Hansen JM, Reynolds PR, Booth GM, Schaalje GB, Seegmiller RE. Developmental toxicity of carbon black oil in mice.
TERATOLOGY 2000;
62:227-32. [PMID:
10992264 DOI:
10.1002/1096-9926(200010)62:4<227::aid-tera8>3.0.co;2-e]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND
Carbon black oil (CBO) is a refinery side-stream product used to produce asphalt and other commercial products. CBO contains several classes of hydrocarbons, several of which are known to exhibit systemic and gestational toxicities, making this mixture a candidate for causing reproductive toxicity.
METHODS
Swiss-Webster mice were administered CBO (300, 350, 400 mg/kg/day) via oral gavage in a dosage volume of 10 microl/g body weight on gestation days (GD) 6-15. Uterine contents were evaluated on GD 18.
RESULTS
Treatment with CBO at all dosage levels resulted in a high frequency of maternal clinical symptoms and a decrease in maternal weight gain. Decreased fetal viability was observed, manifested as a decrease in viable implants and, in a high percentage of treated dams, as early resorption of the entire litter. A significant reduction in fetal weight was also observed. However, neither structural malformations nor developmental delays in ossification were observed in any of the living offspring. To minimize maternal toxicity, the dosage range was lowered (100, 200, 300 mg/kg/day), and the concentration was adjusted such that the volume administered to each dam was decreased by 20%. In this trial, the only maternal effect observed was an increase in maternal liver weight at 200 and 300 mg/kg. The fetal lethality effects observed previously were reduced substantially. Nevertheless, the frequency of resorption among all treatment groups was higher statistically than in controls.
CONCLUSIONS
These data support the hypothesis that CBO is reproductively toxic in Swiss-Webster mice at oral doses of >/=100 mg/kg/day.
Collapse