1
|
Pastor AM, Blumer R, de la Cruz RR. Extraocular Motoneurons and Neurotrophism. ADVANCES IN NEUROBIOLOGY 2022; 28:281-319. [PMID: 36066830 DOI: 10.1007/978-3-031-07167-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity. According to their innervation pattern, extraocular muscle fibers can be classified as singly innervated muscle fiber (SIF), or the peculiar multiply innervated muscle fiber (MIF). SIF motoneurons show anatomical and physiological differences with MIF motoneurons. The latter are smaller and display lower eye position and velocity sensitivities as compared with SIF motoneurons.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Seville, Spain.
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Sajanti A, Lyne SB, Girard R, Frantzén J, Rantamäki T, Heino I, Cao Y, Diniz C, Umemori J, Li Y, Takala R, Posti JP, Roine S, Koskimäki F, Rahi M, Rinne J, Castrén E, Koskimäki J. A comprehensive p75 neurotrophin receptor gene network and pathway analyses identifying new target genes. Sci Rep 2020; 10:14984. [PMID: 32917932 PMCID: PMC7486379 DOI: 10.1038/s41598-020-72061-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
P75 neurotrophic receptor (p75NTR) is an important receptor for the role of neurotrophins in modulating brain plasticity and apoptosis. The current understanding of the role of p75NTR in cellular adaptation following pathological insults remains blurred, which makes p75NTR’s related signaling networks an interesting and challenging initial point of investigation. We identified p75NTR and related genes through extensive data mining of a PubMed literature search including published works related to p75NTR from the past 20 years. Bioinformatic network and pathway analyses of identified genes (n = 235) were performed using ReactomeFIViz in Cytoscape based on the highly reliable Reactome functional interaction network algorithm. This approach merges interactions extracted from human curated pathways with predicted interactions from machine learning. Genome-wide pathway analysis showed total of 16 enriched hierarchical clusters. A total of 278 enriched single pathways were also identified (p < 0.05, false discovery rate corrected). Gene network analyses showed multiple known and new targets in the p75NTR gene network. This study provides a comprehensive analysis and investigation into the current knowledge of p75NTR signaling networks and pathways. These results also identify several genes and their respective protein products as involved in the p75NTR network, which have not previously been clearly studied in this pathway. These results can be used to generate novel hypotheses to gain a greater understanding of p75NTR in acute brain injuries, neurodegenerative diseases and general response to cellular damage.
Collapse
Affiliation(s)
- Antti Sajanti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Seán B Lyne
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences and Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Iiro Heino
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA
| | - Cassiano Diniz
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland
| | - Yan Li
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL, 60637, USA.,Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Riikka Takala
- Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, POB 52, 20521, Turku, Finland.,Department of Anaesthesiology and Intensive Care, University of Turku, Turku, Finland
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Susanna Roine
- Division of Clinical Neurosciences, Department of Cerebrovascular Diseases, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Fredrika Koskimäki
- Division of Clinical Neurosciences, Department of Cerebrovascular Diseases, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Melissa Rahi
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Jaakko Rinne
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Box 63, 00014, Helsinki, Finland
| | - Janne Koskimäki
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Hämeentie 11, P.O. Box 52, 20521, Turku, Finland. .,Department of Psychiatry, Central Hospital of Southern Ostrobothnia, Hanneksenrinne 7, 60220, Seinäjoki, Finland.
| |
Collapse
|
3
|
Woolf AS. Growing a new human kidney. Kidney Int 2019; 96:871-882. [PMID: 31399199 PMCID: PMC6856720 DOI: 10.1016/j.kint.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
There are 3 reasons to generate a new human kidney. The first is to learn more about the biology of the developing and mature organ. The second is to generate tissues with which to model congenital and acquired kidney diseases. In particular, growing human kidneys in this manner ultimately should help us understand the mechanisms of common chronic kidney diseases such as diabetic nephropathy and others featuring fibrosis, as well as nephrotoxicity. The third reason is to provide functional kidney tissues that can be used directly in regenerative medicine therapies. The second and third reasons to grow new human kidneys are especially compelling given the millions of persons worldwide whose lives depend on a functioning kidney transplant or long-term dialysis, as well as those with end-stage renal disease who die prematurely because they are unable to access these treatments. As shown in this review, the aim to create healthy human kidney tissues has been partially realized. Moreover, the technology shows promise in terms of modeling genetic disease. In contrast, barely the first steps have been taken toward modeling nongenetic chronic kidney diseases or using newly grown human kidney tissue for regenerative medicine therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, United Kingdom; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
4
|
Geron M, Kumar R, Matzner H, Lahiani A, Gincberg G, Cohen G, Lazarovici P, Priel A. Protein toxins of the Echis coloratus viper venom directly activate TRPV1. Biochim Biophys Acta Gen Subj 2017; 1861:615-623. [PMID: 28063984 DOI: 10.1016/j.bbagen.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Peptide and protein toxins are essential tools to dissect and probe the biology of their target receptors. Venoms target vital physiological processes to evoke pain. Snake venoms contain various factors with the ability to evoke, enhance and sustain pain sensation. While a number of venom-derived toxins were shown to directly target TRPV1 channels expressed on somatosensory nerve terminals to evoke pain response, such toxins were yet to be identified in snake venoms. METHODS We screened Echis coloratus saw-scaled viper venom's protein fractions isolated by reversed phase HPLC for their ability to activate TRPV1 channels. To this end, we employed heterologous systems to analyze TRPV1 and NGF pathways by imaging and electrophysiology, combined with molecular biology, biochemical, and pharmacological tools. RESULTS We identified TRPV1 activating proteins in the venom of Echis coloratus that produce a channel-dependent increase in intracellular calcium and outwardly rectifying currents in neurons and heterologous systems. Interestingly, channel activation was not mediated by any of its known toxin binding sites. Moreover, although NGF neurotropic activity was detected in this venom, TRPV1 activation was independent of NGF receptors. CONCLUSIONS Echis coloratus venom contains proteins with the ability to directly activate TRPV1. This activity is independent of the NGF pathway and is not mediated by known TRPV1 toxins' binding sites. GENERAL SIGNIFICANCE Our results could facilitate the discovery of new toxins targeting TRPV1 to enhance current understanding of this receptor activation mechanism. Furthermore, the findings of this study provide insight into the mechanism through which snakes' venom elicit pain.
Collapse
Affiliation(s)
- Matan Geron
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Rakesh Kumar
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Henry Matzner
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Adi Lahiani
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Galit Gincberg
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gadi Cohen
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Philip Lazarovici
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Avi Priel
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
5
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
6
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
7
|
Ettinger K, Lecht S, Arien-Zakay H, Cohen G, Aga-Mizrachi S, Yanay N, Saragovi HU, Nedev H, Marcinkiewicz C, Nevo Y, Lazarovici P. Nerve growth factor stimulation of ERK1/2 phosphorylation requires both p75NTR and α9β1 integrin and confers myoprotection towards ischemia in C2C12 skeletal muscle cell model. Cell Signal 2012; 24:2378-88. [PMID: 22960610 DOI: 10.1016/j.cellsig.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/06/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
Abstract
The functions of nerve growth factor (NGF) in skeletal muscles physiology and pathology are not clear and call for an updated investigation. To achieve this goal we sought to investigate NGF-induced ERK1/2 phosphorylation and its role in the C2C12 skeletal muscle myoblasts and myotubes. RT-PCR and western blotting experiments demonstrated expression of p75(NTR), α9β1 integrin, and its regulator ADAM12, but not trkA in the cells, as also found in gastrocnemius and quadriceps mice muscles. Both proNGF and βNGF induced ERK1/2 phosphorylation, a process blocked by (a) the specific MEK inhibitor, PD98059; (b) VLO5, a MLD-disintegrin with relative selectivity towards α9β1 integrin; and (c) p75(NTR) antagonists Thx-B and LM-24, but not the inactive control molecule backbone Thx. Upon treatment for 4 days with either anti-NGF antibody or VLO5 or Thx-B, the proliferation of myoblasts was decreased by 60-70%, 85-90% and 60-80% respectively, indicative of trophic effect of NGF which was autocrinically released by the cells. Exposure of myotubes to ischemic insult in the presence of βNGF, added either 1h before oxygen-glucose-deprivation or concomitant with reoxygenation insults, resulted with about 20% and 33% myoprotection, an effect antagonized by VLO5 and Thx-B, further supporting the trophic role of NGF in C2C12 cells. Cumulatively, the present findings propose that proNGF and βNGF-induced ERK1/2 phosphorylation in C2C12 cells by functional cooperation between p75(NTR) and α9β1 integrin, which are involved in myoprotective effects of autocrine released NGF. Furthermore, the present study establishes an important trophic role of α9β1 in NGF-induced signaling in skeletal muscle model, resembling the role of trkA in neurons. Future molecular characterization of the interactions between NGF receptors in the skeletal muscle will contribute to the understanding of NGF mechanism of action and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Keren Ettinger
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nerve growth factor regulates the firing patterns and synaptic composition of motoneurons. J Neurosci 2010; 30:8308-19. [PMID: 20554882 DOI: 10.1523/jneurosci.0719-10.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Target-derived neurotrophins exert powerful synaptotrophic actions in the adult brain and are involved in the regulation of different forms of synaptic plasticity. Target disconnection produces a profound synaptic stripping due to the lack of trophic support. Consequently, target reinnervation leads to synaptic remodeling and restoration of cellular functions. Extraocular motoneurons are unique in that they normally express the TrkA neurotrophin receptor in the adult, a feature not seen in other cranial or spinal motoneurons, except after lesions such as axotomy or in neurodegenerative diseases like amyotrophic lateral sclerosis. We investigated the effects of nerve growth factor (NGF) by retrogradely delivering this neurotrophin to abducens motoneurons of adult cats. Axotomy reduced the density of somatic boutons and the overall tonic and phasic firing modulation. Treatment with NGF restored synaptic inputs and firing modulation in axotomized motoneurons. When K252a, a selective inhibitor of tyrosine kinase activity, was applied to specifically test TrkA effects, the NGF-mediated restoration of synapses and firing-related parameters was abolished. Discharge variability and recruitment threshold were, however, increased by NGF compared with control or axotomized motoneurons. Interestingly, these parameters returned to normal following application of REX, an antibody raised against neurotrophin receptor p75 (p75(NTR)). In conclusion, NGF, acting retrogradely through TrkA receptors, supports afferent boutons and regulates the burst and tonic signals correlated with eye movements. On the other hand, p75(NTR) activation regulates recruitment threshold, which impacts on firing regularity. To our knowledge, this is the first report showing powerful synaptotrophic effects of NGF on motoneurons in vivo.
Collapse
|
9
|
Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell Tissue Res 2010; 340:267-86. [PMID: 20387078 DOI: 10.1007/s00441-010-0959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/26/2010] [Indexed: 12/20/2022]
Abstract
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of beta-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.
Collapse
|
10
|
Deponti D, Buono R, Catanzaro G, De Palma C, Longhi R, Meneveri R, Bresolin N, Bassi MT, Cossu G, Clementi E, Brunelli S. The low-affinity receptor for neurotrophins p75NTR plays a key role for satellite cell function in muscle repair acting via RhoA. Mol Biol Cell 2009; 20:3620-7. [PMID: 19553472 PMCID: PMC2777922 DOI: 10.1091/mbc.e09-01-0012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/15/2009] [Indexed: 11/11/2022] Open
Abstract
Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is mediated by the production of new myofibres. This process, sustained by the resident stem cells of the muscle, the satellite cells, is finely regulated by local cues, in particular by cytokines and growth factors. Evidence in the literature suggests that nerve growth factor (NGF) is involved in muscle fiber regeneration; however, its role and mechanism of action were unclear. We have investigated this issue in in vivo mouse models of muscle regeneration and in primary myogenic cells. Our results demonstrate that NGF acts through its low-affinity receptor p75(NTR) in a developmentally regulated signaling pathway necessary to myogenic differentiation and muscle repair in vivo. We also demonstrate that this action of NGF is mediated by the down-regulation of RhoA-GTP signaling in myogenic cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cell Fusion
- Cells, Cultured
- Cytoskeleton/metabolism
- Humans
- Mice
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction/physiology
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | - Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Catanzaro
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clara De Palma
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| | - Nereo Bresolin
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Neurological Sciences, University of Milano, 20129 Milan, Italy; and
| | | | - Giulio Cossu
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
| | - Emilio Clementi
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Silvia Brunelli
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| |
Collapse
|
11
|
Chevrel G, Hohlfeld R, Sendtner M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 2006; 33:462-76. [PMID: 16228973 DOI: 10.1002/mus.20444] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of development, maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors not only modulates survival and function of innervating motoneurons and proprioceptive neurons but also development and differentiation of myoblasts and muscle fibers. Neurotrophins and neurotrophin receptors play a role in the coordination of muscle innervation and functional differentiation of neuromuscular junctions. However, neurotrophin receptors are also expressed in differentiating muscle cells, in particular at early developmental stages in myoblasts before they fuse. In adults with pathological conditions such as human degenerative and inflammatory muscle disorders, variations of neurotrophin expression are found, but the role of neurotrophins under such conditions is still not clear. The goal of this review is to provide a basis for a better understanding and future studies on the role of these factors under such pathological conditions and for treatment of human muscle diseases.
Collapse
Affiliation(s)
- Guillaume Chevrel
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
12
|
Ono T, Fischer-Hansen B, Nolting D, KjÆr I. Nerve Growth Factor Receptor Immunolocalization During Human Palate and Tongue Development. Cleft Palate Craniofac J 2003. [DOI: 10.1597/1545-1569(2003)040<0116:ngfrid>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Ono T, Fischer-Hansen B, Nolting D, Kjaer I. Nerve growth factor receptor immunolocalization during human palate and tongue development. Cleft Palate Craniofac J 2003; 40:116-25. [PMID: 12605516 DOI: 10.1597/1545-1569_2003_040_0116_ngfrid_2.0.co_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the temporospatial pattern of nerve growth factor receptor (NGFR) immunolocalization during human palatal closure. MATERIALS Human palate and tongue tissues from 33 embryos/fetuses, 9 to 22 weeks of fertilization age. METHODS Tissues were divided according to developmental stage and palatal development (before, during, and after closure) and then subjected to decalcification, paraffin embedding, serial sectioning, survey staining, and p75NGFR immunohistochemical staining. RESULTS Specific temporospatial patterns of p75NGFR reactivity were observed; reactivity was intense in the soft tissue palatal shelves before and during palatal closure and was weaker in the palate after palatal closure. In the tongue, intense reactivity was seen throughout 9 to 22 weeks. CONCLUSION The observed patterns suggest that p75NGFR may enable the visualization of physiological events in palatal closure during normal human development.
Collapse
Affiliation(s)
- Takashi Ono
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Wadhwa S, Nag TC, Jindal A, Kushwaha R, Mahapatra AK, Sarkar C. Expression of the neurotrophin receptors Trk A and Trk B in adult human astrocytoma and glioblastoma. J Biosci 2003; 28:181-8. [PMID: 12711810 DOI: 10.1007/bf02706217] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurotrophins and their receptors of the Trk family play a critical role in proliferation, differentiation and survival of the developing neurons. There are reports on their expression in neoplasms too, namely, the primitive neuroectodermal tumours of childhood, and in adult astrocytic gliomas. The involvement of Trk receptors in tumour pathogenesis, if any, is not known. With this end in view, the present study has examined 10 tumour biopsy samples (identified as astrocytoma, pilocytic astrocytoma and glioblastoma) and peritumoral brain tissue of adult patients, for the presence of Trk A and Trk B receptors, by immunohistochemistry. The nature of the tumour samples was also confirmed by their immunoreactivity (IR) to glial fibrillary acidic protein. In the peritumoral brain tissue, only neurons showed IR for Trk A and Trk B. On the contrary, in the tumour sections, the IR to both receptors was localized in the vast majority of glia and capillary endothelium. There was an obvious pattern of IR in these gliomas: high levels of IR were present in the low-grade (type I and II) astrocytoma; whereas in the advanced malignant forms (WHO grade IV giant cell glioblastoma and glioblastoma multiforme) the IR was very weak. These findings suggest that Trk A and Trk B are involved in tumour pathogenesis, especially in the early stage, and may respond to signals that elicit glial proliferation, and thus contribute to progression towards malignancy.
Collapse
Affiliation(s)
- Shashi Wadhwa
- Department of Anatomy, CN Center, All India Institute of Medical Sciences, New Delhi 110 029, India.
| | | | | | | | | | | |
Collapse
|
15
|
Frankowski H, Castro-Obregon S, del Rio G, Rao RV, Bredesen DE. PLAIDD, a type II death domain protein that interacts with p75 neurotrophin receptor. Neuromolecular Med 2003; 1:153-70. [PMID: 12095158 DOI: 10.1385/nmm:1:3:153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Accepted: 01/23/2002] [Indexed: 12/24/2022]
Abstract
We describe the cloning and characterization of a rat single transmembrane protein that is homologous to the common neurotrophin receptor p75NTR in its death domain and the transmembrane region but dissimilar outside these regions. We have dubbed this protein PLAIDD, for p75-like apoptosis-inducing death domain protein. PLAIDD messenger RNA, which is ubiquitously distributed, is highly expressed in the embryo, but downregulated in adult tissues. Alternative splicing within the extracellular region of PLAIDD generates four RNA species, but only two of them are translated, PLAIDD_L and PLAIDD_S (long and short isoforms, respectively). While the amino acid sequence of the intracellular region of PLAIDD displays 41% identity with the intracellular region of p75NTR, the extracellular region of PLAIDD does not reveal any homology with p75NTR. Overexpression of each isoform of PLAIDD led to cytotoxicity in superior cervical ganglion neurons and in human embryonic kidney 293T cells. Both isoforms of PLAIDD could be co-immunoprecipitated with p75NTR, suggesting an interaction between these molecules.
Collapse
|
16
|
Fanburg-Smith JC, Miettinen M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other nonneural tumors: a study of 1,150 tumors and fetal and adult normal tissues. Hum Pathol 2001; 32:976-83. [PMID: 11567228 DOI: 10.1053/hupa.2001.27602] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Low-affinity nerve growth factor receptor (p75) is a member of the tumor necrosis factor receptor family. It may modulate the binding of nerve growth factor (NGF) to the functional high-affinity receptor tyrosine kinase (trk) A. NGF is thought to be responsible for growth, apoptosis, and function of the nervous system. The presence of this receptor (p75) was determined in a large group of neural and nonneural tumors and fetal and adult tissues. One thousand one hundred fifty tumors were analyzed with monoclonal antibody for p75, along with selected normal fetal and adult tissues. Immunoreactivity for p75 was present in adult pericytes, perivascular fibroblasts, basal cells of several types of epithelia, perineurial cells, and dendritic reticulum cells. Additionally, a wide zone of subepithelial mesenchyme and skeletal muscle were positive in the first-trimester fetus, but were diminished or negative in the adult. Consistently positive nonneural mesenchymal tumors included dermatofibrosarcoma protuberans (DFSP), embryonal and alveolar rhabdomyosarcoma, synovial sarcoma, and spindle cell hemangio(endotheli)oma. Schwann cell tumors, ganglioneuroma, granular cell tumor, and malignant peripheral nerve sheath tumor (MPNST) were also p75 positive. Mesenchymal nonneural tumors that were variably positive (32% to 69%) for p75 included fibrosarcoma variants, solitary fibrous tumor, hemangiopericytoma, spindle cell lipoma, Ewing's sarcoma, mesenchymal chondrosarcoma, and malignant melanoma. Nervous system tumors such as paragangliomas, neuroblastoma, meningioma, and perineurioma and nonneural mesenchymal tumors, including extraskeletal osteosarcoma, benign fibrous histiocytomas, fibromas, alveolar soft part sarcoma, epithelioid sarcoma, smooth muscle and gastrointestinal stromal tumors, and angiosarcomas, were almost always negative for p75. Epithelial tumors that were consistently positive included mixed tumor and adenoid cystic carcinoma, whereas mesothelioma, adenocarcinomas, and most squamous cell carcinomas were negative. p75 is not a specific marker for nerve sheath tumors. It is present in a variety of other mesenchymal tumors including synovial sarcoma and in CD34-positive tumors such as DFSP, spindle cell lipoma, and hemangiopericytoma. The presence of p75 in nonneural tumors such as DFSP and rhabdomyosarcoma mimic its presence in early fetal mesenchyme and skeletal muscle, suggesting oncofetal expression in these tumors. p75 may be useful to distinguish DFSP from benign fibrous histiocytoma.
Collapse
Affiliation(s)
- J C Fanburg-Smith
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA
| | | |
Collapse
|
17
|
Capsoni S, Ruberti F, Di Daniel E, Cattaneo A. Muscular dystrophy in adult and aged anti-NGF transgenic mice resembles an inclusion body myopathy. J Neurosci Res 2000; 59:553-60. [PMID: 10679795 DOI: 10.1002/(sici)1097-4547(20000215)59:4<553::aid-jnr11>3.0.co;2-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of nerve growth factor (NGF) and its receptors in the physiology of skeletal muscles has not been extensively studied in animal models. We describe the production of transgenic lines of mice expressing a neutralizing antibody against NGF (alphaD11) and the morphological and histochemical analysis of skeletal muscles from adult and aged anti-NGF mice. This study reveals that the chronic deprivation of NGF results in a decreased size of myofibers of dorsal and hindlimb muscles in adult but not in postnatal day (P)2 mice. In myofibers from adult anti-NGF mice, the presence of central nuclei, vacuolization of the cytoplasm, and inflammatory cell infiltration was observed. The immunohistochemical analysis of these muscular fibers revealed an upregulation of p75 expression, a decrease in adenosine triphosphatase (ATP)ase activity, and a subsarcolemmal Congo Red-positive staining. Immunostaining with an antibody against amyloid precursor protein showed an increased labeling of the cytoplasm of myofibers from adult and aged anti-NGF mice. These features are reminiscent of human myopathies, such as inclusion body myositis. We conclude that NGF deficits might be relevant for a class of human myopathies.
Collapse
Affiliation(s)
- S Capsoni
- Neuroscience Program, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
18
|
Abstract
Enteric ganglia can maintain integrated functions, such as the peristaltic reflex, in the absence of input from the central nervous system, which has a modulatory role. Several clinical and experimental observations suggest that homeostatic control of gut function in a changing environment may be achieved through adaptive changes occurring in the enteric ganglia. A distinctive feature of enteric ganglia, which may be crucial during the development of adaptive responses, is the vicinity of the final effector cells, which are an important source of mediators regulating cell growth. The aim of this review is to focus on the possible mechanisms underlying neuronal plasticity in the enteric nervous system and to consider approaches to the study of plasticity in this model. These include investigations of neuronal connectivity during development, adaptive mechanisms that maintain function after suppression of a specific neural input, and the possible occurrence of activity-dependent modifications of synaptic efficacy, which are thought to be important in storage of information in the brain. One of the applied aspects of the study of plasticity in the enteric nervous system is that knowledge of the underlying mechanisms may eventually enable us to develop strategies to correct neuronal alterations described in several diseases.
Collapse
Affiliation(s)
- C Giaroni
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
19
|
Russo MA, Giustizieri ML, Favale A, Fantini MC, Campagnolo L, Konda D, Germano F, Farini D, Manna C, Siracusa G. Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol Reprod 1999; 61:1123-32. [PMID: 10491653 DOI: 10.1095/biolreprod61.4.1123] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several reports have established that the action of neurotrophins is not restricted to the nervous system but can affect a broad range of non-neuronal cells. Nerve growth factor (NGF) is present in adult testis and has been suggested as a potential regulator of meiosis in rat seminiferous epithelium. Here we present an extensive immunohistochemical study on neurotrophins and their receptors (p75 and trk) in the developing mouse testis and epididymis, and in fetal human testis. During the early steps of testicular and epididymal organization in the mouse, strong p75 immunoreactivity is detectable in the gonadal ridge in the mesenchyme that is excluded from the evolving testicular cords, and in the mesenchymal cells of the mesonephros. Later in organogenesis, most of the p75-positive interstitial cells of the testis coexpress neurotrophin-3 (NT-3) and the truncated trk B receptor in a developmentally regulated pattern. Our Western blot data confirm the expression of these molecules. These findings suggest that neurotrophin receptors play a role in early inductive events during critical periods of testicular and epididymal development. During fetal and postnatal histogenesis, an increasing number of NT-3- and p75-positive mesenchymal cells start to express alpha-smooth muscle isoactin, suggesting a role for the so-called neurotrophic system in the differentiation of testicular myoid cells and epididymal smooth muscle cells. In the testis of an 18-wk gestational-age human fetus, immunohistochemical analysis has shown intense immunoreactivity of mesenchymal cells to antibodies for neurotrophin receptors p75, trk A, and trk C, and their ligands NGF and NT-3. In addition, we found that in the human fetal testis, the interstitial cells that are differentiating into peritubular myoid cells are associated with a dense network of nerve fibers. Our data suggest that neurotrophins and their receptors are involved in a multifunctional system that regulates cell differentiation and innervation in the developing testis and epididymis.
Collapse
Affiliation(s)
- M A Russo
- Department of Public Health and Cell Biology, Section of Histology, School of Medicine, University of Rome "Tor Vergata", 00173 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Esteban I, Levanti B, Garcia-Suarez O, Germanà G, Ciriaco E, Naves FJ, Vega JA. A neuronal subpopulation in the mammalian enteric nervous system expresses TrkA and TrkC neurotrophin receptor-like proteins. Anat Rec (Hoboken) 1998; 251:360-70. [PMID: 9669764 DOI: 10.1002/(sici)1097-0185(199807)251:3<360::aid-ar12>3.0.co;2-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that, in addition to peripheral sensory and sympathetic neurons, the enteric neurons are also under the control of neurotrophins. Recently, neurotrophin receptors have been detected in the developing and adult mammalian enteric nervous system (ENS). Nevertheless, it remains to be established whether neurotrophin receptors are expressed in all enteric neurons and/or in glial cells and whether expression is a common feature in the enteric nervous system of all mammals or if interspecific differences exist. Rabbit polyclonal antibodies against Trk proteins (regarded as essential constituents of the high-affinity signal-transducing neurotrophin receptors) and p75 protein (considered as a low-affinity pan-neurotrophin receptor) were used to investigate the cell localization of these proteins in the ENS of adult man, horse, cow, sheep, pig, rabbit, and rat. Moreover, the percentage of neurons displaying immunoreactivity (IR) for each neurotrophin receptor protein was determined. TrkA-like IR and TrkC-like IR were observed in a neuronal subpopulation in both the myenteric and submucous plexuses, from esophagus to rectum in humans, and in the jejunum-ileum of the other species. Many neurons, and apparently all glial cells, in the human and rat enteric nervous system also displayed p75 IR. TrkB-like IR was found restricted to the glial cells of all species studied, with the exception of humans, in whom IR was mainly in glial cells and a small percentage of enteric neurons (about 5%). These findings indicate that the ENS of adult mammals express neuronal TrkA and TrkC, glial TrkB, and neuronal-glial p75, this pattern of distribution being similar in all examined species. Thus, influence of specific neurotrophins on their cognate receptors may be considered in the physiology and/or pathology of the adult ENS.
Collapse
Affiliation(s)
- I Esteban
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Seidl K, Erck C, Buchberger A. Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program. J Cell Physiol 1998; 176:10-21. [PMID: 9618140 DOI: 10.1002/(sici)1097-4652(199807)176:1<10::aid-jcp2>3.0.co;2-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have studied expression and function of neurotrophins and their receptors during myogenic differentiation of C2C12 cells, a clonal cell line derived from mouse muscle that is capable of in vitro differentiation. The genes coding for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and their common low-affinity receptor p75(neurotrophin receptor) (p75NTR) were shown to be expressed in C2C12 myoblasts and downregulated during myogenic differentiation and fusion into myotubes. Cocultures with dorsal root ganglia from day 8 chick embryos revealed neurite-promoting activities of C2C12 cells that ceased with myogenic differentiation. These data suggest a temporal and developmental window for the effect of myogenic cell-derived neurotrophins on neuronal as well as on myogenic cell populations. NGF was shown to increase DNA synthesis and cell growth of C2C12 myoblasts and to enhance myogenic differentiation in this cell line. We present evidence that NGF-mediated processes take place at stages preceding myogenic differentiation. Enhanced muscle differentiation was also seen in p75NTR-overexpressing C2C12 myoblasts which maintained high levels of receptors but ceased to produce NGF during differentiation. In contrast, when exogenous NGF was present at the onset of myogenic differentiation of receptor-overexpressing cells, muscle cell development was strongly repressed. This indicates that downregulation of p75NTR is necessary for guiding myogenic cells towards terminal differentiation. Since none of the trk high-affinity neurotrophin receptors could be demonstrated in C2C12 cells, we conclude that NGF mediates its nonneurotrophic effect via its low-affinity receptor in an autocrine fashion.
Collapse
Affiliation(s)
- K Seidl
- Institute for Biochemistry and Biotechnology, Department of Cell and Molecular Biology, University of Braunschweig, Germany.
| | | | | |
Collapse
|
22
|
Argenyi ZB, Rodgers J, Wick M. Expression of nerve growth factor and epidermal growth factor receptors in neural nevi with nevic corpuscles. Am J Dermatopathol 1996; 18:460-4. [PMID: 8902091 DOI: 10.1097/00000372-199610000-00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The histogenesis of "nevic corpuscles" (NCs) in neural nevi is still controversial. Recent studies have revealed that nerve growth factors (NGFs) and other growth factors [that is, epidermal growth factor (EGF)] could have various paracrine and autocrine functions on Schwann cells and melanocytes. We examined the immunohistochemical expression of NGF and EGF receptors (r) in 15 cases of neural nevi containing NCs along with 37 cases of other benign and malignant melanocytic lesions without neural differentiation (total, 52). Section were prepared from formalin-fixed and paraffin-embedded tissues. Monoclonal antibodies to NGFr and EGFr were used with the Avidin-biotin-complex (ABC) technique. We found strong reactivity for NGFr in 14 of 15 neural nevi with a predilection for NCs, but only eight of 37 were positive in the other group of melanocytic lesions without neural differentiation (four Spitz nevi, two melanomas, and two compound nevi). EGFr expression was limited mainly to NCs in four cases of neural nevi. We conclude that neural differentiation and NC formation are associated with NGFr overexpression, whereas EGFr expression is only limited. The relative paucity of NGFr expression in other type of benign and malignant melanocytic lesions supports the view that neural "differentiation" is a distinct process in certain long-standing melanocytic nevi. We postulate that NGFr overexpression may be the result of the reactivation of oncofetal genes that could become manifest in either abnormal schwannian differentiation (as seen in neural nevi), in a neoplastic context (as seen in neural and melanocytic tumors).
Collapse
Affiliation(s)
- Z B Argenyi
- Dermatopathology Unit, University of Iowa Hospitals and Clinics, Iowa City 52242, USA
| | | | | |
Collapse
|
23
|
Yeger H, Forget D, Alami J, Williams BR. Analysis of WT1 gene expression during mouse nephrogenesis in organ culture. In Vitro Cell Dev Biol Anim 1996; 32:496-504. [PMID: 8889604 DOI: 10.1007/bf02723053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The temporal and spatial expression patterns of the Wilms tumor gene, WT1, were studied during the organogenesis of the mouse kidney in vitro. In situ hybridization and immunocytochemistry localized cellular expression of WT1 in whole kidney organ cultures to the induced metanephric mesenchyme and developing podocytes. Organ cultures were further characterized immunocytochemically with antibodies that specifically labeled the different tubular epithelial components and supporting mesenchyme of the developing nephrons. In organ cultures, the WT1 expression pattern could be visualized in induced metanephric mesenchyme and entire cell cohorts of differentiating podocytes. Expression of WT1 and cell specific markers were retained in short-term monolayer cultures of dissociated kidneys. The development of the metanephric kidney in vitro involves a highly restricted temporal and spatial cellular expression pattern of WT1 which closely follows that observed in tissue sections from gestational kidney isolated during organogenesis in the mouse.
Collapse
Affiliation(s)
- H Yeger
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Vega JA, Vazquez E, Naves FJ, Del Valle ME, Calzada B, Represa JJ. Immunohistochemical localization of the high-affinity NGF receptor (gp140-trkA) in the adult human dorsal root and sympathetic ganglia and in the nerves and sensory corpuscles supplying digital skin. Anat Rec (Hoboken) 1994; 240:579-88. [PMID: 7879909 DOI: 10.1002/ar.1092400415] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nerve growth factor (NGF) is produced in target tissues of sympathetic and neural-crest derived sensory neurons, including skin, to provide them trophic support. The biological effects of NGF on responsive cells are mediated by specific high-affinity receptors. Recently, a protein tyrosine kinase of congruent to 140 kDa molecular weight, encoded by the proto-oncogene trkA, has been identified as the high-affinity NGF receptor (gp140-trkA). The present work was undertaken to study the localization of gp140-trkA-like immunoreactivity (IR) in human peripheral ganglia (sympathetic and dorsal root ganglia), and in glabrous skin. METHODS Lumbar dorsal root ganglia, para- and prevertebral sympathetic ganglia, and digital glabrous skin were studied immunohistochemically using a rabbit anti-gp140-trkA polyclonal antibody. In order to accurately establish the localization of gp140-trkA IR, the neurofilament proteins and S-100 protein were studied in parallel in: (1) sensory and sympathetic ganglia, to label neuron cell bodies and satellite or supporting cells, respectively; (2) human skin, to label axons, Schwann and related cells within nerves and sensory corpuscles. Moreover, a quantitative study (neuron size, intensity of immunostaining) was carried out on sympathetic and dorsal root ganglia neuron cell bodies. RESULTS A specific gp140-trkA-like IR was found in: (1) a subpopulation (65%) of primary sensory neuron cell bodies, including most of the large-sized ones but also small- and intermediate-sized ones; (2) most of sympathetic neuron cell bodies (82%); (3) the perineurial cell, Schwann cells, and large axons of the nerve trunks supplying digital skin; (4) the lamellar cells of Meissner corpuscles; (5) the central axon, inner-core, outer-core, and capsule of Pacinian corpuscles. In addition, the occurrence of gp140-trkA-like IR was observed in some non-nervous tissues of the skin, including epidermis (mainly in the basal layer), sweat glands, and arterial blood vessels. CONCLUSIONS Present results provide evidence for the localization of gp140-trkA-like IR in: (1) nerve cells which are known to be NGF-responsive, and (2) non-nervous cutaneous tissues which are innervated by NGF-dependent peripheral neurons. These findings suggest that, in addition to the well-established role of NGF on sensory and sympathetic neurons, this neurotrophin may be able to regulate some other functions on non-nervous cells which are targets for NGF-dependent peripheral neurons.
Collapse
Affiliation(s)
- J A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Ernfors P, Lee KF, Jaenisch R. Target derived and putative local actions of neurotrophins in the peripheral nervous system. PROGRESS IN BRAIN RESEARCH 1994; 103:43-54. [PMID: 7886221 DOI: 10.1016/s0079-6123(08)61125-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Ernfors
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | |
Collapse
|
26
|
Lyles JM, Amin W, Bock E, Weill CL. Regulation of NCAM by growth factors in serum-free myotube cultures. J Neurosci Res 1993; 34:273-86. [PMID: 8384266 DOI: 10.1002/jnr.490340304] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Regulation of the neural cell adhesion molecule (NCAM) was examined in primary cultures of chick skeletal muscle grown in serum-free defined medium. Relative levels of NCAM (per microgram protein) increased 20-30% in myotubes grown on Matrigel, a reconstituted basement membrane preparation, compared to those grown on collagen; total NCAM levels on Matrigel were increased 40-55% due to the additional increase in total protein. A dose dependent increase in relative NCAM levels in myotubes grown on Matrigel in defined medium was observed with the addition of adsorbed horse serum, while relative NCAM levels in myotubes grown on collagen were unaffected by altering the serum concentration. Thus, extracellular matrix molecules and soluble factors exert trophic effects on myotube NCAM expression. Similar developmental changes in the expression of the different molecular size forms of NCAM occurred in myotubes grown on collagen and Matrigel: levels of 150K and 135K Mr forms decreased during development, while 125K remained prominent in older myotubes. Relative NCAM levels were specifically enhanced 11-26% by several factors: nerve growth factor, thyroxine, insulin-like growth factor II, dibutyryl cyclic AMP, veratridine (a sodium ion channel agonist), and nisoldipine (a calcium ion channel agonist). Total protein and overall myotube development in serum-free cultures were enhanced by fetuin, insulin-like growth factor II, acidic fibroblast growth factor, calcitonin gene-related peptide, dibutyryl cyclic AMP, and veratridine. Thus, changes in extracellular matrix, intracellular calcium, and sodium ions, as well as extracellular trophic factors, such as nerve growth factor, thyroxine, and insulin-like growth factor II, may regulate muscle NCAM expression during embryonic development.
Collapse
Affiliation(s)
- J M Lyles
- Department of Neurology, Louisiana State University Medical Center, New Orleans 70112
| | | | | | | |
Collapse
|
27
|
Kittur SD, Song L, Endo H, Adler WH. Nerve growth factor receptor gene expression in human peripheral blood lymphocytes in aging. J Neurosci Res 1992; 32:444-8. [PMID: 1433390 DOI: 10.1002/jnr.490320316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nerve growth factor (NGF) has a modulating effect on immune function, which may occur as a consequence of binding to the NGF receptor (NGF-R). To determine if mRNA for the gene coding for p75NGFR (low affinity NGF-R) is present in lymphocytes, Northern blot analysis of mRNA from human peripheral blood lymphocytes (PBL) and purified T lymphocytes was initiated using cDNA probe for human p75NGFR. p75NGFR mRNA was present in PBL and T lymphocytes, and the mRNA in response to phytohemagglutinin stimulation showed maximum levels at 14 hr of stimulation. p75NGFR mRNA content when analyzed in PBL and T cells from volunteers of various ages showed that p75NGFR mRNA expression does not change with the age of the cell donor.
Collapse
Affiliation(s)
- S D Kittur
- Molecular Neurobiology Section, National Institute on Aging, Baltimore, Maryland 21224
| | | | | | | |
Collapse
|
28
|
Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 1991; 7:1031-41. [PMID: 1662517 DOI: 10.1016/0896-6273(91)90347-3] [Citation(s) in RCA: 390] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NGF and bFGF have recently been shown to have biological activity in central neurons, but their normal functions and mechanisms of action are unknown. Since central neurons are particularly vulnerable to hypoglycemia that occurs with ischemia or insulin overdose, we tested the hypothesis that growth factors can protect neurons against hypoglycemic damage. NGF and bFGF each prevented glucose deprivation-induced neuronal damage in human cerebral cortical and rat hippocampal cell cultures (EGF was ineffective). Protection was afforded when the growth factors were administered before (NGF and bFGF) or up to 12 hr following (NGF) the onset of hypoglycemia. Direct measurements of intracellular calcium levels and manipulations of calcium influx demonstrated that sustained elevations in intracellular calcium levels mediated the hypoglycemic damage. NGF and bFGF each prevented the hypoglycemia-induced elevations of intracellular calcium. These findings indicate that growth factors can stabilize neuronal calcium homeostasis in central neurons and thereby protect them against environmental insults.
Collapse
Affiliation(s)
- B Cheng
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| | | |
Collapse
|
29
|
Sariola H, Saarma M, Sainio K, Arumäe U, Palgi J, Vaahtokari A, Thesleff I, Karavanov A. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science 1991; 254:571-3. [PMID: 1658930 DOI: 10.1126/science.1658930] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nerve growth factor receptor (NGFR) serves as the binding site for the neurotrophic growth factors. Although NGFR has been found in several embryonic tissues outside the nervous system, the function of NGFR in embryogenesis of non-neuronal organs remains unknown. NGFR is transiently synthesized by embryonic rat kidney and disappears from nephrons upon their terminal differentiation. Anti-sense oligonucleotide inhibition of NGFR expression inhibits kidney morphogenesis. Therefore, NGFR is required not only for development of the nervous system, but also for differentiation of the kidney tubules.
Collapse
Affiliation(s)
- H Sariola
- Department of Paediatric Pathology, Childrens' Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hallböök F, Ibáñez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 1991; 6:845-58. [PMID: 2025430 DOI: 10.1016/0896-6273(91)90180-8] [Citation(s) in RCA: 642] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Evolutionary conservation of members of the NGF family in vertebrates was studied by DNA sequence analysis of PCR fragments for NGF, BDNF, and NT-3 from human, rat, chicken, viper, Xenopus, salmon, and ray. The results showed that the three factors are highly conserved from fishes to mammals. Phylogenetic trees reflecting the evolution and speciation of the members of the NGF family were constructed. In addition, the gene for a fourth member of the family, neurotrophin-4 (NT-4), was isolated from Xenopus and viper. The NT-4 gene encodes a precursor protein of 236 amino acids, which is processed into a 123 amino acid mature NT-4 protein with 50%-60% amino acid identity to NGF, BDNF, and NT-3. The NT-4 protein was shown to interact with the low affinity NGF receptor and elicited neurite outgrowth from explanted dorsal root ganglia with no and lower activity in sympathetic and nodose ganglia, respectively. Northern blot analysis of different tissues from Xenopus showed NT-4 mRNA only in ovary, where it was present at levels over 100-fold higher than those of NGF mRNA in heart.
Collapse
Affiliation(s)
- F Hallböök
- Department of Medical Chemistry, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|