1
|
Liu L, Karim Z, Schlörer N, de la Torre X, Botrè F, Zoschke C, Parr MK. Biotransformation of anabolic androgenic steroids in human skin cells. J Steroid Biochem Mol Biol 2024; 237:106444. [PMID: 38092130 DOI: 10.1016/j.jsbmb.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 02/04/2024]
Abstract
In comparison to well-known drug-metabolizing organs such as the liver, the metabolic capacity of human skin is still not well elucidated despite the widespread use of topical drug application. To gain a comprehensive insight into anabolic steroid metabolism in the skin, six structurally related anabolic androgenic steroids, testosterone, metandienone, methyltestosterone, clostebol, dehydrochloromethyltestosterone, and methylclostebol, were applied to human keratinocytes and fibroblasts derived from the juvenile foreskin. Phase I metabolites obtained from incubation media were analyzed by gas chromatography-mass spectrometry. The 5α-reductase activity was predominant in the metabolic pathways as supported by the detection of 5α-reduced metabolites after incubation of testosterone, methyltestosterone, clostebol, and methylclostebol. Additionally, the stereochemistry structures of fully reduced metabolites (4α,5α-isomers) of clostebol and methylclostebol were newly confirmed in this study by the help of inhouse synthesized reference materials. The results provide insights into the steroid metabolism in human skin cells with respect to the characteristics of the chemical structures.
Collapse
Affiliation(s)
- Lingyu Liu
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Ziaul Karim
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Nils Schlörer
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; REDs - Research and Expertise on Antidoping sciences, ISSUL - Institute de sciences du sport, Université de Lausanne, Synathlon 3224 - Quartier Centre, 1015 Lausanne, Switzerland
| | - Christian Zoschke
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; Federal Office of Consumer Protection and Food Safety, Department of Veterinary Drugs, Gerichtstr. 49, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Loke S, Liu L, Wenzel M, Scheffler H, Iannone M, de la Torre X, Schlörer N, Botrè F, Keiler AM, Bureik M, Parr MK. New Insights into the Metabolism of Methyltestosterone and Metandienone: Detection of Novel A-Ring Reduced Metabolites. Molecules 2021; 26:1354. [PMID: 33802606 PMCID: PMC7961831 DOI: 10.3390/molecules26051354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/09/2023] Open
Abstract
Metandienone and methyltestosterone are orally active anabolic-androgenic steroids with a 17α-methyl structure that are prohibited in sports but are frequently detected in anti-doping analysis. Following the previously reported detection of long-term metabolites with a 17ξ-hydroxymethyl-17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol structure in the chlorinated metandienone analog dehydrochloromethyltestosterone ("oral turinabol"), in this study we investigated the formation of similar metabolites of metandienone and 17α-methyltestosterone with a rearranged D-ring and a fully reduced A-ring. Using a semi-targeted approach including the synthesis of reference compounds, two diastereomeric substances, viz. 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol and its 5α-analog, were identified following an administration of methyltestosterone. In post-administration urines of metandienone, only the 5β-metabolite was detected. Additionally, 3α,5β-tetrahydro-epi-methyltestosterone was identified in the urines of both administrations besides the classical metabolites included in the screening procedures. Besides their applicability for anti-doping analysis, the results provide new insights into the metabolism of 17α-methyl steroids with respect to the order of reductions in the A-ring, the participation of different enzymes, and alterations to the D-ring.
Collapse
Affiliation(s)
- Steffen Loke
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Lingyu Liu
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Maxi Wenzel
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Heike Scheffler
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Michele Iannone
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
| | - Xavier de la Torre
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
| | - Nils Schlörer
- Institute for Organic Chemistry, Universität zu Köln, Grenstraße 4, 50939 Cologne, Germany;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
- REDs–Research and Expertise in Antidoping Sciences, ISSUL–Institute del Sciences du Sport de l’Université de Lausanne, 1015 Lausanne, Switzerland
| | - Annekathrin Martina Keiler
- Institute of Doping Analysis & Sports Biochemistry Dresden, Dresdner Str. 12, 01731 Kreischa, Germany;
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China;
| | - Maria Kristina Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| |
Collapse
|
3
|
Harvey DJ, Vouros P. MASS SPECTROMETRIC FRAGMENTATION OF TRIMETHYLSILYL AND RELATED ALKYLSILYL DERIVATIVES. MASS SPECTROMETRY REVIEWS 2020; 39:105-211. [PMID: 31808199 DOI: 10.1002/mas.21590] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/13/2019] [Indexed: 05/11/2023]
Abstract
This review describes the mass spectral fragmentation of trimethylsilyl (TMS) and related alkylsilyl derivatives used for preparing samples for analysis, mainly by combined gas chromatography and mass spectrometry (GC/MS). The review is divided into three sections. The first section is concerned with the TMS derivatives themselves and describes fragmentation of derivatized alcohols, thiols, amines, ketones, carboxylic acids and bifunctional compounds such as hydroxy- and amino-acids, halo acids and hydroxy ethers. More complex compounds such as glycerides, sphingolipids, carbohydrates, organic phosphates, phosphonates, steroids, vitamin D, cannabinoids, and prostaglandins are discussed next. The second section describes intermolecular reactions of siliconium ions such as the TMS cation and the third section discusses other alkylsilyl derivatives. Among these latter compounds are di- and trialkyl-silyl derivatives, various substituted-alkyldimethylsilyl derivatives such as the tert-butyldimethylsilyl ethers, cyclic silyl derivatives, alkoxysilyl derivatives, and 3-pyridylmethyldimethylsilyl esters used for double bond location in fatty acid spectra. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 0000:1-107, 2019.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, Massachusetts, 02115
| |
Collapse
|
4
|
Obukhova EN, Buryak AK. Determination of Isomers in Doping Control by Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Mazzarino M, Khevenhüller-Metsch FL, Fiacco I, Parr MK, de la Torre X, Botrè F. Drug-drug interaction and doping: Effect of non-prohibited drugs on the urinary excretion profile of methandienone. Drug Test Anal 2018; 10:1554-1565. [DOI: 10.1002/dta.2406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | | | - Ilaria Fiacco
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | - Maria Kristina Parr
- Department of Biology Chemistry and Pharmacy; Freie Universität Berlin; Germany
| | - Xavier de la Torre
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | - Francesco Botrè
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
- Dipartimento di Medicina Sperimentale; “Sapienza” Università di Roma; Rome Italy
| |
Collapse
|
6
|
Polet M, Van Gansbeke W, Geldof L, Deventer K, Van Eenoo P. Identification and characterization of novel long‐term metabolites of oxymesterone and mesterolone in human urine by application of selected reaction monitoring GC‐CI‐MS/MS. Drug Test Anal 2017; 9:1673-1684. [DOI: 10.1002/dta.2183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Polet
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control LaboratoryGhent University Technologiepark 30 B B‐9052 Zwijnaarde Belgium
| | - Wim Van Gansbeke
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control LaboratoryGhent University Technologiepark 30 B B‐9052 Zwijnaarde Belgium
| | - Lore Geldof
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control LaboratoryGhent University Technologiepark 30 B B‐9052 Zwijnaarde Belgium
| | - Koen Deventer
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control LaboratoryGhent University Technologiepark 30 B B‐9052 Zwijnaarde Belgium
| | - Peter Van Eenoo
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control LaboratoryGhent University Technologiepark 30 B B‐9052 Zwijnaarde Belgium
| |
Collapse
|
7
|
Polet M, Van Gansbeke W, Van Eenoo P, Deventer K. Efficient approach for the detection and identification of new androgenic metabolites by applying SRM GC-CI-MS/MS: a methandienone case study. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:524-534. [PMID: 27434811 DOI: 10.1002/jms.3781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/04/2016] [Accepted: 04/26/2016] [Indexed: 06/06/2023]
Abstract
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC-CI-MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long-term metabolite (18-nor-17β-hydroxymethyl,17α-methyl-androst-1,4,13-trien-3-one) could be detected up to 26 days by using GC-CI-MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long-term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michael Polet
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| | - Wim Van Gansbeke
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| | - Koen Deventer
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| |
Collapse
|
8
|
Gómez C, Pozo OJ, Garrostas L, Segura J, Ventura R. A new sulphate metabolite as a long-term marker of metandienone misuse. Steroids 2013; 78:1245-53. [PMID: 24055830 DOI: 10.1016/j.steroids.2013.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/12/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) after hydrolysis with β-glucuronidase and liquid-liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC-MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC-MS/MS and LC-MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).
Collapse
Affiliation(s)
- C Gómez
- Bioanalysis Research Group, IMIM-Hospital del Mar, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
9
|
Gosetti F, Mazzucco E, Gennaro MC, Marengo E. Ultra high performance liquid chromatography tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices. A review. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:22-36. [DOI: 10.1016/j.jchromb.2012.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023]
|
10
|
Sobolevsky T, Rodchenkov G. Mass spectrometric description of novel oxymetholone and desoxymethyltestosterone metabolites identified in human urine and their importance for doping control. Drug Test Anal 2012; 4:682-91. [DOI: 10.1002/dta.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Tim Sobolevsky
- Moscow Antidoping Centre; 105005; Moscow; Elizavetinsky per. 10; Russia
| | | |
Collapse
|
11
|
Identification of budesonide metabolites in human urine after oral administration. Anal Bioanal Chem 2012; 404:325-40. [PMID: 22573060 DOI: 10.1007/s00216-012-6037-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Budesonide (BUD) is a glucocorticoid widely used for the treatment of asthma, rhinitis, and inflammatory bowel disease. Its use in sport competitions is prohibited when administered by oral, intravenous, intramuscular, or rectal routes. However, topical preparations are not prohibited. Strategies to discriminate between legal and forbidden administrations have to be developed by doping control laboratories. For this reason, metabolism of BUD has been re-evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with different scan methods. Urine samples obtained after oral administration of 3 mg of BUD to two healthy volunteers have been analyzed for metabolite detection in free and glucuronide metabolic fractions. Structures of the metabolites have been studied by LC-MS/MS using collision induced dissociation and gas chromatography-mass spectrometry (GC/MS) in full scan mode with electron ionization. Combination of all structural information allowed the proposition of the most comprehensive picture for BUD metabolism in humans to this date. Overall, 16 metabolites including ten previously unreported compounds have been detected. The main metabolite is 16α-hydroxy-prednisolone resulting from the cleavage of the acetal group. Other metabolites without the acetal group have been identified such as those resulting from reduction of C20 carbonyl group, oxidation of the C11 hydroxyl group and reduction of the A ring. Metabolites maintaining the acetal group have also been identified, resulting from 6-hydroxylation (6α and 6β-hydroxy-budesonide), 23-hydroxylation, reduction of C6-C7, oxidation of the C11 hydroxyl group, and reduction of the C20 carbonyl group. Metabolites were mainly excreted in the free fraction. All of them were excreted in urine during the first 24 h after administration, and seven of them were still detected up to 48 h after administration for both volunteers.
Collapse
|
12
|
Biddle STB, O'Donnell A, Houghton E, Creaser C. Metabolism of methyltestosterone in the greyhound. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:713-721. [PMID: 19199316 DOI: 10.1002/rcm.3929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas chromatography/mass spectrometry and selective derivatisation techniques have been used to identify urinary metabolites of methyltestosterone following oral administration to the greyhound. Several metabolites were identified including reduced, mono-, di- and trihydroxylated steroids. The major metabolites observed were 17alpha-methyl-5beta-androstane-3alpha-17beta-diol, 17alpha-methyl-5beta-androstane-3alpha,16alpha,17beta-triol, and a further compound tentatively identified as 17alpha-methyl-5z-androstane-6z,17beta-triol. The most abundant of these was the 17alpha-methyl-5beta-androstane-3alpha,16alpha,17beta-triol. This metabolite was identified by comparison with a reference standard synthesised using a Grignard procedure and characterised using trimethylsilyl (TMS) and acetonide-TMS derivatisation techniques. There did not appear to be any evidence for 16beta-hydroxylation as a phase I metabolic transformation in the greyhound. However, significant quantities of 16alpha-hydroxy metabolites were detected. Selective enzymatic hydrolysis procedures indicated that the major metabolites identified were excreted as glucuronic acid conjugates. Metabolic transformations observed in the greyhound have been compared with those of other mammalian species and are discussed here.
Collapse
Affiliation(s)
- S T B Biddle
- HFL Sport Science, Quotient Bioresearch, Newmarket Road, Fordham, Ely CB7 5WW, UK.
| | | | | | | |
Collapse
|
13
|
Thevis M, Schänzer W. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators. Handb Exp Pharmacol 2009:99-126. [PMID: 20020362 DOI: 10.1007/978-3-540-79088-4_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | | |
Collapse
|
14
|
Yamada M, Aramaki S, Okayasu T, Hosoe T, Kurosawa M, Kijima-Suda I, Saito K, Nakazawa H. Identification and quantification of metabolites common to 17α-methyltestosterone and mestanolone in horse urine. J Pharm Biomed Anal 2007; 45:125-133. [PMID: 17709226 DOI: 10.1016/j.jpba.2007.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/17/2007] [Accepted: 06/27/2007] [Indexed: 11/29/2022]
Abstract
Anabolic steroids with the 17alpha-methyl,17beta-hydroxyl group, which were developed as oral formulations for therapeutic purposes, have been abused in the field of human sports. These anabolic steroids are also used to enhance racing performance in racehorses. In humans, structurally related 17alpha-methyltestosterone (MTS) and mestanolone (MSL), which are anabolic steroids with the 17alpha-methyl,17beta-hydroxyl group, have metabolites in common. The purpose of this study was to determine metabolites common to these two steroids in horses, which may serve as readily available screening targets for the doping test of these steroids in racehorses. Urine sample collected after administering MTS and MSL to horses was treated to obtain unconjugated steroid, glucuronide, and sulfate fractions. The fractions were subjected to gas chromatography/mass spectrometry (GC/MS), and 17alpha-methyl-5alpha-androstan-3beta,17beta-diol, 17alpha-hydroxymethyl-5alpha-androstan-3beta,17beta-diol, 17alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol, and 17alpha-methyl-5alpha-androstan-3beta,16alpha,17beta-triol were detected as the common metabolites by comparison with synthesized reference standards. The urinary concentrations of these metabolites after dosing were determined by GC/MS. 17Alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol was mainly detected in the sulfate fractions of urine samples after administration. This compound was consistently detected for the longest time in the urine samples after dosing with both steroids. The results suggest that 17alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol is a very useful screening target for the doping test of MTS and MSL in racehorses.
Collapse
Affiliation(s)
- Masayuki Yamada
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya City, Tochigi 320-0851, Japan.
| | - Sugako Aramaki
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya City, Tochigi 320-0851, Japan
| | - Toshimasa Okayasu
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya City, Tochigi 320-0851, Japan
| | - Tomoo Hosoe
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masahiko Kurosawa
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya City, Tochigi 320-0851, Japan
| | - Isao Kijima-Suda
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya City, Tochigi 320-0851, Japan
| | - Koichi Saito
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroyuki Nakazawa
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
15
|
McKinney AR, Suann CJ, Stenhouse AM. A stereochemical examination of the equine metabolism of 17α-methyltestosterone. Anal Chim Acta 2007; 581:377-87. [DOI: 10.1016/j.aca.2006.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 08/02/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
|
16
|
Schänzer W, Geyer H, Fusshöller G, Halatcheva N, Kohler M, Parr MK, Guddat S, Thomas A, Thevis M. Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2252-8. [PMID: 16804957 DOI: 10.1002/rcm.2587] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Anabolic-androgenic steroids are some of the most frequently detected drugs in amateur and professional sports. Doping control laboratories have developed numerous assays enabling the determination of administered drugs and/or their metabolic products that allow retrospectives with respect to pharmacokinetics and excretion profiles of steroids and their metabolites. A new metabolite generated from metandienone has been identified as 18-nor-17beta-hydroxymethyl,17alpha-methyl-androst-1,4,13-trien-3-one in excretion study urine samples providing a valuable tool for the long-term detection of metandienone abuse by athletes in sports drug testing. The metabolite was characterized using gas chromatography/(tandem) mass spectrometry, liquid chromatography/tandem mass spectrometry and liquid chromatography/high-resolution/high-accuracy (tandem) mass spectrometry by characteristic fragmentation patterns representing the intact 3-keto-1,4-diene structure in combination with typical product ions substantiating the proposed C/D-ring structure of the steroid metabolite. In addition, structure confirmation was obtained by the analysis of excretion study urine specimens obtained after administration of 17-CD(3)-labeled metandienone providing the deuterated analogue to the newly identified metabolite. 18-Nor-17beta-hydroxymethyl,17alpha-methyl-androst-1,4,13-trien-3-one was determined in metandienone administration study urine specimens up to 19 days after application of a single dose of 5 mg, hence providing an extended detection period compared with commonly employed strategies.
Collapse
Affiliation(s)
- Wilhelm Schänzer
- Center for Preventive Doping Research-Institute of Biochemistry, German Sport University Cologne, Carl-Diem Weg 6, 50933 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amundsen LK, Kokkonen JT, Rovio S, Sirén H. Analysis of anabolic steroids by partial filling micellar electrokinetic capillary chromatography and electrospray mass spectrometry. J Chromatogr A 2004; 1040:123-31. [PMID: 15248432 DOI: 10.1016/j.chroma.2004.03.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A partial filling micellar electrokinetic capillary chromatography (PF-MEKC) separation of six anabolic androgenic steroids (androstenedione, metandienone, fluoxymesterone, methyltestosterone, 17-epimetandienone and testosterone) is introduced. The method utilises a mixed micellar solution consisting of sodium dodecyl sulphate (SDS) and sodium taurocholate. The analytes are detected with a photodiode array detector at 247 nm wavelength. Methyltestosterone is used as internal standard. The detection limits were 39 microg/L for androstenedione, 40 microg/L for testosterone, 45 microg/L for fluoxymesterone, 45-90 microg/L for 17-epimetandienone, 59 microg/L for methyltestosterone and 90 microg/L for metandienone. Linear correlation between concentration (0.1-5.0 mg/L) and detector response was obtained with r2 of 0.994 for fluoxymesterone, 0.998 for 17-epimetandienone and 0.999 for androstenedione, metandienone and testosterone. In addition, ionisation of the investigated compounds in electrospray mass spectrometry (ESI-MS) was studied in positive ion mode. The most intense signal (100%) was the protonated molecular ion [M + H]+, except for 17-epimetandienone, which gave its strongest signal at m/z corresponding to [M - H2O + H]+. Finally, separation and identification of fluoxymesterone, androstenedione and testosterone by PF-MEKC-ESI-MS is described. This is the first use of PF-MEKC and PF-MEKC-ESI-MS assays for anabolic androgenic steroids.
Collapse
|
18
|
McKinney AR, Ridley DD, Suann CJ. Metabolism of methandrostenolone in the horse: a gas chromatographic-mass spectrometric investigation of phase I and phase II metabolism. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 765:71-9. [PMID: 11817312 DOI: 10.1016/s0378-4347(01)00409-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phase I and phase II metabolism of the anabolic steroid methandrostenolone was investigated following oral administration to a standardbred gelding. In the phase I study, metabolites were isolated from the urine by solid-phase extraction, deconjugated by acid catalysed methanolysis and converted to their O-methyloxime trimethylsilyl derivatives. GC-MS analysis indicated the major metabolic processes to be sequential reduction of the A-ring and hydroxylation at C6 and C16. In the phase II study, unconjugated, beta-glucuronidated and sulfated metabolites were fractionated and deconjugated using a combination of liquid-liquid extraction, enzyme hydrolysis, solid-phase extraction and acid catalysed methanolysis. Derivatization followed by GC-MS analysis revealed extensive conjugation to both glucuronic and sulfuric acids, with only a small proportion of metabolites occurring in unconjugated form.
Collapse
Affiliation(s)
- A R McKinney
- School of Chemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
19
|
Shinohara Y, Isurugi K, Hashimoto T. Stable isotope dilution analysis of human urinary metabolites of 17alpha-methyltestosterone. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 741:271-8. [PMID: 10872596 DOI: 10.1016/s0378-4347(00)00120-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A method based on gas chromatography-mass spectrometry-selected-ion monitoring was developed to measure the main metabolites of 17alpha-methyltestosterone, 17alpha-methyl-5alpha-androstan-3alpha,17beta-di ol and 17alpha-methyl-5beta-androstan-3alpha,17beta-dio l, in human urine. 17alpha-Methyl-[(2)H3]-5alpha-androstan-3alpha,1 7beta-diol and 17alpha-methyl-[(2)H3]-5beta-androstan-3alpha,17 beta-diol were used as internal standards. The methods involved purification using a Sep-Pak C(18) cartridge, hydrolysis by beta-glucuronidase from Ampullaria and derivatization with N-methyl-N-trimethylsilyl-trifluoroacetamide/dithioerythriol/ammon ium iodide. Quantitation was achieved by selected-ion monitoring of the characteristic fragment ions ([(M+H)-2xTMSOH]+) of the di-TMS derivatives on the chemical ionization mode. The method provides a specific, sensitive and reliable technique to determine the urine levels of 17alpha-methyl-5alpha-androstan-3alpha,17beta-di ol and 17alpha-methyl-5beta-androstan-3alpha,17beta-dio l, and can be applied to pharmacokinetic studies of 17alpha-methyltestosterone.
Collapse
Affiliation(s)
- Y Shinohara
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan.
| | | | | |
Collapse
|
20
|
Müller RK, Grosse J, Thieme D, Lang R, Teske J, Trauer H. Introduction to the application of capillary gas chromatography of performance-enhancing drugs in doping control. J Chromatogr A 1999; 843:275-85. [PMID: 10399856 DOI: 10.1016/s0021-9673(99)00498-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Performance-enhancing drugs banned by antidoping rules are detected in doping control preferably by hyphenated chromatographic techniques, capillary gas chromatography in particular. Based on the prohibited classes of substances and on the general aspects of sample collection and preparation, a survey is given about the usual procedures of screening, identification and confirmation of the most important doping agents: stimulants, narcotics, anabolics, diuretics, beta-blockers. In addition to gas chromatography itself, the application of various MS techniques doping is outlined.
Collapse
Affiliation(s)
- R K Müller
- Institute of Doping Analysis, Kreischa, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Stanley SM, Smith L, Rodgers JP. Biotransformation of 17-alkylsteroids in the equine: gas chromatographic-mass spectral identification of ten intermediate metabolites of methyltestosterone. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 690:55-64. [PMID: 9106029 DOI: 10.1016/s0378-4347(96)00404-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The metabolism of the orally active anabolic steroid methyltestosterone in the equine was investigated by administration of the drug along with a tritiated radiolabel tracer. In this study some of the metabolites were identified and a radio immunoassay screen and immunoaffinity chromatography gel for methyltestosterone were also evaluated. Pathway intermediates, in particular the 17-methylandrostanediols, were studied to gain an insight into the most likely stereochemistry of the major metabolites. The predominant phase I biotransformations involve reduction of the A ring 3-oxo and 4-ene groups to yield predominantly 3 beta-hydroxy-5 alpha-androstane products and hydroxylation of the steroid nucleus at several positions. Epimerisation of the 17 alpha-methyl group also occurred. Ten steroids could be positively identified by comparison with authentic reference materials and many other triol, tetrol and pentols were also observed. Phase II metabolites and sulphate conjugates in particular, were common.
Collapse
Affiliation(s)
- S M Stanley
- Jockey Club of Southern Africa, Johannesburg, Gauteng, Republic of South Africa
| | | | | |
Collapse
|
22
|
Ayotte C, Goudreault D, Charlebois A. Testing for natural and synthetic anabolic agents in human urine. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 687:3-25. [PMID: 9001949 DOI: 10.1016/s0378-4347(96)00032-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper describes a comprehensive method for the detection of natural and synthetic anabolic agents, including some veterinary preparations such as trenbolone, zeranol (a non-steroidal agent) and clenbuterol (a beta 2-agonist). For the natural steroids such as testosterone, the precise determination of urinary androgens during routine procedures allowed the description of statistical distribution of relevant parameters of the endogenous steroid profile amongst male athletes. The validity of the results is discussed, taking into account some factors that may cause the degradation of the specimen.
Collapse
Affiliation(s)
- C Ayotte
- Institut National de la Recherche Scientifique, INRS-Santé, Pointe-Claire Qué, Canada
| | | | | |
Collapse
|
23
|
Schänzer W, Opfermann G, Donike M. 17-Epimerization of 17 alpha-methyl anabolic steroids in humans: metabolism and synthesis of 17 alpha-hydroxy-17 beta-methyl steroids. Steroids 1992; 57:537-50. [PMID: 1448813 DOI: 10.1016/0039-128x(92)90023-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The 17-epimers of the anabolic steroids bolasterone (I), 4-chlorodehydromethyltestosterone (II), fluoxymesterone (III), furazabol (IV), metandienone (V), mestanolone (VI), methyltestosterone (VII), methandriol (VIII), oxandrolone (IX), oxymesterone (X), oxymetholone (XI), stanozolol (XII), and the human metabolites 7 alpha,17 alpha-dimethyl-5 beta-androstane-3 alpha,17 beta-diol (XIII) (metabolite of I), 6 beta-hydroxymetandienone (XIV) (metabolite of V), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (XV) (metabolite of V), 3'-hydroxystanozolol (XVI) (metabolite of XII), as well as the reference substances 17 beta-hydroxy-17 alpha-methyl-5 beta-androstan-3-one (XVII), 17 beta-hydroxy-17 alpha-methyl-5 beta-androst-1-en-3-one (XVIII) (also a metabolite of V), the four isomers 17 alpha-methyl-5 alpha-androstane-3 alpha,17 beta-diol (XIX) (also a metabolite of VI, VII, and XI), 17 alpha-methyl-5 alpha-androstane-3 beta,17 beta-diol (XX), 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (XXI) (also a metabolite of V, VII, and VIII), 17 alpha-methyl-5 beta-androstane-3 beta,17 beta-diol (XXII), and 17 beta-hydroxy-7 alpha,17 alpha-dimethyl-5 beta-androstan-3-one (XXIII) were synthesized via a 17 beta-sulfate that spontaneously hydrolyzed in water to several dehydration products, and to the 17 alpha-hydroxy-17 beta-methyl epimer. The 17 beta-sulfate was prepared by reaction of the 17 beta-hydroxy-17 alpha-methyl steroid with sulfur trioxide pyridine complex. The 17 beta-methyl epimers are eluted in gas chromatography as trimethylsilyl derivatives from a capillary SE-54 or OV-1 column 70-170 methylen units before the corresponding 17 alpha-methyl epimer. The electron impact mass spectra of the underivatized and trimethylsilylated epimers are in most cases identical and only for I, II, and V was a differentiation between the 17-epimers possible. 1H nuclear magnetic resonance (NMR) spectra show for the 17 beta-methyl epimer a chemical shift for the C-18 protons (singlet) of about 0.175 ppm (in deuterochloroform) to a lower field. 13C NMR spectra display differences for the 17-epimeric steroids in shielding effects for carbons 12-18 and 20. Excretion studies with I-XII with identification and quantification of 17-epimeric metabolites indicate that the extent of 17-epimerization depends on the A-ring structure and shows a great variation for the different 17 alpha-methyl anabolic steroids.
Collapse
Affiliation(s)
- W Schänzer
- Institut für Biochemie, Deutsche Sporthochschule, Cologne, Germany
| | | | | |
Collapse
|
24
|
Bi H, Massé R, Just G. Studies on anabolic steroids. 10. Synthesis and identification of acidic urinary metabolites of oxymetholone in a human. Steroids 1992; 57:453-9. [PMID: 1455463 DOI: 10.1016/0039-128x(92)90100-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two major unconjugated acidic metabolites of oxymetholone (17 beta-hydroxy-2-hydroxymethylene-17 alpha-methyl-5 alpha-androstan-3-one, 1), namely, 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,3-dioic acid (2) and 3 alpha,17 beta-dihydroxy-17 alpha-methyl-5 alpha-androstane-2 beta-carboxylic acid (6a), were detected by gas chromatography/mass spectrometry in urine samples collected after oral administration of 1 to a human volunteer. Reference steroid 2 was synthesized and identified. The identification of urinary metabolite 6a was based on the synthesis of its stereoisomers and the isomerization of the methyl ester 6b to its 2-epimer, 3 alpha,17 beta-dihydroxy-17 alpha-methyl-5 alpha-androstane-2 alpha-carboxylic acid methyl ester (9b). The mechanisms accounting for the formation of these acidic metabolites are discussed.
Collapse
Affiliation(s)
- H Bi
- Institut National de la Recherche Scientifique, INRS Santé, Université du Québec, Pointe-Claire, Canada
| | | | | |
Collapse
|
25
|
|
26
|
Bi H, Massé R, Just G. Studies on anabolic steroids. 9. Tertiary sulfates of anabolic 17 alpha-methyl steroids: synthesis and rearrangement. Steroids 1992; 57:306-12. [PMID: 1412567 DOI: 10.1016/0039-128x(92)90048-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A simple and convenient method has been developed to prepare sulfates of anabolic 17 beta-hydroxy-17 alpha-methyl steroids. The sulfates of methandienone, 17 alpha-methyltestosterone, mestanolone, oxandrolone, and stanozolol were prepared. Different A-ring functions were not affected under the sulfation condition. The buffered hydrolyses of these sulfates provided the 17-epimers of the original steroids and 17,17-dimethyl-18-nor-13(14)-ene steroids, presumably via the 17-carbocations.
Collapse
Affiliation(s)
- H Bi
- Institut National de la Recherche Scientifique, INRS-Santé, Université du Québec, Pointe-Claire, Canada
| | | | | |
Collapse
|
27
|
Hagedorn HW, Schulz R, Friedrich A. Detection of methandienone (methandrostenolone) and metabolites in horse urine by gas chromatography-mass spectrometry. JOURNAL OF CHROMATOGRAPHY 1992; 577:195-203. [PMID: 1400752 DOI: 10.1016/0378-4347(92)80240-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The metabolic transformation of methandienone (I) in the horse was investigated. After administration of a commercial drug preparation to a female horse (0.5 mg/kg), urine samples were collected up to 96 h and processed without enzymic hydrolysis. Extraction was performed by a series of solid-liquid and liquid-liquid extractions, thus avoiding laborious purification techniques. For analysis by gas chromatography-mass spectrometry, the extracts were trimethylsilylated. Besides the parent compound I and its C-17 epimer II, three monohydroxylated metabolites were identified: 6 beta-hydroxymethandienone (III), its C-17 epimer (IV) and 16 beta-hydroxymethandienone (V). In addition, three isomers of 6 beta,16-dihydroxymethandienone (VIa-c) were discovered. Apparently, reduction of the delta 4 double bond of 16 beta-hydroxymethandienone (V) in the horse yields 16 beta,17 beta-dihydroxy-17 alpha-methyl-5 beta-androst-1-en-3-one (VII). Reduction of the isomers VIa-c results in the corresponding 6 beta,16,17-trihydroxy-17-methyl-5 beta-androst-1-en-3-ones (VIIIa-c). The data presented here suggest that screening for the isomers of VI and VIII, applying the selected-ion monitoring technique, will be the most successful way of proving methandienone administration to a horse.
Collapse
Affiliation(s)
- H W Hagedorn
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Germany
| | | | | |
Collapse
|
28
|
Bi H, Massé R. Studies on anabolic steroids--12. Epimerization and degradation of anabolic 17 beta-sulfate-17 alpha-methyl steroids in human: qualitative and quantitative GC/MS analysis. J Steroid Biochem Mol Biol 1992; 42:533-46. [PMID: 1616883 DOI: 10.1016/0960-0760(92)90267-m] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The epimerization and dehydration reactions of the 17 beta-hydroxy group of anabolic 17 beta-hydroxy-17 alpha-methyl steroids have been investigated using the pyridinium salts of 17 beta-sulfate derivatives of methandienone 1, methyltestosterone 4, oxandrolone 7, mestanolone 10 and stanozolol 11 as model compounds. Rearrangement of the sulfate conjugates in buffered urine (pH 5.2) afforded the corresponding 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes in a ratio of 0.8:1. These data indicated that both epimerization and dehydration of the 17 beta-sulfate derivatives were not dependent upon the respective chemical features of the steroids studied, but were instead inherent to the chemistry of the tertiary 17 beta-hydroxy group of these steroids. Interestingly, in vivo studies carried out with human male volunteers showed that only methandienone 1, methyltestosterone 4 and oxandrolone 7 yielded the corresponding 17-epimers 2, 5 and 8 and the 18-nor-17,17-dimethyl-13(14)-enes 3, 6 and 9 in ratios of 0.5:1, 2:1 and 2.7:1, respectively. No trace of the corresponding 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes derivatives of mestanolone 10 and stanozolol 11 was detected in urine samples collected after administration of these steroids. These data suggested that the in vivo formation of the 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes derivatives of 17 beta-hydroxy-17 alpha-methyl steroids is also dependent upon phase I and phase II metabolic reactions other than sulfation of the tertiary 17 beta-hydroxyl group, which are probably modulated by the respective chemical features of the steroidal substrates. The data reported in this study demonstrate that the 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes are not artifacts resulting from the acidic or microbial degradation of the parent steroids in the gut as previously suggested by other authors, but arise from the rearrangement of their 17 beta-sulfate derivatives. Unchanged oxandrolone 7 was solely detected in the unconjugated steroid fraction whereas unchanged steroids 1, 4 and 11 were recovered from the glucuronide fraction. These data are indirect evidences suggesting that the glucuronide conjugates of compounds 1 and 4 are probably enol glucuronides and that of compound 11 is excreted in urine as a N-glucuronide involving its pyrazole moiety. The urinary excretion profiles of the epimeric and 18-nor-17,17-dimethyl-13(14)-ene steroids are presented and discussed on the basis of their structural features.
Collapse
Affiliation(s)
- H Bi
- Institut National de la Recherche Scientifique, INRS-Santé, Université du Québec, Canada
| | | |
Collapse
|
29
|
Bi H, Du P, Massé R. Studies on anabolic steroids--8. GC/MS characterization of unusual seco acidic metabolites of oxymetholone in human urine. J Steroid Biochem Mol Biol 1992; 42:229-42. [PMID: 1567786 DOI: 10.1016/0960-0760(92)90032-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the biotransformation routes of oxymetholone (17 beta-hydroxy-2-hydroxymethylene-17 alpha-methyl-5 alpha-androstan-3-one) in man leads to the formation of 17 beta-hydroxy-17 alpha-methyl-5 alpha-androstan-3-one (mestanolone). To demonstrate that this latter steroid may be formed by decarboxylation of an intermediate metabolite of oxymetholone bearing a 2-carboxylic group, we studied the urinary excretion of oxymetholone acidic metabolites. Five new acidic metabolites are reported here for the first time, among which four are unusual seco steroids resulting from the oxidative cleavage of the A-ring. The most abundant compound is 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,3-dioic acid 1, the cumulative excretion of which accounted for 1.52% of the dose. Three other seco diacids were produced in smaller amounts, namely 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,4- dicarboxylic acid 3, 17 beta-hydroxy-17 alpha-methyl-1,3-seco-5 alpha-androstane-1,3-dioic acid 4 and 17 beta-hydroxy-17 alpha-methyl-2,4-seco-5 alpha-androstane-2,4-dioic acid 5. The fifth acidic metabolite was identified as 3 alpha, 17 beta-dihydroxy-17 alpha-methyl-5 alpha-androstane-2 beta-carboxylic acid 2. The excretion in urine of these acidic metabolites suggests that the 2-hydroxymethylene group in oxymetholone is readily oxidized to yield the corresponding beta-keto acid which can be (1) decarboxylated to form mestanolone; (2) reduced at C-3 to give compound 2; and (3) further oxidized to afford the unexpected seco diacids 1, 3, 4 and 5. The identity of compounds 1 and 2 was ascertained by GC/MS and 1H and 13C-NMR analysis of reference compounds. The other metabolites were characterized by GC/MS analysis.
Collapse
Affiliation(s)
- H Bi
- Institut National de la Recherche Scientifique, INRS-Santé, Université du Québec, Pointe-Claire, Canada
| | | | | |
Collapse
|
30
|
Massé R, Bi H, Du P. Studies on anabolic steroids. VII Analysis of urinary metabolites of formebolone in man by gas chromatography—mass spectrometry. Anal Chim Acta 1991. [DOI: 10.1016/s0003-2670(00)83815-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|