1
|
Hu Y, Pan J, Xin Y, Mi X, Wang J, Gao Q, Luo H. Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. Front Aging Neurosci 2018; 10:259. [PMID: 30210331 PMCID: PMC6119720 DOI: 10.3389/fnagi.2018.00259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 were identified and characterized by high connectivity, module membership, or gene significance in the blue module. Furthermore, these genes were validated in mice of different ages. Mechanically, the potential regulators of blue module were investigated. These findings highlight an important role of the blue module and its affiliated genes in the control of normal brain aging, which may lead to potential therapeutic interventions for brain aging by targeting the hub genes.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Junping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yirong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangnan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiahui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Perez-Pouchoulen M, Toledo R, Garcia LI, Perez-Estudillo CA, Coria-Avila GA, Hernandez ME, Carrillo P, Manzo J. Androgen receptors in Purkinje neurons are modulated by systemic testosterone and sexual training in a region-specific manner in the male rat. Physiol Behav 2016; 156:191-8. [DOI: 10.1016/j.physbeh.2016.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/03/2016] [Accepted: 01/22/2016] [Indexed: 01/04/2023]
|
3
|
Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J Endocrinol 2015; 2015:294278. [PMID: 26491440 PMCID: PMC4600502 DOI: 10.1155/2015/294278] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Minqian Shen
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
4
|
Diego VP, Curran JE, Charlesworth J, Peralta JM, Voruganti VS, Cole SA, Dyer TD, Johnson MP, Moses EK, Göring HHH, Williams JT, Comuzzie AG, Almasy L, Blangero J, Williams-Blangero S. Systems genetics of the nuclear factor-κB signal transduction network. I. Detection of several quantitative trait loci potentially relevant to aging. Mech Ageing Dev 2011; 133:11-9. [PMID: 22155176 DOI: 10.1016/j.mad.2011.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 01/22/2023]
Abstract
A theory of aging holds that senescence is caused by a dysregulated nuclear factor kappa B (NF-κB) signal transduction network (STN). We adopted a systems genetics approach in our study of the NF-κB STN. Ingenuity Pathways Analysis (IPA) was used to identify gene/gene product interactions between NF-κB and the genes in our transcriptional profiling array. Principal components factor analysis (PCFA) was performed on a sub-network of 19 genes, including two initiators of the toll-like receptor (TLR) pathway, myeloid differentiation primary response gene (88) (MyD88) and TIR (Toll/interleukin-1 receptor)-domain-containing adapter-inducing interferon-β (TRIF). TLR pathways are either MyD88-dependent or TRIF-dependent. Therefore, we also performed PCFA on a subset excluding the MyD88 transcript, and on another subset excluding two TRIF transcripts. Using linkage analysis we found that each set gave rise to at least one factor with a logarithm of the odds (LOD) score greater than 3, two on chromosome 15 at 15q12 and 15q22.2, and another two on chromosome 17 at 17p13.3 and 17q25.3. We also found several suggestive signals (2<LOD score<3) at 1q32.1, 1q41, 2q34, 3q23, and 7p15.3. We are currently examining potential associations with single nucleotide polymorphisms within the 1-LOD intervals of our linkage signals.
Collapse
Affiliation(s)
- Vincent P Diego
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Salminen A, Kaarniranta K. NF-kappaB signaling in the aging process. J Clin Immunol 2009; 29:397-405. [PMID: 19408108 DOI: 10.1007/s10875-009-9296-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The aging process represents a progressive decline in cellular and organism function. Explaining the aging process has given rise to a cornucopia for different theories in which the basic difference has been the question whether aging is genetically regulated or an entropic degeneration process. DISCUSSION Different screening techniques have revealed that mammalian aging is associated with the activation of NF-kappaB transcription factor system. The NF-kappaB system is an ancient host defense system concerned with immune responses and different external and internal dangers, such as oxidative and genotoxic stress. NF-kappaB signaling is not only the master regulator of inflammatory responses but can also regulate several homeostatic responses such as apoptosis, autophagy, and tissue atrophy. We will describe how chronic activation of NF-kappaB signaling has the capacity to induce the senescent phenotype associated with aging. Interestingly, several longevity genes such as SIRT1, SIRT6, and FoxOs can clearly suppress NF-kappaB signaling and in this way delay the aging process and extend lifespan. CONCLUSION It seems that the aging process is an entropic degeneration process driven by NF-kappaB signaling. This process can be regulated by a variety of longevity genes along with a plethora of other factors such as genetic polymorphism, immune and dietary aspects, and environmental insults.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
6
|
Shi L, Ko S, Kim S, Echchgadda I, Oh TS, Song CS, Chatterjee B. Loss of androgen receptor in aging and oxidative stress through Myb protooncoprotein-regulated reciprocal chromatin dynamics of p53 and poly(ADP-ribose) polymerase PARP-1. J Biol Chem 2008; 283:36474-85. [PMID: 18945670 DOI: 10.1074/jbc.m805980200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribosyl)ation of transcription factors and coregulators, mediated by the poly(ADP-ribose) polymerase PARP-1, has been emerging as an important epigenetic mechanism that controls transcriptional dynamics in response to diverse intra- and extracellular signals. PARP-1 activity is also implicated in the regulation of mammalian lifespan. Herein we show that transcriptional down-regulation of androgen receptor (AR) in the aging rat liver and in oxidatively stressed hepatoma cells involves exchange of a PARP-1-associated, p/CAF-containing coactivator assembly for a p53-interacting, Groucho/TLE1-, and mSin3A-included corepressor complex at an age- and oxidant-responsive DNA element (age-dependent factor (ADF) element) in the AR promoter. The coregulator switch is mediated by B-Myb and c-Myb, which bind to the ADF element and physically associate with PARP-1 and the tumor suppressor p53. Heterogeneous nuclear ribonucleoprotein K, residing at the ADF element in association with PARP-1, may serve a platform role in stabilizing the activating complex. PARP-1 coactivated B-Myb- and c-Myb-mediated transactivation of the AR promoter, and p53 antagonized the B-Myb/c-Myb-induced AR promoter activation. PARP-1, heterogeneous nuclear ribonucleoprotein K, B-Myb, and c-Myb each serves as a positive regulator of cellular AR content, whereas p53 negatively regulates AR expression. Our results identify a shared, PARP-1-regulated sensing mechanism that coordinates transcriptional repression of AR during aging and in response to oxidative stress. This study may provide insights as to how advancing age and intracellular redox balance might influence androgen-regulated physiology.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B. Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 2002; 1:367-80. [PMID: 12067592 DOI: 10.1016/s1568-1637(02)00006-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genetic makeup of the organism appears to dictate the species-specific rate of aging and the maximum life-span potential. The genotype is converted to phenotype through transcriptional and translational regulation. A group of gene regulatory proteins (transcription factors) play critical roles in controlling the rates of transcription of specific genes by directly interacting with regulatory sequences at gene promoters. Here, we review the basic mechanism of transcriptional control and the role of a number of transcription factors whose level and/or activity alter with age. Among these age-dependent transcription factors, many are involved in the regulation of stress and inflammatory responses and are subjected to functional alterations by reactive oxygen species (ROSs). A progressive rise of oxidative stress, impaired ability to cope with stressful stimuli and prolongation of the inflammatory response are some of the hallmarks of the senescent phenotype. Results published to date are supportive of the concept that a species-specific program of the temporal regulation of genes with additional modulation by a number of epigenetic factors, mediates the age-dependent deterioration of physiological functions and development of the senescent phenotype.
Collapse
Affiliation(s)
- Arun K Roy
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Eagon PK, Elm MS, Tadic SD, Nanji AA. Downregulation of nuclear sex steroid receptor activity correlates with severity of alcoholic liver injury. Am J Physiol Gastrointest Liver Physiol 2001; 281:G342-9. [PMID: 11447013 DOI: 10.1152/ajpgi.2001.281.2.g342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic ethanol ingestion in rats and humans results in significant alterations in sex steroid levels and expression of sex hormone-dependent phenotype. In this study, we used the intragastric feeding model in male rats to determine hepatic sex hormone receptor activity under circumstances of chronic ethanol exposure and differing degrees of liver injury induced by type of dietary fat. Pathological analysis and quantitation of hepatic androgen receptor (AR) and estrogen receptor (ER) activity, serum sex hormones, and sex hormone-responsive protein and mRNA expression were performed. The activity of the physiologically relevant nuclear form of both AR and ER was significantly decreased with ethanol and correlated inversely with the severity of liver injury. Serum testosterone levels, as well as expression of an androgen-dependent hepatic mRNA, were decreased by ethanol and progressive liver injury. Serum estradiol increased with liver injury. We postulate that these changes in receptor activity may be due to the oxidative stress, reduced cellular energy, and/or altered cytokine milieu known to occur in this model.
Collapse
Affiliation(s)
- P K Eagon
- Veterans Affairs Medical Center, and Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
10
|
Mayo JC, Sainz RM, Antolín I, Rodriguez C. Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage. Brain Res 1999; 818:221-7. [PMID: 10082807 DOI: 10.1016/s0006-8993(98)01262-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and cultured neuronal cells. Biochemical and molecular approaches showed previously that low doses of 6-OHDA induced apoptosis in PC12 cells, while high doses of this neurotoxin induced necrosis. Melatonin has been shown to protect against the neuronal programmed cell death induced by 6-OHDA, although it was not able to prevent the massive necrotic cellular death occurring after the addition of high doses of the neurotoxin. In the present work, we demonstrate by ultrastructural analysis that although low doses of 6-OHDA induced apoptosis in PC12 cells, it also damaged the non-apoptotic cells, morphologically corresponding this damage to incipient and reversible necrotic lesions. When the doses of the neurotoxin increase, there are still apoptotic cells, although most of the cells show necrotic irreversible lesions. We also found that melatonin partially prevents the incipient necrotic lesions caused by low doses of 6-OHDA. The fact that melatonin was shown in previous work to prevent apoptosis caused by low doses of 6-OHDA, but not necrosis induced by high doses of the neurotoxin, seemed to indicate that this agent is only able to protect against apoptosis. However, our present results, melatonin preventing also the incipient necrotic neuronal lesions, suggest that this hormone may provide a general protection against cell death, suggesting that higher doses should be tried in order to prevent the necrotic cell death induced by high doses of the neurotoxin.
Collapse
Affiliation(s)
- J C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Julian Claveria s/n, 33006, Oviedo, Spain
| | | | | | | |
Collapse
|
11
|
Matsumoto A, Prins GS. Age-dependent changes in androgen receptor immunoreactivity in motoneurons of the spinal nucleus of the bulbocavernosus of male rats. Neurosci Lett 1998; 243:29-32. [PMID: 9535105 DOI: 10.1016/s0304-3940(98)00078-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Androgen receptor (AR) immunoreactivity was examined in androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB) in young and old male rats by immunohistochemistry using the polyclonal antibody, PG21. In young animals, intense AR immunoreactivity was confined to the cell nucleus, but not in the nucleolus of SNB motoneurons. In old animals, both the intensity of AR immunoreactivity in the nuclei and number of AR immunoreactive nuclei of the SNB motoneurons were significantly reduced. Plasma levels of testosterone in old animals were significantly smaller than those in young ones. Age-dependent changes both in AR expression of SNB motoneurons and plasma levels of androgen seem to correlate with the aging of the SNB system.
Collapse
Affiliation(s)
- A Matsumoto
- Department of Anatomy, Juntendo University School of Medicine, Hongo, Tokyo, Japan.
| | | |
Collapse
|
12
|
|