1
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
2
|
Structure, function and regulation of Transcription Factor IIIA: From Xenopus to Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:274-82. [DOI: 10.1016/j.bbagrm.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/14/2022]
|
3
|
Abahuni N, Gispert S, Bauer P, Riess O, Krüger R, Becker T, Auburger G. Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease. Neurosci Lett 2007; 414:126-9. [PMID: 17267121 DOI: 10.1016/j.neulet.2006.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/29/2006] [Accepted: 12/07/2006] [Indexed: 11/27/2022]
Abstract
Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial serine-threonine kinase PINK1 have recently been shown to cause the early-onset autosomal recessive PARK6 variant of PD. We have now tested a candidate interactor protein of PINK1, the mitochondrial translation initiation factor 3 (MTIF3) for involvement in PD pathogenesis. In two independent case-control collectives, the c.798C>T polymorphism of the MTIF3 gene showed allelic association with PD, with a maximal significance of p=0.0073. An altered function of variant MTIF3 may affect the availability of mitochondrial encoded proteins, lead to oxidative stress and create vulnerability for PD.
Collapse
Affiliation(s)
- Nadine Abahuni
- Institute for Experimental Neurobiology, University Hospital Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Schulman DB, Setzer DR. Functional analysis of the novel C-terminal domains of S pombe transcription factor IIIA. J Mol Biol 2003; 331:321-30. [PMID: 12888341 DOI: 10.1016/s0022-2836(03)00730-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcription factor IIIA from S.pombe exhibits a novel structural organization compared to its homologues in other species. TFIIIA from S.cerevisiae or vertebrates contains a total of nine C(2)H(2) zinc-finger domains and a non-zinc finger region at its C terminus. In addition, the S.cerevisiae protein possesses an 81-amino acid spacer between zinc fingers eight and nine. In contrast, the S.pombe TFIIIA sequence includes ten potential zinc finger motifs, with a 53-amino acid spacer between fingers nine and ten. Zinc finger nine of the S.pombe protein deviates from the consensus for a C(2)H(2) zinc finger, however, in that it does not include an appropriately positioned second Zn(2+)-coordinating histidine. We demonstrate here, through analysis of mutated forms of the protein, that the non-canonical ninth zinc finger is functional in both DNA binding and transcription. In addition, we have shown that the spacer preceding finger ten and finger ten itself are essential for the transcriptional function of S.pombe TFIIIA, but neither is required for wild-type 5S rRNA gene-binding activity.
Collapse
Affiliation(s)
- Deborah B Schulman
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
5
|
Cloix C, Yukawa Y, Tutois S, Sugiura M, Tourmente S. In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:251-261. [PMID: 12848829 DOI: 10.1046/j.1365-313x.2003.01793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In vivo, we have already shown that only two of the 5S rDNA array blocks of the Arabidopsis thaliana genome produce the mature 5S rRNAs. Deletions and point mutations were introduced in an Arabidopsis 5S rDNA-transcribed region and its 5'- and 3'-flanks in order to analyse their effects on transcription activity. In vitro transcription revealed different transcription control regions. One control region essential for transcription initiation was identified in the 5'-flanking sequence. The major sequence determinants were a TATA-like motif (-28 to -23), a GC dinucleotide (-12 to -11), a 3-bp AT-rich region (-4 to -2) and a C residue at -1. They are important for both accurate transcription initiation and transcription efficiency. Transcription level was regulated by polymerase III (Pol III) re-initiation rate as in tRNA genes in which TATA-like motif is involved. Active 5S rDNA transcription additionally required an intragenic promoter composed of an A-box, an Intermediate Element (IE) and a C-box. Double-stranded oligonucleotides corresponding to different fragments of the transcribed region, used as competitors, revealed the main importance of internal promoter elements. A stretch of four T is sufficient for transcription termination. Transcription of Arabidopsis 5S rDNA requires 30 bp of 5'-flanking region, a promoter internal to the transcribed region, and a stretch of T for transcription termination.
Collapse
Affiliation(s)
- Catherine Cloix
- U. M. R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | |
Collapse
|
6
|
Mathieu O, Yukawa Y, Prieto JL, Vaillant I, Sugiura M, Tourmente S. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res 2003; 31:2424-33. [PMID: 12711688 PMCID: PMC154221 DOI: 10.1093/nar/gkg335] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thus far, no transcription factor IIIA (TFIIIA) from higher plants has been cloned and characterized. We have cloned and characterized TFIIIA and ribosomal protein L5 from Arabidopsis thaliana. Primary sequence comparison revealed a high divergence of AtTFIIIA and a relatively high conservation of AtL5 when compared with other organisms. The AtTFIIIA cDNA encodes a protein with nine Cys(2)-His(2)-type zinc fingers, a 23 amino acid spacer between fingers 1 and 2, a 66 amino acid spacer between fingers 4 and 5, and a 50 amino acid non-finger C-terminal tail. Aside from the amino acids required for proper zinc finger folding, AtTFIIIA is highly divergent from other known TFIIIAs. AtTFIIIA can bind 5S rDNA, as well as 5S rRNA, and efficiently stimulates the transcription of an Arabidopsis 5S rRNA gene in vitro. AtL5 identity was confirmed by demonstrating that this protein binds to 5S rRNA but not to 5S rDNA. Protoplast transient expression assays with green fluorescent protein fusion proteins revealed that AtTFIIIA is absent from the cytoplasm and concentrated at several nuclear foci including the nucleolus. AtL5 protein accumulates in the nucleus, especially in the nucleolus, and is also present in the cytoplasm.
Collapse
Affiliation(s)
- Olivier Mathieu
- UMR CNRS 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Tanabe A, Kurita M, Oshima K, Osada S, Nishihara T, Imagawa M. Functional analysis of zinc finger proteins that bind to the silencer element in the glutathione transferase P gene. Biol Pharm Bull 2002; 25:970-4. [PMID: 12186428 DOI: 10.1248/bpb.25.970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione transferase P (GST-P) gene expression is repressed in normal rats but markedly promoted during the early stage of chemical hepatocarcinogenesis. We have previously identified a silencer region in this gene promoter. The silencer is composed of several cis-elements to which at least three proteins (Silencer factor-A, -B, and -C: SF-A, SF-B, and SF-C) are known to bind. We cloned and characterized the nuclear factor 1 family and the CCAAT/enhancer-binding protein family as SF-A and SF-B, respectively. Recently, zinc finger proteins as candidates for SF-C, which binds to GST-P silencer 2 (GPS2), were isolated. These proteins include four Krüppel-like proteins (BTEB2, EZF, LKLF, and TIEG1) and other factors containing multiple zinc finger motifs (TFIIIA and MZFP). In the present study, we found that the zinc finger proteins showed the same DNA-binding affinities to GPS2. Moreover, transfection analyses revealed that BTEB2, EZF, and TIEGI repressed the GST-P promoter activity. Therefore, these three factors might contribute to the repression of the GST-P gene expression in normal rat liver.
Collapse
Affiliation(s)
- Atsuhiro Tanabe
- Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Schulman DB, Setzer DR. Identification and characterization of transcription factor IIIA from Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:2772-81. [PMID: 12087160 PMCID: PMC117040 DOI: 10.1093/nar/gkf385] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factor IIIA (TFIIIA) is specifically required for transcription of 5S rRNA genes and is the archetypal C2H2 zinc finger protein. All known vertebrate TFIIIAs have a similar organization: nine zinc fingers, followed by a C-terminal domain of unknown structure. The zinc fingers of Saccharomyces cerevisiae TFIIIA are interrupted between fingers eight and nine by an 81-amino acid spacer. Aside from the amino acids required for zinc finger folding, TFIIIAs from different species are remarkably divergent, whereas the natural binding site, the internal control region of the 5S rRNA gene, is well conserved. We now describe the identification and characterization of TFIIIA from Schizosaccharomyces pombe. This protein is organized differently from its known homologs, in that it contains eight closely spaced zinc fingers, a ninth zinc finger missing a C-terminal Zn2+-coordinating histidine, a 53- amino acid spacer, and an unprecedented tenth zinc finger. We have confirmed the identity of this divergent protein as TFIIIA by showing that it binds specifically and with high affinity to the S.pombe 5S rRNA gene. Comparison of DNase I protection patterns produced by TFIIIA from multiple species suggests a novel mode of DNA recognition by the S.pombe protein. Recombinant S.pombe TFIIIA was also shown to support specific transcription of the 5S rRNA gene in vitro.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/genetics
- Electrophoretic Mobility Shift Assay
- Molecular Sequence Data
- Protein Binding
- RNA, Ribosomal, 5S/genetics
- Schizosaccharomyces/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factor TFIIIA
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Deborah B Schulman
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | |
Collapse
|
9
|
Polakowski N, Paule MR. Purification and characterization of transcription factor IIIA from Acanthamoeba castellanii. Nucleic Acids Res 2002; 30:1977-84. [PMID: 11972335 PMCID: PMC113847 DOI: 10.1093/nar/30.9.1977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TFIIIA is required to activate RNA polymerase III transcription from 5S RNA genes. Although all known TFIIIA homologs harbor nine zinc fingers that mediate DNA binding, very limited sequence homology is found among these proteins, which reflects unique properties of some TFIIIA homologs. For example, the Acanthamoeba castellanii homolog directly regulates 5S RNA transcription. We have purified and characterized A.castellanii TFIIIA (AcTFIIIA) as a step toward obtaining a clearer understanding of these differences and of the regulatory process. AcTFIIIA is 59 kDa, significantly larger than all other TFIIIA homologs isolated to date. Nevertheless, it exhibits a DNase I footprint very similar to those produced by the smaller vertebrate TFIIIA homologs, but distinct from the smaller footprint of the 51 kDa TFIIIA from Saccharomyces cerevisiae. Similar footprinting is not reflected in greater sequence similarity between the A.castellanii and vertebrate promoters.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
10
|
Hanas JS, Hocker JR, Cheng YG, Lerner MR, Brackett DJ, Lightfoot SA, Hanas RJ, Madhusudhan KT, Moreland RJ. cDNA cloning, DNA binding, and evolution of mammalian transcription factor IIIA. Gene 2002; 282:43-52. [PMID: 11814676 DOI: 10.1016/s0378-1119(01)00796-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
cDNA for rat transcription factor IIIA (TFIIIA) was cloned by degenerate PCR and rapid amplification of cDNA ends. This cDNA coded for a protein with nine Cys(2)His(2) zinc fingers and a non-finger C-terminal tail; 63% amino acid (aa) sequence identity was observed with the Xenopus TFIIIA zinc finger region. Recombinant rat protein containing only the nine fingers afforded DNase I protection of the identical nucleotides protected by Xenopus laevis native TFIIIA on the Xenopus 5S RNA gene internal control region. A putative mouse TFIIIA clone was identified in an expressed sequence tag database by sequence similarity to rat TFIIIA. Recombinant nine-finger protein from this clone afforded DNase I protection of the Xenopus 5S rRNA gene like the native frog protein as did a recombinant nine-finger form of a putative human TFIIIA clone. These DNA binding results demonstrate that these clones code for the respective mammalian TFIIIAs. Rodent and human TFIIIAs share about 87% aa sequence identity in their zinc finger regions and have evolved to about the same extent as X. laevis and Xenopus borealis TFIIIAs. A monoclonal antibody against human p53 tumor suppressor bound to rat and mouse TFIIIA but not to human TFIIIA in Western blots. The N-terminal regions of rodent and human TFIIIA do not contain the oocyte-specific initiating Met and accompanying conserved residues found in fish and amphibian TFIIIAs. In their non-finger C-terminal tails, mammalian and amphibian TFIIIAs share a conserved transcription activation domain as well as conserved nuclear localization and nuclear export signals.
Collapse
Affiliation(s)
- Jay S Hanas
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
12
|
Rodgers JS, Hocker JR, Hanas RJ, Nwosu EC, Hanas JS. Mercuric ion inhibition of eukaryotic transcription factor binding to DNA. Biochem Pharmacol 2001; 61:1543-50. [PMID: 11377384 DOI: 10.1016/s0006-2952(01)00629-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury has harmful effects in both rodents and humans. In rodent tissue culture cells exposed to HgCl(2), the metal ions were observed to concentrate in cell nuclei and to associate with chromatin. Thus, transcription factors and other proteins associated with chromatin are possible targets of mercuric ion toxicity. In this study, mercuric ions were found to inhibit the DNA binding activity of the Cys(2)His(2) zinc finger proteins transcription factor IIIA (TFIIIA) and Sp1. These factors are prototypes of the largest eukaryotic protein superfamily. Neither the presence of excess zinc ions nor beta-mercaptoethanol prevented inhibition by mercuric ions. Mercuric ions also inhibited DNA binding by the non-zinc finger protein AP2. Zinc finger-DNA binding was inhibited when both TFIIIA/5S RNA complex and TFIIIA alone were preincubated with concentrations as low as 15 microM mercuric ion. Inhibition occurred in less than 1 min and was not readily reversible. Mercuric ions also inhibited the digestion of DNA by the restriction enzymes BamHI or EcoRI. Inhibition of transcription factors as well as potentially other DNA binding proteins by micromolar concentrations of mercuric ion suggests additional biochemical mechanisms for mercury toxicity in promoting disease via alterations in gene transcription patterns.
Collapse
Affiliation(s)
- J S Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 800 Research Parkway, Room 448, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
13
|
Tanabe A, Oshima K, Osada S, Nishihara T, Imagawa M. Identification of zinc finger proteins bound to a silencer region in the rat glutathione transferase P gene. Biol Pharm Bull 2001; 24:144-50. [PMID: 11217081 DOI: 10.1248/bpb.24.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat glutathione transferase P (GST-P) gene is strongly induced during chemical hepatocarcinogenesis, whereas mRNA of this gene is rarely expressed in normal rat liver. We previously identified a silencer region in the promoter of this gene. This silencer has several DNA binding sites and at least three proteins (Silencer factor A, -B, and -C (SF-A, SF-B, and SF-C)) bind to these sites. We previously cloned and characterized the Nuclear Factor 1 (NF1) family and the CCAAT/enhancer-binding protein (C/EBP) family as SF-A and SF-B, respectively. However, SF-C which binds to GST-P silencer 2 (GPS2) remains to be cloned. By screening using yeast one-hybrid system, several zinc finger proteins were identified as a candidate of SF-C. The gel-mobility shift analyses showed that BTEB2, EZF, LKLF, TFIIIA, TIEG1, and novel zinc finger protein MZFP bound to GPS2 with different affinities. Several proteins of these are known to be transcriptional activators or repressors, suggesting that zinc finger proteins bind to GPS2 and regulate GST-P expression in the rat liver.
Collapse
Affiliation(s)
- A Tanabe
- Laboratoty of Environmental Biochemistry, Graduate School of Pharmaceuftical Sciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
14
|
Hanas JS, Rodgers JS, Bantle JA, Cheng YG. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Mol Pharmacol 1999; 56:982-8. [PMID: 10531404 DOI: 10.1124/mol.56.5.982] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.
Collapse
Affiliation(s)
- J S Hanas
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
15
|
Hanas JS, Koelsch G, Moreland R, Wickham JQ. Differential requirements for basic amino acids in transcription factor IIIA-5S gene interaction. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:256-64. [PMID: 9655916 DOI: 10.1016/s0167-4781(98)00070-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Basic amino acids Arg, Lys, and His in the Cys2His2 zinc fingers of transcription factor IIIA (TFIIIA) potentially have important roles in factor binding to the extended internal control region (ICR) of the 5S ribosomal gene. Conserved and non-conserved basic residues in the N-terminal fingers I, II, III and the more C-terminal fingers V and IX were analyzed by site-directed mutagenesis and DNase I protection in order to assess their individual requirement in the DNA-binding mechanism. In the DNA recognition helix of finger II, the conserved Arg at position 62 (N-terminal side of the first zinc-coordinating histidine) was changed to a Leu or Gln. Both the R62L and R62Q mutations inhibited Xenopus TFIIIA-dependent DNase I footprinting along the entire 5S gene ICR. When His-58 (non-conserved basic residue with DNA-binding potential in the same helical region) was changed to a Gln, the mutated protein was able to protect the ICR from DNase I digestion. Therefore, Arg-62 is individually required for TFIIIA binding over the entire ICR whereas His-58 is not. Fingers V and IX have conserved Arg residues in positions identical to Arg-62 in finger II (Arg-154 in finger V and Arg-271 in finger IX). When these residues were changed to Leu and Ile respectively, TFIIIA-dependent DNase I protection was observed along the entire 5S gene ICR. These results indicate differing DNA-binding mechanisms by the N-terminal fingers versus the C-terminal fingers at the level of individual amino acid-nucleotide interactions. In the N-terminal finger I, the conserved Lys at position 11 outside the recognition helix and a conserved hydrophobic Trp at position 28 within the helix were changed to an Ala and Ser respectively. The K11A change inhibited TFIIIA-dependent DNase I protection to a much greater extent than the W28S change.
Collapse
Affiliation(s)
- J S Hanas
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 940 Stanton Young Blvd., Oklahoma City, OK 73140, USA.
| | | | | | | |
Collapse
|
16
|
Rowland O, Segall J. A hydrophobic segment within the 81-amino-acid domain of TFIIIA from Saccharomyces cerevisiae is essential for its transcription factor activity. Mol Cell Biol 1998; 18:420-32. [PMID: 9418889 PMCID: PMC115877 DOI: 10.1128/mcb.18.1.420] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
Transcription factor IIIA (TFIIIA) binds to the internal control region of the 5S RNA gene as the first step in the in vitro assembly of a TFIIIB-TFIIIC-TFIIIA-DNA transcription complex. An 81-amino-acid domain that is present between zinc fingers 8 and 9 of TFIIIA from Saccharomyces cerevisiae is essential for the transcription factor activity of this protein (C. A. Milne and J. Segall, J. Biol. Chem. 268:11364-11371, 1993). We have monitored the effect of mutations within this domain on the ability of TFIIIA to support transcription of the 5S RNA gene in vitro and to maintain cell viability. TFIIIA with internal deletions that removed residues 282 to 315, 316 to 334, 328 to 341, or 342 to 351 of the 81-amino-acid domain retained activity, whereas TFIIIA with a deletion of the short leucine-rich segment 352NGLNLLLN359 at the carboxyl-terminal end of this domain was devoid of activity. Analysis of the effects of double and quadruple mutations in the region extending from residue 336 to 364 confirmed that hydrophobic residues in this portion of the 81-amino-acid domain, particularly L343, L347, L354, L356, L357, and L358, and to a lesser extent F336 and L337, contributed to the ability of TFIIIA to promote transcription. We propose that these hydrophobic residues play a role in mediating an interaction between TFIIIA and another component of the transcriptional machinery. We also found that TFIIIA remained active if either zinc finger 8 or zinc finger 9 was disrupted by mutation but that TFIIIA containing a disruption of both zinc finger 8 and zinc finger 9 was inactive.
Collapse
Affiliation(s)
- O Rowland
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Ogilvie MK, Hanas JS. Molecular biology of vertebrate transcription factor IIIA: cloning and characterization of TFIIIA from channel catfish oocytes. Gene 1997; 203:103-12. [PMID: 9426240 DOI: 10.1016/s0378-1119(97)00499-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TFIIIA regulates 5S rRNA synthesis and is the prototype of the Cys2His2 superfamily of zinc finger proteins. Because the TFIIIA aa sequence is highly diverged, elucidating species variation in this factor will yield insights into how zinc fingers bind DNA and how this protein regulates RNAPIII transcription. This study reports the identification, cloning and functional divergence of oocyte TFIIIA from the channel catfish. Catfish oocyte TFIIIA was identified by its association with 5S rRNA in immature ovarian tissue, its molecular weight, and by peptide sequence similarities with Xenopus TFIIIA. The cDNA for this factor was cloned by degenerate PCR and found to code for nine Cys2His2 zinc fingers and a C-terminal tail; only about 40% aa sequence identity was observed with Xenopus TFIIIA. The N-terminal region of catfish TFIIIA contains the oocyte-specific initiating Met amino acid and accompanying conserved residues found in amphibian TFIIIAs but not found in yeast or human TFIIIAs. Catfish TFIIIA lacks the conserved transcription activation domain in its C-terminal tail found in amphibian and human TFIIIA. Catfish TFIIIA was able to bind the catfish and Xenopus 5S RNA genes but did not efficiently promote 5S gene transcription in a rodent RNAPIII transcription system, as did Xenopus TFIIIA. Amino acid conservation in catfish, amphibian, and human TFIIIA zinc fingers allows deduction of possible finger recognition helix alignments along the conserved 5S gene ICRs. For the three N-terminal fingers, this leads to deduction of a compact polypeptide structure with conserved basic residues contacting conserved G nts in the 5S gene C box.
Collapse
Affiliation(s)
- M K Ogilvie
- University of Oklahoma College of Medicine, Department of Biochemistry and Molecular Biology, Oklahoma City 73104, USA
| | | |
Collapse
|
18
|
Becker KG, Lee IJ, Nagle JW, Canning RD, Gado AM, Torres R, Polymeropoulos MH, Massa PT, Biddison WE, Drew PD. C2H2-171: a novel human cDNA representing a developmentally regulated POZ domain/zinc finger protein preferentially expressed in brain. Int J Dev Neurosci 1997; 15:891-9. [PMID: 9568537 DOI: 10.1016/s0736-5748(97)00034-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe a novel human zinc finger cNDA. C2H2-171. This cDNA represents an mRNA which encodes a protein of 484 amino acids and a calculated molecular weight of 54 kD. Four zinc finger-like domains are found in the C-terminal end of the protein. At the N-terminus, C2H2-171 contains a POZ/tramtrack-like domain similar to that found in the tumor associated zinc finger proteins LAZ-3/BCL-6 and PLZ-F, as well as in non-zinc finger proteins. C2H2-171 RNA is preferentially expressed in the brain, and increases during the course of murine development, with maximal expression in the adult. C2H2-171 RNA is differentially expressed in brain regions, with the highest level of expression in the cerebellum. C2H2-171 RNA was expressed at high levels in primary cerebellar granule cell neurons compared to astrocytes. The gene encoding C2H2-171 is highly conserved in vertebrates, and maps to the terminus of human chromosome 1 (1q44-ter). This chromosomal location is associated with a number of cytogenetic aberrations including those involving brain developmental anomalies and tumorigenesis. These data suggest that C2H2-171 may play an important role in vertebrate brain development and function.
Collapse
Affiliation(s)
- K G Becker
- Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kehres DG, Subramanyan GS, Hung VS, Rogers GW, Setzer DR. Energetically unfavorable interactions among the zinc fingers of transcription factor IIIA when bound to the 5 S rRNA gene. J Biol Chem 1997; 272:20152-61. [PMID: 9242690 DOI: 10.1074/jbc.272.32.20152] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Xenopus transcription factor IIIA (TFIIIA) binds to over 50 base pairs in the internal control region of the 5 S rRNA gene, yet the binding energy for this interaction (DeltaG0 = -12.8 kcal/mol) is no greater than that exhibited by many proteins that occupy much smaller DNA targets. Despite considerable study, the distribution of the DNA binding energy among the various zinc fingers of TFIIIA remains poorly understood. By analyzing TFIIIA mutants with disruptions of individual zinc fingers, we have previously shown that each finger contributes favorably to binding (Del Rio, S., Menezes, S. R., and Setzer, D. R. (1993) J. Mol. Biol. 233, 567-579). Those results also suggested, however, that simultaneous binding by all nine zinc fingers of TFIIIA may involve a substantial energetic cost. Using complementary N- and C-terminal fragments and full-length proteins containing pairs of disrupted fingers, we now show that energetic interference indeed occurs between zinc fingers when TFIIIA binds to the 5 S rRNA gene and that the greatest interference occurs between fingers at opposite ends of the protein in the TFIIIA.5 S rRNA gene complex. Some, but not all, of the thermodynamically unfavorable strain in the TFIIIA.5 S rRNA gene complex may be derived from bending of the DNA that is necessary to accommodate simultaneous binding by all nine zinc fingers of TFIIIA. The energetics of DNA binding by TFIIIA thus emerges as a compromise between individual favorable contacts of importance along the length of the internal control region and long range strain or distortion in the protein, the 5 S rRNA gene, or both that is necessary to accommodate the various local interactions.
Collapse
Affiliation(s)
- D G Kehres
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
20
|
Oettel S, Härtel F, Kober I, Iben S, Seifart KH. Human transcription factors IIIC2 , IIIC1 and a novel component IIIC0 fulfil different aspects of DNA binding to various pol III genes. Nucleic Acids Res 1997; 25:2440-7. [PMID: 9171097 PMCID: PMC146769 DOI: 10.1093/nar/25.12.2440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human transcription factor IIIC2 interacts with the TFIIIA-5S DNA complex and forms a ternary TFIIIA/IIIC2-5S DNA complex. Formation of this complex does not preclude simultaneous binding of TFIIIC2to the B-box sequence of a second template. This suggests that the domain(s) or subunit(s) required for indirect recognition of the 5S promoter by TFIIIC2 are different from those necessary for direct binding of TFIIIC2 to B-box-containing pol III promoters. Whereas TFIIIC2 is only required for transcription of the 'classical' pol III genes, TFIIIC1 is generally required for transcription of all pol III genes, including that of the U6 gene. The activity of TFIIIC1 strongly enhances specific binding of basal pol III factors TFIIIA, TFIIIC2 and the PSE binding protein (PBP) to their cognate promoter elements and it acts independently of the corresponding termination regions. Moreover, we characterize an activity, TFIIIC0, purified from phosphocellulose fraction C, which shows strong DNase I protection of the termination region of several pol III genes and which is functionally and chromatographically distinct from TFIIIC1 and TFIIIC2.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line
- Cell Nucleus/metabolism
- Chromatography, Ion Exchange
- Cytoplasm/metabolism
- DNA Footprinting
- DNA Polymerase III/biosynthesis
- DNA Polymerase III/genetics
- DNA, Ribosomal/metabolism
- Deoxyribonuclease I
- Genes, Synthetic
- Humans
- Mice
- Promoter Regions, Genetic
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- Templates, Genetic
- Terminator Regions, Genetic
- Transcription Factor TFIIA
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription Factors, TFIII
- Transcription, Genetic
Collapse
Affiliation(s)
- S Oettel
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Rowland O, Segall J. Interaction of wild-type and truncated forms of transcription factor IIIA from Saccharomyces cerevisiae with the 5 S RNA gene. J Biol Chem 1996; 271:12103-10. [PMID: 8662611 DOI: 10.1074/jbc.271.20.12103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription factor (TF) IIIA, which contains nine zinc finger motifs, binds to the internal control region of the 5S RNA gene as the first step in the assembly of a multifactor complex that promotes accurate initiation of transcription by RNA polymerase III. We have monitored the interaction of wild-type and truncated forms of yeast TFIIIA with the 5 S RNA gene. The DNase I footprints obtained with full-length TFIIIA and a polypeptide containing the amino-terminal five zinc fingers (TF5) were indistinguishable, extending from nucleotides +64 to +99 of the 5 S RNA gene. This suggests that fingers 6 through 9 of yeast TFIIIA are not in tight association with DNA. The DNase I footprint obtained with a polypeptide containing the amino-terminal four zinc fingers (TF4) was 14 base pairs shorter than that of TF5, extending from nucleotides +78 to +99 on the nontranscribed strand and from nucleotides +79 to +98 on the transcribed strand of the 5 S RNA gene. Protection provided by a polypeptide containing the first three zinc fingers (TF3) was similar to that provided by TF4, with the exception that protection on the nontranscribed strand ended at nucleotide +80, rather than nucleotide +78. Methylation protection analysis indicated that finger 5 makes major groove contacts with guanines +73 and +74. The amino-terminal four zinc fingers make contacts that span the internal control region, which extends from nucleotides +81 to +94 of the 5 S RNA gene, with finger 4 appearing to contact guanine +82. Measurements of the apparent Kd values of the TFIIIA.DNA complexes indicated that the amino-terminal three zinc fingers of TFIIIA have a binding energy that is similar to that of the full-length protein.
Collapse
Affiliation(s)
- O Rowland
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|