Martinsen B, Oppegaard H, Wichstrøm R, Myhr E. Temperature-dependent in vitro antimicrobial activity of four 4-quinolones and oxytetracycline against bacteria pathogenic to fish.
Antimicrob Agents Chemother 1992;
36:1738-43. [PMID:
1416857 PMCID:
PMC192039 DOI:
10.1128/aac.36.8.1738]
[Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The in vitro antimicrobial activities of oxolinic acid, flumequine, sarafloxacin, enrofloxacin, and oxytetracycline against strains of bacteria pathogenic to fish (Aeromonas salmonicida subsp. salmonicida, atypical A. salmonicida, Vibrio salmonicida, Vibrio anguillarum, and Yersinia ruckeri) were determined at two different incubation temperatures, 4 and 15 degrees C, by a drug microdilution method. The main objective of the study was to examine the effect of incubation temperature on the in vitro activities of 4-quinolones and oxytetracycline against these bacteria. When tested against A. salmonicida subsp. salmonicida, all of the quinolones examined had MICs two- to threefold higher at 4 degrees C than at 15 degrees C. Similarly, 1.5- to 2-fold higher MICs were recorded for all of the quinolones except sarafloxacin at 4 degrees C than at 15 degrees C when the drugs were tested against V. salmonicida. In contrast to those of the quinolones, the MICs of oxytetracycline were two- to eightfold lower at 4 degrees C than at 15 degrees C against all of the bacterial species tested. Of the antimicrobial agents tested against the bacterial species included in the study, enrofloxacin was the most active and oxytetracycline was the least active. Sarafloxacin was slightly more active than flumequine and oxolinic acid, especially against oxolinic acid-resistant A. salmonicida subsp. salmonicida strains.
Collapse