1
|
Tunjić-Cvitanić M, García-Souto D, Pasantes JJ, Šatović-Vukšić E. Dominance of transposable element-related satDNAs results in great complexity of "satDNA library" and invokes the extension towards "repetitive DNA library". MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:236-251. [PMID: 38827134 PMCID: PMC11136912 DOI: 10.1007/s42995-024-00218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 06/04/2024]
Abstract
Research on bivalves is fast-growing, including genome-wide analyses and genome sequencing. Several characteristics qualify oysters as a valuable model to explore repetitive DNA sequences and their genome organization. Here we characterize the satellitomes of five species in the family Ostreidae (Crassostrea angulata, C. virginica, C. hongkongensis, C. ariakensis, Ostrea edulis), revealing a substantial number of satellite DNAs (satDNAs) per genome (ranging between 33 and 61) and peculiarities in the composition of their satellitomes. Numerous satDNAs were either associated to or derived from transposable elements, displaying a scarcity of transposable element-unrelated satDNAs in these genomes. Due to the non-conventional satellitome constitution and dominance of Helitron-associated satDNAs, comparative satellitomics demanded more in-depth analyses than standardly employed. Comparative analyses (including C. gigas, the first bivalve species with a defined satellitome) revealed that 13 satDNAs occur in all six oyster genomes, with Cg170/HindIII satDNA being the most abundant in all of them. Evaluating the "satDNA library model" highlighted the necessity to adjust this term when studying tandem repeat evolution in organisms with such satellitomes. When repetitive sequences with potential variation in the organizational form and repeat-type affiliation are examined across related species, the introduction of the terms "TE library" and "repetitive DNA library" becomes essential. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00218-0.
Collapse
Affiliation(s)
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Dpto de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Tunjić-Cvitanić M, Pasantes JJ, García-Souto D, Cvitanić T, Plohl M, Šatović-Vukšić E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int J Mol Sci 2021; 22:ijms22136798. [PMID: 34202698 PMCID: PMC8268682 DOI: 10.3390/ijms22136798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.
Collapse
Affiliation(s)
- Monika Tunjić-Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, 36310 Vigo, Spain;
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tonči Cvitanić
- Rimac Automobili d.o.o., Ljubljanska ulica 7, 10431 Sveta Nedelja, Croatia;
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
- Correspondence:
| |
Collapse
|
3
|
Vojvoda Zeljko T, Pavlek M, Meštrović N, Plohl M. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements. Sci Rep 2020; 10:15107. [PMID: 32934255 PMCID: PMC7492417 DOI: 10.1038/s41598-020-71886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.
Collapse
Affiliation(s)
- Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Martina Pavlek
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
4
|
Tunjić Cvitanić M, Vojvoda Zeljko T, Pasantes JJ, García-Souto D, Gržan T, Despot-Slade E, Plohl M, Šatović E. Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2020; 11:genes11060695. [PMID: 32599860 PMCID: PMC7348941 DOI: 10.3390/genes11060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.
Collapse
Affiliation(s)
- Monika Tunjić Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Juan J. Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Praza do Obradoiro, 0, 15705 Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Tena Gržan
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| |
Collapse
|
5
|
Biscotti MA, Barucca M, Canapa A. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS One 2018; 13:e0194502. [PMID: 29590185 PMCID: PMC5874043 DOI: 10.1371/journal.pone.0194502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
Abstract
Repetitive DNA represents the major component of the genome in both plant and animal species. It includes transposable elements (TEs), which are dispersed throughout the genome, and satellite DNAs (satDNAs), which are tandemly organized in long arrays. The study of the structure and organization of repetitive DNA contributes to our understanding of genome architecture and the mechanisms leading to its evolution. Molluscs represent one of the largest groups of invertebrates and include organisms with a wide variety of morphologies and lifestyles. To increase our knowledge of bivalves at the genome level, we analysed the Antarctic scallop Adamussium colbecki. The screening of the genomic library evidenced the presence of two novel satDNA elements and the CvA transposon. The interspecific investigation performed in this study demonstrated that one of the two satDNAs isolated in A. colbecki is widespread in polar molluscan species, indicating a possible link between repetitive DNA and abiotic factors. Moreover, the transcriptional activity of CvA and its presence in long-diverged bivalves suggests a possible role for this ancient element in shaping the genome architecture of this clade.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Šatović E, Vojvoda Zeljko T, Plohl M. Characteristics and evolution of satellite DNA sequences in bivalve mollusks. THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1443164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- E. Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - T. Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - M. Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Hu L, Jiang L, Bi K, Liao H, Yang Z, Huang X, Bao Z. Genomic in situ hybridization in interspecific hybrids of scallops (Bivalvia, Pectinidae) and localization of the satellite DNA Cf303, and the vertebrate telomeric sequences (TTAGGG)n on chromosomes of scallop Chlamys farreri (Jones & Preston, 1904). COMPARATIVE CYTOGENETICS 2018; 12:83-95. [PMID: 29675138 PMCID: PMC5904364 DOI: 10.3897/compcytogen.v12i1.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.
Collapse
Affiliation(s)
- Liping Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Yantai Fisheries Research Institute, Yantai 264003, China
| | - Liming Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA
| | - Huan Liao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Satović E, Vojvoda Zeljko T, Luchetti A, Mantovani B, Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics 2016; 17:997. [PMID: 27919246 PMCID: PMC5139131 DOI: 10.1186/s12864-016-3347-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/25/2016] [Indexed: 11/14/2022] Open
Abstract
Background Satellite DNA (satDNA) sequences are typically arranged as arrays of tandemly repeated monomers. Due to the similarity among monomers, their organizational pattern and abundance, satDNAs are hardly accessible to structural and functional studies and still represent the most obscure genome component. Although many satDNA arrays of diverse length and even single monomers exist in the genome, surprisingly little is known about transition from satDNAs to other sequences. Studying satDNA monomers at junctions and identifying DNA sequences adjacent to them can help to understand the processes that (re)distribute satDNAs and significance that evolution of these sequence elements might have in creating the genomic landscape. Results We explored sets of randomly selected satDNA-harboring genomic fragments in four mollusc species to examine satDNA transition sites, and the nature of adjacent sequences. All examined junctions are characterized by abrupt transitions from satDNAs to other sequences. Among them, junctions of only one examined satDNA mapped non-randomly (within the palindrome), indicating that well-defined sequence feature is not a necessary prerequisite in the junction formation. In the studied sample, satDNA flanking sequences can be roughly classified into two groups. The first group is composed of anonymous DNA sequences which occasionally include short segments of transposable elements (TEs) as well as segments of other satDNA sequences. In the second group, satDNA repeats and the array flanking sequences are identified as parts of TEs of the Helitron superfamily. There, some array flanking regions hold fragmented satDNA monomers alternating with anonymous sequences of comparable length as missing monomer parts, suggesting a process of sequence reorganization by a mechanism able to excise short monomer parts and replace them with unrelated sequences. Conclusions The observed architecture of satDNA transition sites can be explained as a result of insertion and/or recombination events involving short arrays of satDNA monomers and TEs, in combination with hypothetical transposition-related ability of satDNA monomers to be shuffled independently in the genome. We conclude that satDNAs and TEs can form a complex network of sequences which essentially share the propagation mechanisms and in synergy shape the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3347-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Satović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
9
|
Luchetti A, Šatović E, Mantovani B, Plohl M. RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes. Mol Genet Genomics 2016; 291:1419-29. [PMID: 26987730 DOI: 10.1007/s00438-016-1194-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 01/28/2023]
Abstract
Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy.
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Biscotti MA, Canapa A, Capriglione T, Forconi M, Odierna G, Olmo E, Petraccioli A, Barucca M. Novel repeated DNAs in the antarctic polyplacophoran Nuttallochiton mirandus (Thiele, 1906). Cytogenet Genome Res 2015; 144:212-9. [PMID: 25592394 DOI: 10.1159/000370054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Within the scope of a project on the characterization of satellite DNAs in polar mollusks, the Antarctic chiton Nuttallochitonmirandus (Thiele, 1906) was analyzed. Two novel families of tandemly repeated DNAs, namely NmH and NmP, are described in their structure and chromosomal localization, and, furthermore, their presence was analyzed in related species. Data reported here display a particular variability in the structural organization of DNA satellites within this species. Processes driving satellite evolution, which are likely responsible for the intriguing variability of the identified satellite DNAs, are discussed.
Collapse
Affiliation(s)
- Maria A Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Plohl M, Petrović V, Luchetti A, Ricci A, Satović E, Passamonti M, Mantovani B. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity (Edinb) 2009; 104:543-51. [PMID: 19844270 DOI: 10.1038/hdy.2009.141] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ubiquity of satellite DNA (satDNA) sequences has raised much controversy over the abundance of divergent monomer variants and the long-time nucleotide sequence stability observed for many satDNA families. In this work, we describe the satDNA BIV160, characterized in nine species of the three main bivalve clades (Protobranchia, Pteriomorphia and Heteroconchia). BIV160 monomers are similar in repeat size and nucleotide sequence to satDNAs described earlier in oysters and in the clam Donax trunculus. The broad distribution of BIV160 satDNA indicates that similar variants existed in the ancestral bivalve species that lived about 540 million years ago; this makes BIV160 the most ancient satDNA described so far. In the species examined, monomer variants are distributed in quite a complex pattern. This pattern includes (i) species characterized by a specific group of variants, (ii) species that share distinct group(s) of variants and (iii) species with both specific and shared types. The evolutionary scenario suggested by these data reconciles sequence uniformity in homogenization-maintained satDNA arrays with the genomic richness of divergent monomer variants formed by diversification of the same ancestral satDNA sequence. Diversified repeats can continue to evolve in a non-concerted manner and behave as independent amplification-contraction units in the framework of a 'library of satDNA variants' representing a permanent source of monomers that can be amplified into novel homogeneous satDNA arrays. On the whole, diversification of satDNA monomers and copy number fluctuations provide a highly dynamic genomic environment able to form and displace satDNA sequence variants rapidly in evolution.
Collapse
Affiliation(s)
- M Plohl
- Department of Molecular Biology, Ruder Bosković Institute, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cioffi MB, Martins C, Bertollo LAC. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet 2009; 10:34. [PMID: 19583858 PMCID: PMC2713275 DOI: 10.1186/1471-2156-10-34] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/07/2009] [Indexed: 11/17/2022] Open
Abstract
Background Seven karyomorphs of the fish, Hoplias malabaricus (A-G) were previously included in two major groups, Group I (A, B, C, D) and Group II (E, F, G), based on their similar karyotype structure. In this paper, karyomorphs from Group I were analyzed by means of distinct chromosomal markers, including silver-stained nucleolar organizer regions (Ag-NORs) and chromosomal location of repetitive sequences (18S and 5S rDNA, and satellite 5SHindIII-DNA), through fluorescence in situ hybridization (FISH), in order to evaluate the evolutionary relationships among them. Results The results showed that several chromosomal markers had conserved location in the four karyomorphs. In addition, some other markers were only conserved in corresponding chromosomes of karyomorphs A-B and C-D. These data therefore reinforced and confirmed the proposed grouping of karyomorphs A-D in Group I and highlight a closer relationship between karyomorphs A-B and C-D. Moreover, the mapping pattern of some markers on some autosomes and on the chromosomes of the XY and X1X2Y systems provided new evidence concerning the possible origin of the sex chromosomes. Conclusion The in situ investigation of repetitive DNA sequences adds new informative characters useful in comparative genomics at chromosomal level and provides insights into the evolutionary relationships among Hoplias malabaricus karyomorphs.
Collapse
Affiliation(s)
- Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil.
| | | | | |
Collapse
|
13
|
Bouilly K, Chaves R, Leitão A, Benabdelmouna A, Guedes-Pinto H. Chromosomal organization of simple sequence repeats in the Pacific oyster (Crassostrea gigas): (GGAT)(4), (GT)(7) and (TA)(10) chromosome patterns. J Genet 2008; 87:119-25. [PMID: 18776639 DOI: 10.1007/s12041-008-0018-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.
Collapse
Affiliation(s)
- K Bouilly
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, (IBB/CGB-UTAD), 5001-801 Vila Real, Portugal.
| | | | | | | | | |
Collapse
|
14
|
Biscotti MA, Barucca M, Capriglione T, Odierna G, Olmo E, Canapa A. Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus. Chromosome Res 2008; 16:907-16. [PMID: 18679814 DOI: 10.1007/s10577-008-1248-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/11/2023]
Abstract
Two highly repeated DNAs, designated NmE1/NmE2 and NmE5, were identified by EcoRV digestion in the chiton Nuttallochiton mirandus (Mollusca: Polyplacophora). The comparison of the sequences obtained showed high similarity in 5' and 3' regions and the NmE5 sequence displayed an inserted sequence that might arise from a transposable element. Southern blotting analyses suggested a tandem organization of both satellite DNA families identified. Moreover, dot blot analyses, performed on several molluscan species, revealed a different degree of conservation of the repeated DNAs. Fluorescence in-situ hybridizations (FISH) on metaphase chromosomes showed that both satellite DNAs are located at centromeric regions.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Istituto di Biologia e Genetica, Facoltà di Scienze, Università Politecnica delle Marche, via Brecce Bianche, I-60131, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Zhang L, Chen C, Cheng J, Wang S, Hu X, Hu J, Bao Z. Initial analysis of tandemly repetitive sequences in the genome of Zhikong scallop (Chlamys farreri Jones et Preston). DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2007; 19:195-205. [PMID: 17852361 DOI: 10.1080/10425170701462316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tandemly repetitive sequences are widespread in all eukaryotic genomes, but data on tandem repeats are limited in Zhikong scallop (Chlamys farreri). In the present study, paired-end sequencing of 2016 individual fosmid clones resulted in 3646 sequences. A total of 2,286,986 bp of genomic sequences were generated, representing approximately 1.84 per thousand of the Zhikong scallop genome. Using tandem repeats finder (TRF) software, a total of 2500 tandem repeats were found, including 313 satellites, 1816 minisatellites and 371 microsatellites. The cumulative length of tandem repeats was 552,558 bp, accounting for 24.16% of total length. Specifically, the length of microsatellites, minisatellites and satellites was 9425, 336,001 and 207,132 bp, accounting for 1.71, 60.81 and 37.49% of the length of tandem repeats, and 0.41, 14.69 and 9.06% of total length, respectively. The detailed information on the characteristic of all repeat units was also represented, which will provide a useful resource for physical mapping and better utilization of the existing genomic information in Zhikong scallop.
Collapse
Affiliation(s)
- Lingling Zhang
- Division of Life Science and Technology, Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Biscotti MA, Canapa A, Olmo E, Barucca M, Teo CH, Schwarzacher T, Dennerlein S, Richter R, Heslop-Harrison JSP. Repetitive DNA, molecular cytogenetics and genome organization in the King scallop (Pecten maximus). Gene 2007; 406:91-8. [PMID: 17706376 DOI: 10.1016/j.gene.2007.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/15/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
We studied the structure, organization and relationship of repetitive DNA sequences in the genome of the scallop, Pecten maximus, a bivalve that is important both commercially and in marine ecology. Recombinant DNA libraries were constructed after partial digestion of genomic DNA from scallop with PstI and ApaI restriction enzymes. Clones containing repetitive DNA were selected by hybridisation to labelled DNA from scallop, oyster and mussel; colonies showing strong hybridisation only to scallop were selected for analysis and sequencing. Six non-homologous tandemly repeated sequences were identified in the sequences, and Southern hybridisation with all repeat families to genomic DNA digests showed characteristic ladders of hybridised bands. Three families had monomer lengths around 40 bp while three had repeats characteristic of the length wrapping around one (170 bp), or two (326 bp) nucleosomes. In situ hybridisation to interphase nuclei showed each family had characteristic numbers of clusters indicating contrasting arrangements. Two of the repeats had unusual repetitions of bases within their sequence, which may relate to the nature of microsatellites reported in bivalves. The study of these rapidly evolving sequences is valuable to understand an important source of genomic diversity, has the potential to provide useful markers for population studies and gives a route to identify mechanisms of DNA sequence evolution.
Collapse
|
17
|
Kourtidis A, Drosopoulou E, Pantzartzi CN, Chintiroglou CC, Scouras ZG. Three new satellite sequences and a mobile element found inside HSP70 introns of the Mediterranean mussel (Mytilus galloprovincialis). Genome 2007; 49:1451-8. [PMID: 17426760 DOI: 10.1139/g06-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of 3 new repetitive sequences from the bivalve mollusc Mytilus galloprovincialis, designated Mg1, Mg2, and Mg3, with monomer lengths of 169, 260, and 70 bp, respectively. The 3 repeats together constitute approximately 7.8% of the M. galloprovincialis genome and were found, together with ApaI-type 2 repeats, inside the introns of 2 genes of the HSP70 family, hsc70 and hsc71. Both the monomer length and the genomic content of the repeats indicate satellite sequences. The Mg1 repetitive region and its flanking sequences exhibit significant homology to CvE, a member of the Pearl family of mobile elements found in the eastern oyster (Crassostrea virginica). Thus, the whole homologous region is designated MgE, the first putative transposable element characterized in M. galloprovincialis. The ApaI, Mg2, and Mg3 repeats are continuously arranged inside the introns of both the hsc70 and hsc71 genes. The presence of perfect inverted repeats flanking the ApaI-Mg2-Mg3 repetitive region, as well as a sequence analysis of the repeats, indicates a transposition-like insertion of this region. The genes of the HSP70 family are highly conserved, and the presence of repetitive DNA or of mobile elements inside their introns is reported here for the first time.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Genetics, Development, and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
18
|
Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 2006; 127:133-41. [PMID: 16850219 DOI: 10.1007/s10709-005-2674-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/31/2005] [Indexed: 10/24/2022]
Abstract
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.
Collapse
Affiliation(s)
- Cesar Martins
- Departamento de Morfologia, UNESP-Universidade Estadual Paulista, Instituto de Biociências, CEP 18618-000, Botucatu, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Wang Y, Xu Z, Pierce JC, Guo X. Characterization of eastern oyster (Crassostrea virginica Gmelin) chromosomes by fluorescence in situ hybridization with bacteriophage P1 clones. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:207-14. [PMID: 15933900 DOI: 10.1007/s10126-004-0051-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 07/17/2004] [Indexed: 05/02/2023]
Abstract
Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.
Collapse
Affiliation(s)
- Yongping Wang
- Haskin Shellfish Research Laboratory, Institute of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | | | | | | |
Collapse
|
20
|
López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, Ruiz-Rejón M. The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 2004; 339:181-8. [PMID: 15363858 DOI: 10.1016/j.gene.2004.06.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/21/2004] [Accepted: 06/29/2004] [Indexed: 11/17/2022]
Abstract
We have analysed a centromeric satellite DNA family that is conserved in several commercial and non-commercial oyster species (Ostrea edulis, O. stentina, Crassostrea angulata, C. gigas, C. gasar, C. ariakensis, C. virginica and C. sikamea). This satellite DNA family is composed of AT-rich repeat sequences of 166+/-2 bp and presents a 9-bp motif similar to the mammalian CENP-B box. The homology of oyster HindIII satellite DNA with satellite DNAs from other bivalves and its relation to a part of a mobile element suggest the existence of an ancient transposable element as a generating unit of satellite DNA in bivalve molluscs. Taking advantage of its degree of conservation in oyster species, we have used this element as a taxonomic marker. This marker clearly supports a high degree of differentiation between O. edulis and O. stentina, and, conversely, upholds the contention that C. gigas and C. angulata are the same species. Finally, we have used HindIII satellite DNA as a phylogenetic marker between these species, revealing two clades, one formed by Asiatic species (C. angulata, C. gigas and C. ariakensis) and another by the European, American and African species (O. edulis, C. virginica and C. gasar, respectively).
Collapse
Affiliation(s)
- Inmaculada López-Flores
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Wang Y, Xu Z, Guo X. Differences in the rDNA-bearing chromosome divide the Asian-Pacific and Atlantic species of Crassostrea (Bivalvia, Mollusca). THE BIOLOGICAL BULLETIN 2004; 206:46-54. [PMID: 14977729 DOI: 10.2307/1543197] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Karyotype and chromosomal location of the major ribosomal RNA genes (rDNA) were studied using fluorescence in situ hybridization (FISH) in five species of CRASSOSTREA: three Asian-Pacific species (C. gigas, C. plicatula, and C. ariakensis) and two Atlantic species (C. virginica and C. rhizophorae). FISH probes were made by PCR amplification of the intergenic transcribed spacer between the 18S and 5.8S rRNA genes, and labeled with digoxigenin-11-dUTP. All five species had a haploid number of 10 chromosomes. The Atlantic species had 1-2 submetacentric chromosomes, while the three Pacific species had none. FISH with metaphase chromosomes detected a single telomeric locus for rDNA in all five species without any variation. In all three Pacific species, rDNA was located on the long arm of Chromosome 10 (10q)--the smallest chromosome. In the two Atlantic species, rDNA was located on the short arm of Chromosome 2 (2p)--the second longest chromosome. A review of other studies reveals the same distribution of NOR sites (putative rDNA loci) in three other species: on 10q in C. sikamea and C. angulata from the Pacific Ocean and on 2p in C. gasar from the western Atlantic. All data support the conclusion that differences in size and shape of the rDNA-bearing chromosome represent a major divide between Asian-Pacific and Atlantic species of CRASSOSTREA: This finding suggests that chromosomal divergence can occur under seemingly conserved karyotypes and may play a role in reproductive isolation and speciation.
Collapse
Affiliation(s)
- Yongping Wang
- Haskin Shellfish Research Laboratory, Institute of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, New Jersey 08349, USA
| | | | | |
Collapse
|
22
|
Martínez-Lage A, Rodríguez F, González-Tizón A, Prats E, Cornudella L, Méndez J. Comparative analysis of different satellite DNAs in four Mytilus species. Genome 2002; 45:922-9. [PMID: 12416625 DOI: 10.1139/g02-056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of three satellite DNAs in four species of mussel: Mytilus edulis, Mytilus galloprovincialis, Mytilus trossulus, and Mytilus californianus. The monomers of the Apa I satellite DNAs were 173, 161, and 166 bp long. These satellite monomers were used to construct phylogenetic trees to infer relationships among these species. The topologies obtained clearly indicate that M. californianus is the most divergent species with respect to the other three. Furthermore, localization of satellite DNAs on metaphase chromosomes was performed using fluorescent in situ hybridization (FISH). Fluorescent signals revealed a different organization and distribution of these three satellite DNAs.
Collapse
Affiliation(s)
- A Martínez-Lage
- Dept. Biología Celular y Molecular, Universidade de Coruña, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
23
|
González-Tizón AM, Martínez-Lage A, Rego I, Ausió J, Méndez J. DNA content, karyotypes, and chromosomal location of 18S-5.8S-28S ribosomal loci in some species of bivalve molluscs from the Pacific Canadian coast. Genome 2000; 43:1065-72. [PMID: 11195339 DOI: 10.1139/g00-089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA content of 10 species of bivalve molluscs from British Columbia coast was determined by image analysis, and the karyotypes of the horse clam Tressus capax, the bent-nose macoma Macoma nasuta, and the nuttall's mahogany clam Nuttallia nuttallii are described here for the first time. We also have analyzed the location of rDNA loci using a 28S-5.8S-18S probe in four of these species: Mytilus californianus, M. trossulus, Macoma nasuta and N. nuttallii. Results obtained report new data about cytogenetic characteristics of bivalve molluscs.
Collapse
Affiliation(s)
- A M González-Tizón
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | |
Collapse
|
24
|
Canapa A, Barucca M, Cerioni PN, Olmo E. A satellite DNA containing CENP-B box-like motifs is present in the antarctic scallop Adamussium colbecki. Gene 2000; 247:175-80. [PMID: 10773457 DOI: 10.1016/s0378-1119(00)00101-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The DNA of the Antarctic scallop Adamussium colbecki was found to contain a highly repeated sequence identifiable upon restriction with endonuclease BglII. The monomeric unit - denominated pACS (about 170bp long) - was cloned. Southern blot hybridization yielded a ladder-like banding pattern, indicating that the repeated elements are tandemly arranged in the genome and therefore represent a sequence of satellite DNA. Sequence analysis of five different clones revealed the presence of various subfamilies, some of which showed a high degree of divergence. In each clone, regions homologous to the mammalian CENP-B box were observed. A region homologous to the CDEIII centromeric sequence of yeast was also found in one of the clones. These observations suggest a relationship of the pACS family to the centromeric area in A. colbecki.
Collapse
Affiliation(s)
- A Canapa
- Istituto di Biologia e Genetica, Facoltà di Scienze, Università degli Studi di Ancona, via Brecce Bianche, I-60131, Ancona, Italy.
| | | | | | | |
Collapse
|
25
|
Chromosomalin situ hybridization ofCyprinus carpio genomic DNA repetitive sequence CR1. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/bf02885930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wu WL, Wang JP, Tseng MC, Chiang TY. Cloning and genetic variability of a HindIII repetitive DNA in Acrossocheilus paradoxus (Cyprinidae). Genome 1999; 42:780-8. [PMID: 10464793 DOI: 10.1139/g99-019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty clones of a highly repetitive HindIII fragment of DNA from seven populations of Acrossocheilus paradoxus (Cyprinidae) were isolated and sequenced. The fragment represents a tandemly repeated sequence, with a monomeric unit of 270 bp, amounting to 0.08-0.10% of the fish genome. Higher units of this monomer appear as a ladder in Southern blots. The HindIII satellite DNA family is conserved in three genera of the Cyprinidae. Variation in nucleotide sequences of this repetitive fragment, which is A+T-rich, is distributed both within individuals and among populations. High overall nucleotide divergence (dij = 0.056 +/- 0.001) was detected among clones of the HindIII satellite DNAs of Acrossocheilus paradoxus. Based on the molecular clock hypothesis, the maximum evolutionary rate was estimated to be 5.3 x 10(-7) substitutions per site per year. Lineage sorting may have contributed to the genetic heterogeneity within individuals and populations. Cladistic analyses indicated a closer phylogeographic relationship between populations of the central and south regions in Taiwan.
Collapse
Affiliation(s)
- W L Wu
- Department of Biology, Cheng-Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
27
|
Insua A, Méndez J. Physical mapping and activity of ribosomal RNA genes in mussel Mytilus galloprovincialis. Hereditas 1998; 128:189-94. [PMID: 9760868 DOI: 10.1111/j.1601-5223.1998.00189.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In bivalve molluscs, NOR analysis was carried out by silver staining, and extensive intra- and interindividual differences in the apparent number of NORs were reported. In this work, we determine the physical mapping of 18S and 28S ribosomal genes of the mussel M. galloprovincialis by fluorescence in situ hybridization (FISH). We also apply silver staining to the same individuals in order to determine if structural changes are involved in the heteromorphism detected by this technique. Our results show that rDNA loci map on the telomeric region of the long arm of two submetacentric-subtelocentric chromosome pairs. In addition to variations in NOR expression, we found some cases of structural variations that affect the number of rDNA loci between individuals and the location of the rDNA locus between the cells of the individual. We suggest that FISH should be applied to other bivalves to assess the variation of rDNA loci and undertake more accurate interspecific comparisons.
Collapse
Affiliation(s)
- A Insua
- Departamento de Biología Celular y Molecular, Universidad de A Coruña, Spain
| | | |
Collapse
|
28
|
Insua A, López-Piñón MJ, Méndez J. Characterization of Aequipecten opercularis (Bivalvia: Pectinidae) chromosomes by different staining techniques and fluorescent in situ hybridization. Genes Genet Syst 1998; 73:193-200. [PMID: 9880917 DOI: 10.1266/ggs.73.193] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The chromosomes of the queen scallop Aequipecten opercularis were studied using conventional Giemsa staining, chromosome measurements, C-banding, silver staining, and fluorescent in situ hybridization (FISH) with 18S-28S rDNA and 5S rDNA probes. The karyotype (2n = 26) consists of large metacentric (pairs 1 and 2), telocentric (pairs 3, 4, 5, 6, 7, 8, and 9), and small metacentric chromosomes (pairs 10, 11, 12, and 13). The C-bands observed can be described as major and minor C-bands which are differentiated according to the intensity of the fluorescence and the frequency of the detection. Major C-bands were found on the long arm of the chromosome pairs 6, 7, 8, and 9 in an intercalary or subterminal position. Minor C-bands were located in the centromeric region in all chromosomes of the complement and also on one arm of pairs 12 and 13 in a terminal position. Silver spots were detected on the telomere of the long arms of one or two chromosomes of pair 7 in every case, although in two individuals up to four additional silver spots were detected. These were located on pairs 8 and 9 in the same position as the C-bands. 18S-28S ribosomal genes were found by FISH on the long arm of chromosome pair 7.5S ribosomal genes were located subterminally on one arm of metacentric pair 1, but two sites were differentiated in the case of elongated chromosomes. The results obtained allow for the identification of at least six different chromosome pairs in A. opercularis and contribute to the construction of an idiogram that is suitable for gene mapping and establishing accurate interspecific comparisons in scallops.
Collapse
Affiliation(s)
- A Insua
- Departamento de Biología Cellular y Molecular, Universidade da Coruña, A Zapateira, Spain
| | | | | |
Collapse
|
29
|
Padhi BK, Ghosh SK, Mandal RK. Characterization of MboI satellites in Cirrhina mrigala and Clarias batrachus (Pisces). Genome 1998; 41:34-9. [PMID: 9549057 DOI: 10.1139/g97-096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned and characterized two highly reiterated, tandemly repeated, and A+T rich MboI DNA fragments, one in Cirrhina mrigala (Cyprinidae), with a monomer size of 266 bp, and one in Clarias batrachus (Clariidae), with a monomer size of 227 bp. The MboI fragment in C. mrigala is species-specific and absent in other carps, such as Catla catla and Labeo rohita. The MboI fragment in C. batrachus was also present in two other catfishes tested, namely Clarias gariepinus and Heteropneustes fossilis. In C, mrigala x C. catla and C. mrigala x L. rohita hybrids, the C. mrigala specific MboI fragment is inherited uniparentally. In the reciprocal hybrids of C. batrachus x H. fossilis, the satellite ladder contains the bands of both parental species. The MboI satellite of carp may be useful in genetic introgression analysis and that of catfish in distinguishing between gynogenetic progeny and true hybrids.
Collapse
Affiliation(s)
- B K Padhi
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
30
|
Boán F, Viñas A, Rodríguez JM, Sánchez L, Gómez-Márquez J. A new EcoRI family of satellite DNA in lampreys. FEBS Lett 1996; 394:187-90. [PMID: 8843161 DOI: 10.1016/0014-5793(96)00947-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Satellite DNA sequences have been studied in several groups of organisms. However, until now this type of sequence has not been characterized in cyclostomata, an evolutionarily important class of vertebrates. In the present work, we report the molecular characterization of a new family of satellite DNA in lampreys (Petromyzon marinus). Digestion of lamprey DNA with EcoRI identified a series of very abundant AT-rich (60% A+T) repeating units, with short stretches of AT, that are multimers of 370 bp. Southern blot analysis and comparison with the satellite DNA sequences deposited in the databases indicate that this new family of satellite DNA is exclusive to lampreys. The distribution of this EcoRI satellite DNA on lamprey chromosomes was analyzed by in situ hybridization. The evolutionary origin of this satellite is briefly discussed.
Collapse
Affiliation(s)
- F Boán
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, Galicia, Spain
| | | | | | | | | |
Collapse
|