1
|
Brun N, González-Sánchez JM, Ravier S, Temime-Roussel B, Brigante M, Mailhot G, Clément JL, Monod A. Online headspace monitoring of volatile organic compounds using proton transfer reaction-mass spectrometry: Application to the multiphase atmospheric fate of 2,4-hexadienedial. Talanta 2024; 276:126176. [PMID: 38810352 DOI: 10.1016/j.talanta.2024.126176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Chemical processes in clouds have been suggested to contribute significantly to the mass of organic aerosol particles in the atmosphere. Experimental and theoretical evidence suggest that organic mass production in clouds can be substantial and depends on the concentration of organic precursor compounds available in the gas phase. The present study aims at studying the aqueous phase reactivity of one of these overlooked precursors, i.e. 2,4-hexadienedial, an important and toxic intermediate in the atmospheric oxidation of aromatic species. Cautious synthesis and purification of 2,4-hexadienedial was performed. Its effective Henry's law constant was measured using a new simple and fast method based on online flow-injection analysis. The reactivity of 2,4-hexadienedial in the aqueous phase relevant to atmospheric conditions was studied, including hydrate formation, photolysis, ∙OH- and SO4∙--oxidation as well as reaction with NH3. The results revealed a low hydration constant compared to other dicarbonyls (Khyd1 = 7 × 10-2) and no dihydrate formation, indicating in an intermediate solubility (KH = 1.0 × 104 M atm-1) and high absorption cross sections (σ278nm > 10-16 cm2 molecule-1). Compared to its gas phase photolysis, its aqueous phase photolysis showed low quantum yields (Φ290-380nm = 0.9 %), and a significant red shift of the absorbance maximum, leading to a fast aqueous photolysis kinetics (Jaq,atm = 8.7 × 10-5 s-1) under atmospheric solar radiation, but no triplet state formation was detected. Radical oxidation experiments revealed extremely rapid oxidation kinetics (k∙OH = 1.10 × 1010 M-1 s-1 and kSO4∙- = 1.4 × 109 M-1 s-1) driven by fast addition of the radicals to the unsaturated bonds. In contrast, the reaction with aqueous NH3 (kNH3 = 2.6 × 10-3 M-1 s-1) was found slower than glyoxal and 2-butenedial, likely due to the hyperconjugation of 2,4-hexadienedial. Using these new data complemented with assumed aqueous phase kinetics (for NO3, 3C* and 1O2 reactions) and previous gas-phase kinetic ones, the multiphase atmospheric fate of 2,4-hexadienedial was established under atmospheric conditions reported from previous field measurements and models. The results revealed a short day lifetime (∼1 h) and a long night lifetime (>12 h). It was shown that daytime atmospheric chemistry of 2,4-hexadienedial can be influenced by aqueous-phase reactivity during cloud events, up to ∼50 % under thick cloud conditions (Liquid Water Content >2000 g/m3), indicating that even a compound of intermediate solubility can be strongly affected by condensed-phase reactivity. Besides its fast aqueous phase reactivity towards ∙OH and photolysis, its daytime condensed-phase reactivity may be driven by reactions with dissolved triplet states (3C*), up to 35 %, highlighting the need to study further the kinetics, the nature and concentrations of dissolved 3C* under various atmospheric conditions. In addition, the molecular properties and atmospheric behavior of 2,4-hexadienedial were found different from those of glyoxal and 2-butenedial, highlighting the need for detailed atmospheric reactivity studies of polyfunctional compounds, in particular unsaturated compounds.
Collapse
Affiliation(s)
- Nicolas Brun
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Aix Marseille Univ, CNRS, ICR, Marseille, France.
| | | | | | | | - Marcello Brigante
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000, Clermont-Ferrand, France
| | | | - Anne Monod
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| |
Collapse
|
2
|
Cytochrome P450 Can Epoxidize an Oxepin to a Reactive 2,3-Epoxyoxepin Intermediate: Potential Insights into Metabolic Ring-Opening of Benzene. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25194542. [PMID: 33023027 PMCID: PMC7582548 DOI: 10.3390/molecules25194542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Dimethyldioxirane epoxidizes 4,5-benzoxepin to form the reactive 2,3-epoxyoxepin intermediate followed by very rapid ring-opening to an o-xylylene that immediately isomerizes to the stable product 1H-2-benzopyran-1-carboxaldehyde. The present study demonstrates that separate incubations of 4,5-benzoxepin with three cytochrome P450 isoforms (2E1, 1A2, and 3A4) as well as pooled human liver microsomes (pHLM) also produce 1H-2-benzopyran-1-carboxaldehyde as the major product, likely via the 2,3-epoxyoxepin. The reaction of 4,5-benzoxepin with cerium (IV) ammonium nitrate (CAN) yields a dimeric oxidized molecule that is also a lesser product of the P450 oxidation of 4,5-benzoxepin. The observation that P450 enzymes epoxidize 4,5-benzoxepin suggests that the 2,3-epoxidation of oxepin is a major pathway for the ring-opening metabolism of benzene to muconaldehyde.
Collapse
|
3
|
Piper JD, Piper PW. Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Compr Rev Food Sci Food Saf 2017; 16:868-880. [PMID: 33371618 DOI: 10.1111/1541-4337.12284] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 12/30/2022]
Abstract
Sodium benzoate and potassium sorbate are extremely useful agents for food and beverage preservation, yet concerns remain over their complete safety. Benzoate can react with the ascorbic acid in drinks to produce the carcinogen benzene. A few children develop allergy to this additive while, as a competitive inhibitor of D-amino acid oxidase, benzoate can also influence neurotransmission and cognitive functioning. Model organism and cell culture studies have raised some issues. Benzoate has been found to exert teratogenic and neurotoxic effects on zebrafish embryos. In addition, benzoate and sorbate are reported to cause chromosome aberrations in cultured human lymphocytes; also to be potently mutagenic toward the mitochondrial DNA in aerobic yeast cells. Whether the substantial human consumption of these compounds could significantly increase levels of such damages in man is still unclear. There is no firm evidence that it is a risk factor in type 2 diabetes. The clinical administration of sodium benzoate is of proven benefit for many patients with urea cycle disorders, while recent studies indicate it may also be advantageous in the treatment of multiple sclerosis, schizophrenia, early-stage Alzheimer's disease and Parkinson's disease. Nevertheless, exposure to high amounts of this agent should be approached with caution, especially since it has the potential to generate a shortage of glycine which, in turn, can negatively influence brain neurochemistry. We discuss here how a small fraction of the population might be rendered-either through their genes or a chronic medical condition-particularly susceptible to any adverse effects of sodium benzoate.
Collapse
Affiliation(s)
- Joseph D Piper
- Centre for Genomics and Child Health, Blizard Inst., Queen Mary Univ. of London, London, E1 2AT, United Kingdom
| | - Peter W Piper
- Dept. of Molecular Biology and Biotechnology, Univ. of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
4
|
Snyder R. Benzene's toxicity: a consolidated short review of human and animal studies by HA Khan. Hum Exp Toxicol 2016; 26:687-96. [DOI: 10.1177/0960327107083975] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Khan's review is a brief summary of the complex field of study revolving around bone marrow toxicity and leukemogenesis observed in people chronically exposed to benzene. These comments are intended to demonstrate the use of the Kahn review as a launching pad for an in-depth analysis of the several related areas that must be fully explored to understand benzene-related diseases. The accumulated evidence demonstrates that benzene-induced bone marrow damage results from the production of hematotoxins that are metabolic products of benzene metabolism. The metabolism of benzene is described with respect to the formation benzene metabolites with emphasis on phenol and hydroquinone, which are the major metabolites, the significance of the formation of glutathione conjugates, the activity of NAD(P)H:quinone oxidoreductase (NQO1), and the ring opening products. Results are shown suggesting that oxidative stress induced by benzene metabolites is likely to be a significant factor in damaging DNA in bone marrow cells. Although a variety of effects on bone marrow can be demonstrated it is not yet clear which metabolites are most important in either benzene-induced aplastic anemia or leukemia. Benzene metabolism alone is insufficient to fully describe benzene toxicity. The impact of benzene metabolites on bone marrow cells must be fully explored to determine how benzene exposure can result in decreased viability or genetic toxicity to cells in the bone marrow. Human & Experimental Toxicology (2007) 26, 687— 696
Collapse
Affiliation(s)
- R. Snyder
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA,
| |
Collapse
|
5
|
Morgan J, Greenberg A. Insights into the formation and isomerization of the benzene metabolite muconaldehyde and related molecules: comparison of computational and experimental studies of simple, benzo-annelated, and bridged 2,3-epoxyoxepins. J Org Chem 2010; 75:4761-8. [PMID: 20560653 DOI: 10.1021/jo100610g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2,8-Dioxabicyclo[5.1.0]octa-3,5-diene ("2,3-epoxyoxepin") has been postulated as an intermediate in ring-opening metabolism of benzene. Density functional theory (B3LYP/6-31G*) is employed to study the activation and reaction energies for ring-opening isomerization of 2,3-epoxyoxepin, its 4,5-benzo derivative, and its 3,6-hexamethylene derivative. The results are compared with published experimental data. The markedly different fates of these three molecules suggest a means for testing the postulated metabolic pathway.
Collapse
Affiliation(s)
- Jessica Morgan
- Department of Chemistry University of New Hampshire Durham, New Hampshire 03824, USA
| | | |
Collapse
|
6
|
Wilbur S, Wohlers D, Paikoff S, Keith LS, Faroon O. ATSDR evaluation of health effects of benzene and relevance to public health. Toxicol Ind Health 2009; 24:263-398. [PMID: 19022880 DOI: 10.1177/0748233708090910] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals found at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) sites that have the greatest public health impact. These profiles comprehensively summarize toxicological and environmental information. This article constitutes the release of portions of the Toxicological Profile for Benzene. The primary purpose of this article is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of benzene. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health.
Collapse
Affiliation(s)
- S Wilbur
- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
7
|
Short DM, Lyon R, Watson DG, Barski OA, McGarvie G, Ellis EM. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4. Toxicol Appl Pharmacol 2006; 210:163-70. [PMID: 16289176 DOI: 10.1016/j.taap.2005.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022]
Abstract
The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a Vmax of 2141+/-500 nmol/min/mg and a Km of 11+/-4 microM. This enzyme was inhibited by pyrazole with a KI of 3.1+/-0.57 microM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a Vmax of 115 nmol/min/mg and a Km of 15+/-2 microM and was not inhibited by pyrazole.
Collapse
Affiliation(s)
- Duncan M Short
- Department of Bioscience, University of Strathclyde, 204 George Street, Glasgow, G1 1XW Scotland, UK
| | | | | | | | | | | |
Collapse
|
8
|
Yang Y, Griffiths WJ, Nordling M, Nygren J, Möller L, Bergman J, Liepinsh E, Otting G, Gustafsson JA, Rafter J, Sjövall J. Ring opening of benzo[a]pyrene in the germ-free rat is a novel pathway for formation of potentially genotoxic metabolites. Biochemistry 2000; 39:15585-91. [PMID: 11112546 DOI: 10.1021/bi001148y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabolism of benzo[a]pyrene (BP) is known to lead to a large number of oxygenated compounds, some of which can bind covalently to DNA. We have studied the integrated metabolism of BP in vivo in germ-free rats given (14)C-labeled BP. Urinary metabolites were separated into groups according to acidity using lipophilic ion exchangers. The groups were analyzed by mass spectrometry and were further fractionated by high-performance liquid chromatography. The fraction of urinary metabolites previously shown to contain N-acetylcysteine and glucuronic acid conjugates was found to contain derivatives of 7-oxo-benz[d]anthracene-3,4-dicarboxylic acid as major components. These compounds, which were identified by mass spectrometry and NMR, accounted for about 30% of the total metabolites in urine, demonstrating that, surprisingly, ring opening is a major pathway for metabolism of BP in the germ-free rat. The dicarboxylic acid may be excreted in urine as an ester glucuronide. By using the single cell gel electrophoresis or COMET assay, we were able to demonstrate that the anhydride of 7-oxo-benz[d]anthracene-3, 4-dicarboxylic acid was an efficient inducer of DNA damage. Taken together, these results indicate that the novel ring opening metabolic pathway may provide alternative mechanisms for the toxicity of BP.
Collapse
Affiliation(s)
- Y Yang
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|