enzyme. No significant sequence identity between the PAE and any known protein could be found in the databases. Northern analysis revealed developmentally regulated expression of the mRNA in mung been seedlings.
Collapse
|
34
|
Margolles-Clark E, Tenkanen M, Söderlund H, Penttilä M. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:553-60. [PMID: 8647098 DOI: 10.1111/j.1432-1033.1996.0553p.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The axe1 gene encoding acetyl xylan esterase was isolated from an expression library of the filamentous fungus Trichoderma reesei using antibodies raised against the purified enzyme. Apparently axe1 codes for the two forms, pI 7 and pI 6.8, of acetyl xylan esterase previously characterized. The axe1 encodes 302 amino acids including a signal sequence and a putative propeptide. The catalytic domain has no amino acid similarity with the reported acetyl xylan esterases but has a clear similarity, especially in the active site, with fungal cutinases which are serine esterases. Similarly to serine esterases, the axe1 product was inactivated with phenylmethylsulfonyl fluoride. At its C-terminus it carries a cellulose binding domain of fungal type, which is separated from the catalytic domain by a region rich in serine, glycine, threonine and proline. The binding domain can be separated from the catalytic domain by limited proteolysis without affecting the activity of the enzyme towards acetylated xylan, but abolishing its capability to bind cellulose.
Collapse
|
35
|
Pagé N, Kluepfel D, Shareck F, Morosoli R. Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyces lividans. Appl Environ Microbiol 1996; 62:109-14. [PMID: 8572687 PMCID: PMC167779 DOI: 10.1128/aem.62.1.109-114.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Starting from its translation initiation site, the Streptomyces lividans xylanase A signal peptide consists of 41 amino acids. This signal peptide was deleted and successively replaced with one of six signal peptides from other enzymes secreted by S. lividans and by a signal peptide from the outer membrane protein (LamB) of Escherichia coli. Deletion of the xylanase A signal peptide or modification of its cleavage site abolished secretion of the enzyme. Replacement with the signal peptides of either xylanase B, cellulase A, mannanase, or acetylxylan esterase produced equivalent amounts of xylanase A, while the signal peptides of cellulase B, xylanase C, and LamB secreted less enzyme than did the wild type. All the clones exhibited the same transcription levels, which indicated that the variations in xylanase production were due to the natures of the signal sequences.
Collapse
Affiliation(s)
- N Pagé
- Centre de Recherche en Microbiologie Appliquée, Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | | | | | | |
Collapse
|