1
|
Hamali B, Amine AAA, Al-Sady B. Regulation of the heterochromatin spreading reaction by trans-acting factors. Open Biol 2023; 13:230271. [PMID: 37935357 PMCID: PMC10645111 DOI: 10.1098/rsob.230271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Heterochromatin is a gene-repressive protein-nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing. Given that these enzymes deposit guiding chemical information on chromatin they are commonly termed 'writers'. While the processes of nucleation and central actions of writers have been extensively studied and reviewed, less is understood about how the spreading process is regulated. We discuss how the chromatin substrate is prepared for heterochromatic spreading, and how trans-acting factors beyond writer enzymes regulate it. We examine mechanisms by which trans-acting factors in Suv39, PRC2, SETDB1 and SIR writer systems regulate spreading of the respective heterochromatic marks across chromatin. While these systems are in some cases evolutionarily and mechanistically quite distant, common mechanisms emerge which these trans-acting factors exploit to tune the spreading reaction.
Collapse
Affiliation(s)
- Bulut Hamali
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ahmed A A Amine
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 2020; 579:448-451. [PMID: 32188943 PMCID: PMC7093204 DOI: 10.1038/s41586-020-2088-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Chromatin remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. The essential Saccharomyces cerevisiae SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and –1 nucleosomes that flank NDRs8,9. Here, we present the cryo-EM structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and ARP modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with their ‘SnAC’ and ‘finger’ elements, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.
Collapse
|
3
|
Wang SH, Lee SP, Tung SY, Tsai SP, Tsai HC, Shen HH, Hong JY, Su KC, Chen FJ, Liu BH, Wu YY, Hsiao SP, Tsai MS, Liou GG. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin. Arch Biochem Biophys 2019; 671:167-174. [PMID: 31295433 DOI: 10.1016/j.abb.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.
Collapse
Affiliation(s)
- Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University & Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Hsieh-Chin Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Kuan-Chung Su
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Bang-Hung Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Ming-Shiun Tsai
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC; Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC; Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC; Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC; Guang EM Laboratory, New Taipei, 242, Taiwan, ROC.
| |
Collapse
|
4
|
Abstract
Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| | - John W. R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| |
Collapse
|
5
|
Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:728-36. [PMID: 24583555 DOI: 10.1016/j.bbagrm.2014.02.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Tung SY, Lee KW, Hong JY, Lee SP, Shen HH, Liou GG. Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages. Comput Struct Biotechnol J 2013; 7:e201304001. [PMID: 24688731 PMCID: PMC3962127 DOI: 10.5936/csbj.201304001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/03/2022] Open
Abstract
In budding yeast, the Sir2, Sir3 and Sir4 proteins form SIR complexes, required for the assembly of silent heterochromatin domains, and which mediate transcription silencing at the telomeres as well as at silent mating type loci. In this study, under fluorescence microscopy, we found most Sir3-GFP expressions in the logarithmic phase cells appeared as multiple punctations as expected. However, some differences in the distribution of fluorescent signals were detected in the diauxic~early stationary phase cells. To clarify these, we then used ChIP on chip assays to investigate the genome-wide localization of Sir3. In general, Sir3 binds to all 32 telomere proximal regions, the silent mating type loci and also binds to the rDNA region. However, the genome-wide localization patterns of Sir3 are different between these two distinct growth phases. We also confirmed that Sir3 binds to a recently identified secondary binding site, PAU genes, and further identified 349 Sir3-associated cluster regions. These results provide additional support in roles for Sir3 in the modulation of gene expression during physical conditions such as diauxic~early stationary phase growing. Moreover, they imply that Sir3 may be not only involved in the formation of conventional silent heterochromatin, but also able to associate with some other chromatin regions involved in epigenetic regulation.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Kuan-Wei Lee
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
7
|
Abstract
Proteins containing Bromo Adjacent Homology (BAH) domain are often associated with biological processes involving chromatin, and mutations in BAH domains have been found in human diseases. A number of structural and functional studies have revealed that the BAH domain plays diverse and versatile roles in chromatin biology, including protein-protein interactions, recognition of methylated histones and nucleosome binding. Here we review recent developments in structural studies of the BAH domain, and intend to place the structural results in the context of biological functions of the BAH domain-containing proteins. A converging theme from the structural studies appears that the predominantly β-sheet fold of the BAH domain serves as a scaffold, and function-specific structural features are incorporated at the loops connecting the β-strands and surface-exposed areas. The structures clearly specified regions critical for protein-protein interactions, located the position of methyllysine-binding site and implicated areas important for nucleosome binding. The structural results provided valuable insights into the molecular mechanisms of BAH domains in molecular recognitions, and the information should greatly facilitate mechanistic understanding of BAH domain proteins in chromatin biology.
Collapse
Affiliation(s)
- Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
8
|
Chung CW. Small molecule bromodomain inhibitors: extending the druggable genome. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:1-55. [PMID: 22520470 DOI: 10.1016/b978-0-12-396493-9.00001-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chun-Wa Chung
- Computational and Structural Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK
| |
Collapse
|
9
|
Ito S, Fujiyama-Nakamura S, Kimura S, Lim J, Kamoshida Y, Shiozaki-Sato Y, Sawatsubashi S, Suzuki E, Tanabe M, Ueda T, Murata T, Kato H, Ohtake F, Fujiki R, Miki T, Kouzmenko A, Takeyama KI, Kato S. Epigenetic silencing of core histone genes by HERS in Drosophila. Mol Cell 2012; 45:494-504. [PMID: 22365829 DOI: 10.1016/j.molcel.2011.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/13/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
Abstract
Cell cycle-dependent expression of canonical histone proteins enables newly synthesized DNA to be integrated into chromatin in replicating cells. However, the molecular basis of cell cycle-dependency in the switching of histone gene regulation remains to be uncovered. Here, we report the identification and biochemical characterization of a molecular switcher, HERS (histone gene-specific epigenetic repressor in late S phase), for nucleosomal core histone gene inactivation in Drosophila. HERS protein is phosphorylated by a cyclin-dependent kinase (Cdk) at the end of S-phase. Phosphorylated HERS binds to histone gene regulatory regions and anchors HP1 and Su(var)3-9 to induce chromatin inactivation through histone H3 lysine 9 methylation. These findings illustrate a salient molecular switch linking epigenetic gene silencing to cell cycle-dependent histone production.
Collapse
Affiliation(s)
- Saya Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 2012; 11:82-91. [PMID: 22658157 DOI: 10.1016/j.jmbbm.2012.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
It has been shown that tensile strain can alter cell behaviour. Evidence exists to confirm that human mesenchymal stem cells can be encouraged to differentiate in response to tensile loading forces. We have investigated the short-term effects of cyclic tensile strain (3%, 1 Hz) on gene expression in primary human mesenchymal stem cells in monolayer and whilst encapsulated in a self-assembled peptide hydrogel. The main aims of the project were to gain the following novel information: (1) to determine if the genes CCNL2, WDR61 and BAHCC1 are potentially important mechanosensitive genes in monolayer, (2) to determine if these genes showed the same differential expression in a 3D environment (either tethered to RGD or simply encapsulated within a hydrogel (with RGE motif)) and (3) to determine whether the mesenchymal stem cells would survive within the hydrogels over several days whilst enduring dynamic culture. In the monolayer system, real-time PCR confirmed CCNL2 was significantly downregulated after 1 h strain and 2 h latency (post strain). BAHCC1 was significantly downregulated after 1 h strain (both 2 h and 24 h latency). WDR61 followed the same trend in 2D culture. After 24 h strain and 2 h latency, BAHCC1 was significantly upregulated. We found that both types of peptide hydrogel supported viable mesenchymal stem cells over 48 h. Results of the 3D dynamic culture did not correspond with those of the 2D dynamic culture, where the BAHCC1 gene was not expressed in the 3D experiments. The disparity in the differential gene expression observed between the 2D and 3D culture systems may partly be a result of the different cellular environments in each. It is likely that cells cultured within an intricate 3D architecture respond to mechanical cues in a different and more complex manner than do cells in 2D monolayer, as is illustrated by our gene expression data.
Collapse
Affiliation(s)
- Sarah R Rathbone
- The University of Manchester, School of Materials, Materials Science Centre, Grosvenor Street, Manchester, M1 7HS, UK.
| | | | | | | |
Collapse
|
11
|
Shibata Y, Uchida M, Takeshita H, Nishiwaki K, Sawa H. Multiple functions of PBRM-1/Polybromo- and LET-526/Osa-containing chromatin remodeling complexes in C. elegans development. Dev Biol 2011; 361:349-57. [PMID: 22119053 DOI: 10.1016/j.ydbio.2011.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
The SWI/SNF-like chromatin remodeling complexes consist of two evolutionarily conserved subclasses, which are characterized by specific accessory components, the OSA/BAF250 and Polybromo proteins. These complexes regulate the expressions of distinct sets of target genes, with some overlap, and the regulatory components are thought to determine the target specificity for each complex. Here we isolated C. elegans mutants of the genes for the OSA/BAF250 homolog, LET-526, and the Polybromo homolog, PBRM-1, in a screen for the abnormal asymmetric cell division phenotype. In the asymmetric division of the T cell, both LET-526 and PBRM-1 regulated the asymmetric expression of psa-3/Meis between the T cell daughters, suggesting that the two subclasses share the same target. In the gonad, PBRM-1 regulated gonad primordium formation during embryogenesis, whereas LET-526 was required post-embryonically for distal tip cell (DTC) production from the gonad primordium, suggesting that these proteins have distinct targets for DTC development. Thus, the same cellular process is regulated by LET-526 and PBRM-1 in the asymmetric division of the T cell, but they regulate distinct cellular processes in the gonad morphogenesis. Although disruption of the core component PSA-1 or PSA-4 caused similar defects in the gonad and T cell, it also caused early embryonic arrest, which was not observed in the let-526, pbrm-1, or let-526 pbrm-1 double mutants, suggesting that some targets of SWI/SNF-like complexes do not require LET-526 or PBRM-1 for their transcription. Our results show that the target selection by SWI/SNF-like complexes during C. elegans development is intricately regulated by accessory components.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Laboratory for Cell Fate Decision, RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
12
|
Chung CW, Witherington J. Progress in the discovery of small-molecule inhibitors of bromodomain--histone interactions. ACTA ACUST UNITED AC 2011; 16:1170-85. [PMID: 21956175 DOI: 10.1177/1087057111421372] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bromodomains are structurally conserved protein modules present in a large number of chromatin-associated proteins and in many nuclear histone acetyltransferases. The bromodomain functions as an acetyl-lysine binding domain and has been shown to be pivotal in regulating protein-protein interactions in chromatin-mediated cellular gene transcription, cell proliferation, and viral transcriptional activation. Structural analyses of these modules in complex with acetyl-lysine peptide ligands provide insights into the molecular basis for recognition and ligand selectivity within this epigenetic reader family. However, there are significant challenges in configuring assays to identify inhibitors of these proteins. This review focuses on the progress made in developing methods to identify peptidic and small-molecule ligands using biophysical label-free and biochemical approaches. The advantage of each technique and the results reported are summarized, highlighting the potential applicably to other reader domains and the caveats in translation from simple in vitro systems to a biological context.
Collapse
|
13
|
Charlop-Powers Z, Zeng L, Zhang Q, Zhou MM. Structural insights into selective histone H3 recognition by the human Polybromo bromodomain 2. Cell Res 2010; 20:529-38. [PMID: 20368734 PMCID: PMC2921579 DOI: 10.1038/cr.2010.43] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Polybromo (PB) protein functions as a key component of the human PBAF chromatin remodeling complex in regulation of gene transcription. PB is made up of modular domains including six bromodomains that are known as acetyl-lysine binding domains. However, histone-binding specificity of the bromodomains of PB has remained elusive. In this study, we report biochemical characterization of all six PB bromodomains' binding to a suite of lysine-acetylated peptides derived from known acetylation sites on human core histones. We demonstrate that bromodomain 2 of PB preferentially recognizes acetylated lysine 14 of histone H3 (H3K14ac), a post-translational mark known for gene transcriptional activation. We further describe the molecular basis of the selective H3K14ac recognition of bromodomain 2 by solving the protein structures in both the free and bound forms using X-ray crystallography and NMR, respectively.
Collapse
Affiliation(s)
- Zachary Charlop-Powers
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| | - Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| | - Qiang Zhang
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| |
Collapse
|
14
|
Ryme J, Asp P, Böhm S, Cavellán E, Farrants AKO. Variations in the composition of mammalian SWI/SNF chromatin remodelling complexes. J Cell Biochem 2009; 108:565-76. [PMID: 19650111 DOI: 10.1002/jcb.22288] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ATP-dependent chromatin remodelling complexes SWI/SNF alter the chromatin structure in transcriptional regulation. Several classes of mammalian SWI/SNF complex have been isolated biochemically, distinguished by a few specific subunits, such as the BAF-specific BAF250A, BAF250B and BRM, and the PBAF-specific BAF180. We have determined the complex compositions using low stringency immunoprecipitation (IP) and shown that the pattern of subunit interactions was more diverse than previously defined classes had predicted. The subunit association at five gene promoters that depend on the SWI/SNF activity varied and the sequential chromatin immunoprecipitations revealed that different class-specific subunits occupied the promoters at the same time. The low-stringency IP showed that the BAF-specific BAF250A and BAF250B and the PBAF-specific BAF180 co-exist in a subset of SWI/SNF complexes, and fractionation of nuclear extract on size-exclusion chromatography demonstrated that sub-complexes with unorthodox subunit compositions were present in the cell. We propose a model in which the constellations of SWI/SNF complexes are "tailored" for each specific chromatin target and depend on the local chromatin environment to which complexes and sub-complexes are recruited.
Collapse
Affiliation(s)
- Jessica Ryme
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Tyagi A, Ryme J, Brodin D, Östlund Farrants AK, Visa N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 2009; 5:e1000470. [PMID: 19424417 PMCID: PMC2669885 DOI: 10.1371/journal.pgen.1000470] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 04/07/2009] [Indexed: 12/02/2022] Open
Abstract
The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.
Collapse
Affiliation(s)
- Anu Tyagi
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Jessica Ryme
- Department of Cell Biology at the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | | | - Neus Visa
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Chimenti F, Bizzarri B, Maccioni E, Secci D, Bolasco A, Chimenti P, Fioravanti R, Granese A, Carradori S, Tosi F, Ballario P, Vernarecci S, Filetici P. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem 2009; 52:530-6. [PMID: 19099397 DOI: 10.1021/jm800885d] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.
Collapse
Affiliation(s)
- Franco Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Universita degli Studi di Roma La Sapienza, P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang L, Tsai CC. Atrophin proteins: an overview of a new class of nuclear receptor corepressors. NUCLEAR RECEPTOR SIGNALING 2008; 6:e009. [PMID: 19043594 PMCID: PMC2586093 DOI: 10.1621/nrs.06009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/22/2008] [Indexed: 12/12/2022]
Abstract
The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
18
|
Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell 2008; 28:1015-28. [PMID: 18158899 DOI: 10.1016/j.molcel.2007.12.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/16/2007] [Accepted: 12/06/2007] [Indexed: 11/22/2022]
Abstract
Silent chromatin domains in Saccharomyces cerevisiae represent examples of epigenetically heritable chromatin. The formation of these domains involves the recruitment of the SIR complex, composed of Sir2, Sir3, and Sir4, followed by iterative cycles of NAD-dependent histone deacetylation and spreading of SIR complexes over adjacent chromatin domains. We show here that the conserved bromo-adjacent homology (BAH) domain of Sir3 is a nucleosome- and histone-tail-binding domain and that its binding to nucleosomes is regulated by residues in the N terminus of histone H4 and the globular domain of histone H3 on the exposed surface of the nucleosome. Furthermore, using a partially purified system containing nucleosomes, the three Sir proteins, and NAD, we observe the formation of SIR-nucleosome filaments with a diameter of less than 20 nm. Together, these observations suggest that the SIR complex associates with an extended chromatin fiber through interactions with two different regions in the nucleosome.
Collapse
|
19
|
Vermeulen M, Mulder KW, Denissov S, Pijnappel WWMP, van Schaik FMA, Varier RA, Baltissen MPA, Stunnenberg HG, Mann M, Timmers HTM. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131:58-69. [PMID: 17884155 DOI: 10.1016/j.cell.2007.08.016] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/09/2007] [Accepted: 08/15/2007] [Indexed: 12/25/2022]
Abstract
Trimethylation of histone H3 at lysine 4 (H3K4me3) is regarded as a hallmark of active human promoters, but it remains unclear how this posttranslational modification links to transcriptional activation. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic screening we show that the basal transcription factor TFIID directly binds to the H3K4me3 mark via the plant homeodomain (PHD) finger of TAF3. Selective loss of H3K4me3 reduces transcription from and TFIID binding to a subset of promoters in vivo. Equilibrium binding assays and competition experiments show that the TAF3 PHD finger is highly selective for H3K4me3. In transient assays, TAF3 can act as a transcriptional coactivator in a PHD finger-dependent manner. Interestingly, asymmetric dimethylation of H3R2 selectively inhibits TFIID binding to H3K4me3, whereas acetylation of H3K9 and H3K14 potentiates TFIID interaction. Our experiments reveal crosstalk between histone modifications and the transcription factor TFIID. This has important implications for regulation of RNA polymerase II-mediated transcription in higher eukaryotes.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cui Y, Niu A, Pestell R, Fuqua SAW. Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol 2006; 20:2020-35. [PMID: 16645043 PMCID: PMC4484605 DOI: 10.1210/me.2005-0063] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Estrogen receptor (ER)alpha activity is controlled by the balance of coactivators and corepressors contained within cells that are recruited into transcriptional complexes. The metastasis-associated protein (MTA) family has been demonstrated to be associated with breast tumor cell progression and ERalpha activity. We demonstrate that MTA2 expression is correlated with ERalpha protein expression in invasive breast tumors. We show that the MTA2 family member can bind to ERalpha and repress its activity in human breast cancer cells. Furthermore, it can inhibit ERalpha-mediated colony formation and render breast cancer cells resistant to estradiol and the growth-inhibitory effects of the antiestrogen tamoxifen. MTA2 participates in the deacetylation of ERalpha protein, potentially through its associated histone deacetylase complex 1 activity. We hypothesize that MTA2 is a repressor of ERalpha activity and that it could represent a new therapeutic target of ERalpha action in human breast tumors.
Collapse
Affiliation(s)
- Yukun Cui
- Department of Medicine, Baylor College of Medicine, and the Methodist Hospital, One Baylor Plaza, Houston, TX 77030
| | - Airu Niu
- Department of Medicine, Baylor College of Medicine, and the Methodist Hospital, One Baylor Plaza, Houston, TX 77030
| | - Richard Pestell
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057
| | - Suzanne AW Fuqua
- Department of Medicine, Baylor College of Medicine, and the Methodist Hospital, One Baylor Plaza, Houston, TX 77030
- Department of Breast Center, Baylor College of Medicine, and the Methodist Hospital, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, and the Methodist Hospital, One Baylor Plaza, Houston, TX 77030
- Corresponding author: Suzanne A.W. Fuqua, Breast Center, Baylor College of Medicine, One Baylor Plaza, BCM 600, Houston, TX 77030, 713-798-1672 (phone), 713-798-1673 (fax),
| |
Collapse
|
21
|
Oliver AW, Jones SA, Roe SM, Matthews S, Goodwin GH, Pearl LH. Crystal structure of the proximal BAH domain of the polybromo protein. Biochem J 2005; 389:657-64. [PMID: 15839835 PMCID: PMC1180715 DOI: 10.1042/bj20050310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The BAH domain (bromo-associated homology domain) was first identified from a repeated motif found in the nuclear protein polybromo--a large (187 kDa) modular protein comprising six bromodomains, two BAH domains and an HMG box. To date, the BAH domain has no ascribed function, although it is found in a wide range of proteins that contain additional domains involved in either transcriptional regulation (e.g. SET, PHD and bromodomain) and/or DNA binding (HMG box and AT hook). The molecular function of polybromo itself also remains unclear, but it has been identified as a key component of an SWI/SNF (switching/sucrose non-fermenting)-related, ATP-dependent chromatin-remodelling complex PBAF (polybromo, BRG1-associated factors; also known as SWI/SNF-B or SWI/SNFbeta). We present in this paper the crystal structure of the proximal BAH domain from chicken polybromo (BAH1), at a resolution of 1.6 A (1 A=0.1 nm). Structure-based sequence analysis reveals several features that may be involved in mediating protein-protein interactions.
Collapse
Affiliation(s)
- Antony W Oliver
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, 237 Fulham Road, Chelsea, London SW3 6JB, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Sinha A, Faller D, Denis G. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J 2005; 387:257-69. [PMID: 15548137 PMCID: PMC1134954 DOI: 10.1042/bj20041793] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclin A is regulated primarily through transcription control during the mammalian cell cycle. A dual mechanism of cyclin A transcriptional repression involves, on the one hand, promoter-bound inhibitory complexes of E2F transcription factors and RB (retinoblastoma) family proteins, and on the other, chromatin-directed histone deacetylase activity that is recruited to the cyclin A promoter early in the cell cycle in association with these RB proteins. This dual regulation maintains transcriptional silence of the cyclin A locus until its transcription is required in S-phase. At that time, RB family members dissociate from E2F proteins and nucleosomal restructuring of the locus takes place, to permit transcriptional activation and resultant S-phase progression to proceed. We have identified a double bromo-domain-containing protein Brd2, which exhibits apparent 'scaffold' or transcriptional adapter functions and mediates recruitment of both E2F transcription factors and chromatin-remodelling activity to the cyclin A promoter. We have shown previously that Brd2-containing nuclear, multiprotein complexes contain E2F-1 and -2. In the present study, we show that, in S-phase, they also contain histone H4-directed acetylase activity. Overexpression of Brd2 in fibroblasts accelerates the cell cycle through increased expression of cyclin A and its associated cyclin-dependent kinase activity. Chromatin immunoprecipitation studies show that Brd2 is physically present at the cyclin A promoter and its overexpression promotes increased histone H4 acetylation at the promoter as it becomes transcriptionally active, suggesting a new model for the dual regulation of cyclin A.
Collapse
Affiliation(s)
- Anupama Sinha
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Douglas V. Faller
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Gerald V. Denis
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJR, Verrijzer CP. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol 2004; 24:3077-88. [PMID: 15060132 PMCID: PMC381637 DOI: 10.1128/mcb.24.8.3077-3088.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SWI/SNF family of ATP-dependent chromatin-remodeling factors plays a central role in eukaryotic transcriptional regulation. In yeast and human cells, two subclasses have been recognized: one comprises yeast SWI/SNF and human BAF, and the other includes yeast RSC and human PBAF. Therefore, it was puzzling that Drosophila appeared to contain only a single SWI/SNF-type remodeler, the Brahma (BRM) complex. Here, we report the identification of two novel BRM complex-associated proteins: Drosophila Polybromo and BAP170, a conserved protein not described previously. Biochemical analysis established that Drosophila contains two distinct BRM complexes: (i) the BAP complex, defined by the presence of OSA and the absence of Polybromo and BAP170, and (ii) the PBAP complex, containing Polybromo and BAP170 but lacking OSA. Determination of the genome-wide distributions of OSA and Polybromo on larval salivary gland polytene chromosomes revealed that BAP and PBAP display overlapping but distinct distribution patterns. Both complexes associate predominantly with regions of open, hyperacetylated chromatin but are largely excluded from Polycomb-bound repressive chromatin. We conclude that, like yeast and human cells, Drosophila cells express two distinct subclasses of the SWI/SNF family. Our results support a close reciprocity of chromatin regulation by ATP-dependent remodelers and histone-modifying enzymes.
Collapse
Affiliation(s)
- Lisette Mohrmann
- Gene Regulation Laboratory, Centre for Biomedical Genetics, Department of Molecular and Cell Biology, Leiden University Medical Centre, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Yao YL, Yang WM. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. J Biol Chem 2003; 278:42560-8. [PMID: 12920132 DOI: 10.1074/jbc.m302955200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NuRD ATP-dependent chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in a core MTA1-HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with a different set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous to both MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.
Collapse
Affiliation(s)
- Ya-Li Yao
- Institute of Zoology, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | |
Collapse
|
26
|
Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV. E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 2003; 103:1475-84. [PMID: 14563639 PMCID: PMC2825482 DOI: 10.1182/blood-2003-06-2116] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transgenic mice with lymphoid-restricted overexpression of the double bromodomain protein bromodomain-containing 2 (Brd2) develop splenic B-cell lymphoma and, upon transplantation, B-cell leukemia with leukemic infiltrates in liver and lung. Brd2 is a nuclear-localized transcription factor kinase that is most closely related to TATA box binding protein-associated factor, 250 kDa (TAF(II)250) and the Drosophila developmental protein female sterile homeotic. Constitutive expression of BRD2 in the lymphoid compartment increases cyclin A transcription, "priming" transgenic B cells for proliferation. Mice stochastically develop an aggressive B-cell lymphoma with the features of B-1 cells, including CD5 and surface IgM expression. The B-cell lymphoma is monoclonal for immunoglobulin gene rearrangement and is phenotypically stable. The lymphoblasts are very large and express a transcriptome that is similar to human non-Hodgkin lymphomas. Both a wild-type BRD2 transgene and a kinase-null point mutant drive lymphomagenesis; therefore we propose that, rather than kinase activity, Brd2-mediated recruitment of E2 promoter binding factors (E2Fs) and a specific histone acetyltransferase to the cyclin A promoter by both types of transgene is a mechanistic basis for neoplasia. This report is the first to describe a transgenic mouse model for constitutive expression of a protein with more than one bromodomain.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Chromosomal Proteins, Non-Histone
- Cyclin A/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, B-Lymphocyte/genetics
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/physiopathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/physiopathology
- Mice
- Mice, Transgenic
- Neoplasm Transplantation
- Protein Serine-Threonine Kinases/genetics
- Recombinant Proteins/genetics
- Spleen/pathology
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Rebecca J Greenwald
- Department of Pathology, Immunology Research Division, Brigham and Women's Hospital, Harvard Medcial School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Guiliano DB, Hall N, Jones SJM, Clark LN, Corton CH, Barrell BG, Blaxter ML. Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes. Genome Biol 2002; 3:RESEARCH0057. [PMID: 12372145 PMCID: PMC134624 DOI: 10.1186/gb-2002-3-10-research0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Revised: 07/19/2002] [Accepted: 08/22/2002] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Comparisons between the genomes of the closely related nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal high rates of rearrangement, with a bias towards within-chromosome events. To assess whether this pattern is true of nematodes in general, we have used genome sequence to compare two nematode species that last shared a common ancestor approximately 300 million years ago: the model C. elegans and the filarial parasite Brugia malayi. RESULTS An 83 kb region flanking the gene for Bm-mif-1 (macrophage migration inhibitory factor, a B. malayi homolog of a human cytokine) was sequenced. When compared to the complete genome of C. elegans, evidence for conservation of long-range synteny and microsynteny was found. Potential C. elegans orthologs for II of the 12 protein-coding genes predicted in the B. malayi sequence were identified. Ten of these orthologs were located on chromosome I, with eight clustered in a 2.3 Mb region. While several, relatively local, intrachromosomal rearrangements have occurred, the order, composition, and configuration of two gene clusters, each containing three genes, was conserved. Comparison of B. malayi BAC-end genome survey sequence to C. elegans also revealed a bias towards intrachromosome rearrangements. CONCLUSIONS We suggest that intrachromosomal rearrangement is a major force driving chromosomal organization in nematodes, but is constrained by the interdigitation of functional elements of neighboring genes.
Collapse
Affiliation(s)
- DB Guiliano
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - N Hall
- Pathogen Sequencing Unit, The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - SJM Jones
- Genome Sequence Centre, British Columbia Cancer Research Centre, Vancouver V5Z 4E6, Canada
| | - LN Clark
- Pathogen Sequencing Unit, The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - CH Corton
- Pathogen Sequencing Unit, The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - BG Barrell
- Pathogen Sequencing Unit, The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - ML Blaxter
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
28
|
Abstract
Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.
Collapse
Affiliation(s)
- M Méchali
- Marcel Méchali is at the Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141 rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
29
|
Abstract
The BAH (Bromo-adjacent homology) domain is a domain first identified in the vertebrate polybromo protein, a protein present in a large nuclear complex. Polybromo has two BAH domains, six bromodomains and an HMG-box. The BAH domain has been identified in a number of proteins involved in gene transcription and repression and is likely to be involved in protein-protein interactions. Polybromo resembles two related proteins in yeast, the Rsc1 and Rsc2 proteins, both having a BAH domain and two bromodomains as well as a DNA binding motif, the AT -hook. The Rsc1 and 2 proteins are components of the RSC (remodelling the structure of chromatin) complex and are required for transcriptional control. In this paper we review recent data on the function of the BAH and bromodomains in relation to polybromo and the Rsc proteins.
Collapse
Affiliation(s)
- G H Goodwin
- Institute of Cancer Research, Haddow Laboratories, Department of Molecular Carcinogenesis, 15 Cotswold Road, SN2 5NG, England, Sutton, UK.
| | | |
Collapse
|
30
|
Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 2000; 304:355-70. [PMID: 11090279 DOI: 10.1006/jmbi.2000.4207] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The solution structure of the bromodomain from the human transcriptional coactivator GCN5 has been determined using NMR methods. The structure has a left-handed four-helix bundle topology, with two short additional helices in a long connecting loop. A hydrophobic groove and deep hydrophobic cavity are formed by loops at one end of the molecule. NMR binding experiments show that the cavity forms a specific binding pocket for the acetamide moiety. Peptides containing an N(epsilon)-acetylated lysine residue bind in this pocket with modest affinity (K(D) approximately 0.9 mM); no comparable binding occurs with unacetylated peptides. The GCN5 bromodomain binds the small ligands N(omega)-acetylhistamine and N-methylacetamide, confirming specificity for the alkyl acetamide moiety and showing that the primary element of recognition is simply the sterically unhindered terminal acetamide moiety of an acetylated lysine residue. Additional experiments show that binding is enhanced if the acetyl-lysine residue occurs within the context of a basic peptide and is inhibited by the presence of nearby acidic residues and by the carboxyl group of the free acetyl-lysine amino acid. The binding of the GCN5 bromodomain to acetylated peptides appears to have little additional sequence dependence, although weak interactions with other regions of the peptide are implicated by the binding data. Discrimination between ligands of positive and negative charge is attributed to the presence of several acidic residues located on the loops that form the sides of the binding pocket. Unlike the residues forming the acetamide binding cavity, these acidic side-chains are not conserved in other bromodomain sequences, suggesting that bromodomains might display differences in substrate selectivity and specificity as well as differences in function in vivo.
Collapse
Affiliation(s)
- B P Hudson
- The Scripps Research Institute, Department of Molecular Biology and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | |
Collapse
|
31
|
Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang W. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci U S A 2000; 97:13015-20. [PMID: 11078522 PMCID: PMC27170 DOI: 10.1073/pnas.240208597] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Indexed: 02/08/2023] Open
Abstract
The SWI/SNF family of chromatin-remodeling complexes facilitates gene expression by helping transcription factors gain access to their targets in chromatin. SWI/SNF and Rsc are distinctive members of this family from yeast. They have similar protein components and catalytic activities but differ in biological function. Rsc is required for cell cycle progression through mitosis, whereas SWI/SNF is not. Human complexes of this family have also been identified, which have often been considered related to yeast SWI/SNF. However, all human subunits identified to date are equally similar to components of both SWI/SNF and Rsc, leaving open the possibility that some or all of the human complexes are rather related to Rsc. Here, we present evidence that the previously identified human SWI/SNF-B complex is indeed of the Rsc type. It contains six components conserved in both Rsc and SWI/SNF. Importantly, it has a unique subunit, BAF180, that harbors a distinctive set of structural motifs characteristic of three components of Rsc. Of the two mammalian ATPases known to be related to those in the yeast complexes, human SWI/SNF-B contains only the homolog that functions like Rsc during cell growth. Immunofluorescence studies with a BAF180 antibody revealed that SWI/SNF-B localizes at the kinetochores of chromosomes during mitosis. Our data suggest that SWI/SNF-B and Rsc represent a novel subfamily of chromatin-remodeling complexes conserved from yeast to human, and could participate in cell division at kinetochores of mitotic chromosomes.
Collapse
Affiliation(s)
- Y Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 333 Cassell Drive, TRIAD Center Room 4000, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Staal A, Enserink JM, Stein JL, Stein GS, van Wijnen AJ. Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol 2000; 185:269-79. [PMID: 11025449 DOI: 10.1002/1097-4652(200011)185:2<269::aid-jcp12>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcriptional control at the G1/S-phase transition of the cell cycle requires functional interactions of multimeric promoter regulatory complexes that contain DNA binding proteins, transcriptional cofactors, and/or chromatin modifying enzymes. Transcriptional regulation of the human histone H4/n gene (FO108) is mediated by Interferon Regulatory Factor-2 (IRF-2), as well as other histone gene promoter factors. To identify proteins that interact with cell-cycle regulatory factors, we performed yeast two-hybrid analysis with IRF-2 and identified a novel human protein termed Celtix-1 which binds to IRF-2. Celtix-1 contains several phylogenetically conserved domains, including a bromodomain, which is found in a number of transcriptional cofactors. Using a panel of IRF-2 deletion mutants in yeast two-hybrid assays, we established that Celtix-1 contacts the C-terminus of IRF-2. Celtix-1 directly interacts with IRF-2 based on binding studies with glutathione S-transferase (GST)/IRF-2 fusion proteins, and immunofluorescence studies suggest that Celtix-1 and IRF-2 associate in situ. Celtix-1 is distributed throughout the nucleus in a heterodisperse pattern. A subset of Celtix-1 colocalizes with the hyperacetylated forms of histones H3 and H4, as well as with the hyperphosphorylated, transcriptionally active form of RNA polymerase II. We conclude that the bromodomain protein Celtix-1 is a novel IRF-2 interacting protein that associates with transcriptionally active chromatin in situ.
Collapse
Affiliation(s)
- A Staal
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | |
Collapse
|
33
|
McCullagh P, Chaplin T, Meerabux J, Grenzelias D, Lillington D, Poulsom R, Gregorini A, Saha V, Young BD. The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 1999; 18:7442-52. [PMID: 10602503 DOI: 10.1038/sj.onc.1203117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The MLL gene is reciprocally translocated with one of a number of different partner genes in a proportion of human acute leukaemias. The precise mechanism of oncogenic transformation is unclear since most of the partner genes encode unrelated proteins. However, two partner genes, AF10 and AF17 are related through the presence of a cysteine rich region and a leucine zipper. The identification of other proteins with these structures will aid our understanding of their role in normal and leukaemic cells. We report the cloning of a novel human gene (BRL) which encodes a protein containing a cysteine rich region related to that of AF10 and AF17 and is overall most closely related to the previously known protein BR140. BRL maps to chromosome 22q13 and shows high levels of expression in testis and several cell lines. The deduced protein sequence also contains a bromodomain, four potential LXXLL motifs and four predicted nuclear localization signals. A monoclonal antibody raised to a BRL peptide sequence confirmed its widespread expression as a 120 Kd protein and demonstrated localization to the nucleus within spermatocytes.
Collapse
Affiliation(s)
- P McCullagh
- Imperial Cancer Research Fund, Department of Medical Oncology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London ECIM 6BQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cairns BR, Schlichter A, Erdjument-Bromage H, Tempst P, Kornberg RD, Winston F. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell 1999; 4:715-23. [PMID: 10619019 DOI: 10.1016/s1097-2765(00)80382-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RSC is an essential 15 protein nucleosome-remodeling complex from S. cerevisiae. We have identified two closely related RSC members, Rsc1 and Rsc2. Biochemical analysis revealed Rsc1 and Rsc2 in distinct complexes, defining two forms of RSC. Genetic analysis has shown that Rsc1 and Rsc2 possess shared and unique functions. Rsc1 and Rsc2 each contain two bromodomains, a bromo-adjacent homology (BAH) domain, and an AT hook. One of the bromodomains, the BAH domain, and the AT hook are each essential for Rsc1 and Rsc2 functions, although they are not required for assembly into RSC complexes. Therefore, these domains are required for RSC function. Additional genetic analysis provides further evidence that RSC function is related to transcriptional control.
Collapse
Affiliation(s)
- B R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City 84112, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Callebaut I, Courvalin JC, Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 1999; 446:189-93. [PMID: 10100640 DOI: 10.1016/s0014-5793(99)00132-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Using sensitive methods of sequence analysis including hydrophobic cluster analysis, we report here a hitherto undescribed family of modules, the BAH (bromo-adjacent homology) family, which includes proteins such as eukaryotic DNA (cytosine-5) methyltransferases, the origin recognition complex 1 (Orc1) proteins, as well as several proteins involved in transcriptional regulation. The BAH domain appears to act as a protein-protein interaction module specialized in gene silencing, as suggested for example by its interaction within yeast Orc1p with the silent information regulator Sir1p. The BAH module might therefore play an important role by linking DNA methylation, replication and transcriptional regulation.
Collapse
Affiliation(s)
- I Callebaut
- Systèmes moléculaires and Biologie structurale, LMCP, CNRS UMR 7590, Université Paris 6, France.
| | | | | |
Collapse
|
36
|
Liu Y, Oakeley EJ, Sun L, Jost JP. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 1998; 26:1038-45. [PMID: 9461465 PMCID: PMC147368 DOI: 10.1093/nar/26.4.1038] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been shown that, during the S-phase of the cell cycle, the mouse DNA methyltransferase (DNA MTase) is targeted to sites of DNA replication by an amino acid sequence (aa 207-455) lying in the N-terminal domain of the enzyme [Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992) Cell , 71, 865-873]. In this paper it is shown, by using enhanced green fluorescent protein (EGFP) fusions, that other peptide sequences of DNA MTase are also involved in this targeting. The work focuses on a sequence, downstream of the reported targeting sequence (TS), which is homologous to the Polybromo-1 protein. This motif (designated as PBHD) is separated from the reported targeting sequence by a zinc-binding motif [Bestor , T. H. (1992) EMBO J , 11, 2611-2617]. Primed in situ extension using centromeric-specific primers was used to show that both the host DNA MTase and EGFP fusion proteins containing the targeting sequences were localized to centromeric, but not telomeric, regions during late S-phase and mitosis. Also found was that, in approximately 10% of the S-phase cells, the EGFP fusions did not co-localize with the centromeric regions. Mutants containing either, or both, of these targeting sequences could act as dominant negative mutants against the host DNA MTase. EGFP fusion proteins, containing the reported TS (aa 207-455), were targeted to centromeric regions throughout the mitotic stage which lead to the discovery of a similar behavior of the endogenous DNA MTase although the host MTase showed much less intense staining than in S-phase cells. The biological role of the centromeric localization of DNA MTase during mitosis is currently unknown.
Collapse
Affiliation(s)
- Y Liu
- Friedrich Miescher-Institut, P.O. Box 2543, Basel, Switzerland
| | | | | | | |
Collapse
|
37
|
Chernov AV, Vollmayr P, Walter J, Trautner TA. Masc2, a C5-DNA-methyltransferase from Ascobolus immersus with similarity to methyltransferases of higher organisms. Biol Chem 1997; 378:1467-73. [PMID: 9461345 DOI: 10.1515/bchm.1997.378.12.1467] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The filamentous fungus Ascobolus immersus represents an eukaryotic model organism to study genetic phenomena linked to DNA methylation. Following our previous characterization of a gene, masc1 from A. immersus, encoding the 'de novo' C5-DNA-methyltransferase (MTase), we report here the identification of a second MTase gene, masc2. The deduced peptide sequence of Masc2 is similar to previously identified eukaryotic MTases and distinct from Masc1 by having a large N-terminal domain in addition to the ubiquitous C-terminal catalytic domain. Following cloning of the gene, Masc2 was overexpressed and purified. Masc2 shows MTase activity with double stranded DNAs. Structural and biochemical properties of Masc2 suggest that it may function as a 'maintenance' MTase. With this finding, A. immersus represents so far the only eukaryotic organism in which two possibly synergistically operating MTases have been identified.
Collapse
Affiliation(s)
- A V Chernov
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Jones MH, Numata M, Shimane M. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics 1997; 45:529-34. [PMID: 9367677 DOI: 10.1006/geno.1997.5000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RING3 gene encodes a 90-kDa mitogen-activated nuclear protein. In proliferating cells, including in leukemia, RING3 has serine-threonine kinase and autophosphorylation activities. The cloning of D26362, a gene closely related to RING3, suggests a gene family. RING3 and D26362 are also related to the Drosophila developmental gene fsh. A database search for further members of the RING3 family identified an EST derived from a testis-specific library. cDNA clones representing the full coding sequence of the gene were isolated. The gene encodes a protein of 947 amino acids with extensive homology to RING3, D26362, and fsh. Similar to these proteins, it possesses two bromodomain motifs and a PEST sequence. Northern analysis of 16 normal tissues and eight cancer cell lines shows transcripts of 3.5 and 4.0 kb expressed specifically in testis. The gene has been named BRDT (for bromodomain, testis specific). PCR analysis of a panel of monochromosomal human/rodent hybrid cell lines and the GeneBridge 4 panel of radiation hybrids localizes the gene to chromosome 1p between markers WI-7719 and WI-3099 (D1S2154).
Collapse
Affiliation(s)
- M H Jones
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari, Ibaraki, 300-41, Japan
| | | | | |
Collapse
|
39
|
Goodwin GH. Isolation of cDNAs encoding chicken homologues of the yeast SNF2 and Drosophila Brahma proteins. Gene X 1997; 184:27-32. [PMID: 9016949 DOI: 10.1016/s0378-1119(96)00569-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The SNF2/Brahma proteins are a class of DNA-dependent ATPases which activate gene expression by disrupting chromatin repression. They also cooperate with nuclear hormone receptors to activate transcription. Two cDNAs encoding chicken homologues of the SNF2/Brahma proteins have been isolated from chicken haematopoietic libraries. The encoded proteins closely resemble the human homologues, hBRM and BRG1, and the chicken homologues have therefore been termed cBRH and cBRG1. Homology is conserved in five characteristic domains: an N-terminal domain that binds the SNF11 protein, a conserved domain A of unknown function, a central ATPase domain, a domain that binds the retinoblastoma tumor suppressor protein Rb, and a C-terminal bromodomain of unknown function.
Collapse
Affiliation(s)
- G H Goodwin
- Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| |
Collapse
|