1
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
2
|
Abstract
Multiple sclerosis is an autoimmune disease that destroys myelin-forming oligodendrocytes of the CNS. While the damage can be partially controlled using anti-inflammatory cytokines and steroids, endogenous repair is insufficient to replace lost cells. Until now cell replenishment (transplant therapy) has been viewed as unlikely to succeed due to allograft rejection in this sensitized immune environment. However, advances in stem cell biology give new hope for deriving patient-specific, autologous oligodendrocytes which may tip the balance to favor repair. The challenge will be to engineer these cells to respond to cues that can target their migration into lesions for brain and spinal cord repair.
Collapse
|
3
|
Affiliation(s)
- M S Rao
- Department of Neurobiology and Anatomy, University of Utah Medical School, Salt Lake City 84132, USA.
| | | |
Collapse
|
4
|
|
5
|
Milward E, Zhang SC, Zhao M, Lundberg C, Ge B, Goetz B, Duncan I. Enhanced proliferation and directed migration of oligodendroglial progenitors co-grafted with growth factor-secreting cells. Glia 2000. [DOI: 10.1002/1098-1136(200012)32:3<264::aid-glia60>3.0.co;2-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
O'Leary MT, Blakemore WF. Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970415)48:2<159::aid-jnr8>3.0.co;2-b] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abstract
This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate into astrocytes as well oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oliodendrocyte progenitor cell line CG4) are described. These show that CG4 cells do not survive (or migrate) when transplanted into the normal adult CNS. However, if they are transplanted into CNS tissue that has previously been exposed to 40 Gy of x-irradiation then transplanted CG4 cells survive, divide and migrate over large distances. Moreover, within an x-irradiated environment, migrating transplanted CG4 cells are able to enter remotely located foci of demyelination and contribute to the remyelination of the demyelinated axons within. These studies demonstrate that although the normal adult CNS does not appear to support survival and migration of the CG4 cell line, it is possible to manipulate the environment in such a way that these nonpermissive properties of the environment can be overcome.
Collapse
Affiliation(s)
- R J Franklin
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | |
Collapse
|
8
|
Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 1996. [PMID: 8627358 DOI: 10.1523/jneurosci.16-10-03199.1996] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although remyelination of demyelinated CNS axons is known to occur after transplantation of exogenous glial cells, previous studies have not determined whether cell transplantation can restore the conduction properties of demyelinated axons in the adult CNS. To examine this issue, the dorsal columns of the adult rat spinal cord were demyelinated by x-irradiation and intraspinal injections of ethidium bromide. Cell suspensions of cultured astrocytes and Schwann cells derived from neonatal rats transfected with the (beta-galactosidase) reporter gene were injected into the glial-free lesion site. After 3-4 weeks nearly all of the demyelinated axons were remyelinated by the transplanted Schwann cells. The dorsal columns were removed and maintained in an in vitro recording chamber; conduction properties were studied using field potential and intra-axonal recording techniques. The demyelinated axons exhibited conduction slowing and block, and a reduction in their ability to follow high-frequency stimulation. Axons remyelinated by transplantation of cultured Schwann cells exhibited restoration of conduction through the lesion, with reestablishment of normal conduction velocity. The axons remyelinated after transplantation showed enhanced impulse recovery to paired-pulse stimulation and greater frequency-following capability as compared with both demyelinated and control axons. These results demonstrate the functional repair of demyelinated axons in the adult CNS by transplantation of cultured myelin-forming cells from the peripheral nervous system in combination with astrocytes.
Collapse
|
9
|
Abstract
Glial cell transplantation has proved to be a powerful tool in the study of glial cell biology. The extent of myelination achieved by transplanting myelin-producing cells into the CNS of myelin mutants, or into focal demyelinating lesions has raised hope that such a strategy may have therapeutic applications. Oligodendrocytes or Schwann cells could be used for repair. It is likely that the immature stages of the oligodendrocyte lineage have the best phenotypic characteristics for remyelination when transplanted, either as primary cells or as immortalized cells or cell lines. Prior culturing and growth factor treatment provides opportunities to expand cell populations before transplantation as dissociated cell preparations. Cell lines are attractive candidates for transplantation, but the risk of transformation must be monitored. The application of this technique to human myelin disorders may require proof that migration, division and stable remyelination of axons by the transplanted cells can occur in the presence of gliosis and inflammation.
Collapse
Affiliation(s)
- I D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
10
|
Arnheiter H, Frese M, Kambadur R, Meier E, Haller O. Mx transgenic mice--animal models of health. Curr Top Microbiol Immunol 1996; 206:119-47. [PMID: 8608714 DOI: 10.1007/978-3-642-85208-4_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- H Arnheiter
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4160, USA
| | | | | | | | | |
Collapse
|
11
|
Nait Oumesmar B, Vignais L, Duhamel-Clérin E, Avellana-Adalid V, Rougon G, Baron-Van Evercooren A. Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord. Eur J Neurosci 1995; 7:480-91. [PMID: 7773445 DOI: 10.1111/j.1460-9568.1995.tb00344.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the expression of the highly polysialylated neural cell adhesion molecule in the mouse spinal cord during postnatal myelination and in the adult after chemically induced demyelination. By double immunohistochemistry, using a monoclonal antibody (anti-Men B) which specifically recognizes polysialic acid (PSA) units on neural cell adhesion molecule (N-CAM), and an anti-myelin basic protein, a caudorostral gradient of expression of PSA-NCAM was observed at postnatal day 1 (P1), which was inversely related to the gradient of myelination. At P7, PSA-NCAM labelling decreased relative to P1. In white matter, this decrease was correlated with the progression of myelination. PSA-NCAM immunoreactivity persisted in as yet unmyelinated structures, i.e. the corticospinal tract, the dorsomedial part of the ventral funiculus and the lateral funiculi, and decreased with the onset of myelination of these structures at P15. In the adult, PSA-NCAM expression remained in discrete structures, i.e. laminae I and II of the dorsal horn and lamina X around the central canal. The ependymal cells and the astrocyte endfeet under the meninges were also labelled. In addition, PSA-NCAM expression was reinduced on various cells and structures after lysolecithin-induced demyelination of the adult mouse spinal cord. At early times after demyelination, PSA-NCAM was expressed on glial cells around the lesion but also at a distance from this zone. Seven days after injection, cellular PSA-NCAM expression was found around but also within the lesion. This expression was totally abolished 15 days after injection. Double immunohistochemistry for PSA and cell-specific markers showed that the cells which expressed PSA-NCAM after demyelination were oligodendrocyte precursors, reactive astrocytes and Schwann cells. PSA-NCAM re-expression on all cell types was transient and ceased when myelin repair was accomplished. The spatial and temporal regulation of PSA-NCAM expression during development and after demyelination suggests a role for PSA-NCAM in glial plasticity during the myelination and remyelination processes.
Collapse
Affiliation(s)
- B Nait Oumesmar
- INSERM U.134, Laboratoire de Neurobiologie Cellulaire, Moléculaire et Clinique, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID. Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci U S A 1994; 91:11616-20. [PMID: 7972113 PMCID: PMC45282 DOI: 10.1073/pnas.91.24.11616] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system, can be generated from progenitor cell lines and assayed for their myelinating properties after transplantation. A growth-factor-dependent cell line of rat oligodendrocyte progenitors (CG4) was carried through 31-48 passages before being transplanted into normal newborn rat brain or the spinal cord of newborn myelin-deficient (md) rats. In md rat spinal cord, CG4 oligodendrocyte progenitors migrated up to 7 mm along the dorsal columns, where they divided and myelinated numerous axons 2 weeks after grafting. CG4 cells were transfected with the bacterial lacZ gene and selected for high beta-galactosidase expression. The cell migration and fate of these LacZ+ cells were analyzed after transplantation. In normal newborn brain, LacZ+ oligodendrocyte progenitors migrated along axonal tracts from the site of injection and integrated in the forming white matter. In md rats, extensive migration (up to 12 mm) was revealed by staining for beta-galactosidase activity of the intact spinal cord where many grafted cells had moved into the posterior columns. Similar migration and integration of grafted cells occurred in the spinal cord of normal myelinated rats and after a noninvasive grafting procedure. Thus, oligodendrocyte progenitors can maintain their ability to migrate and myelinate axons in vivo after multiple passages in vitro. Such progenitor cell lines can be used to study the molecular mechanisms underlying oligodendrocyte development and the repair of myelin in dysmyelinating diseases.
Collapse
Affiliation(s)
- U Tontsch
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
13
|
Lachapelle F, Duhamel-Clerin E, Gansmüller A, Baron-Van Evercooren A, Villarroya H, Gumpel M. Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci 1994; 6:814-24. [PMID: 8075823 DOI: 10.1111/j.1460-9568.1994.tb00992.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dye Hoechst 33342 was combined with an immunodetectable transgene product (chloramphenicol acetyltransferase, CAT) expressed in differentiated oligodendrocytes to trace their fate after transplantation in the normal and the shiverer mouse brain. In the shiverer brain, the technique allowed us to visualize grafted cells inside myelin basic protein-positive myelin patches. Most of these cells were CAT-positive/Hoechst 33342-negative, reinforcing our hypothesis that cell division probably follows migration of grafted oligodendrocytes. Correlation of their morphology and distribution with their location in the host CNS suggested a local effect on the cell division and morphogenesis of the grafted material. When compared with transplantation of fragments of normal newborn donor tissue into the newborn shiverer brain, no difference could be seen between the behaviour of normal and transgenic oligodendrocytes. In the normal brain, transgenic oligodendrocytes survived at least 150 days and successfully myelinated the host axons. The timing of differentiation of grafted cells was similar in both types of recipient brains. Migration occurred rostrally and caudally. Although migrating cells could be observed along the meninges and the blood vessels, migration occurred preferentially along white matter tracts. The extent of migration was influenced by the site of implantation, and grafted cells could be found up to 6 mm from the grafting point. No differences in the timing of differentiation or the pattern or extent of migration could thus be demonstrated when transgenic oligodendrocytes were transplanted in the normal or the shiverer brain. This validates our previous studies using the newborn shiverer mouse as recipient.
Collapse
Affiliation(s)
- F Lachapelle
- U 134 INSERM, Hôpital de la Salpétrière, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Vignais L, Nait Oumesmar B, Mellouk F, Gout O, Labourdette G, Baron-Van Evercooren A, Gumpel M. Transplantation of oligodendrocyte precursors in the adult demyelinated spinal cord: migration and remyelination. Int J Dev Neurosci 1993; 11:603-12. [PMID: 8116473 DOI: 10.1016/0736-5748(93)90049-j] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A demyelinating lesion induced by an injection of lysolecithin into the spinal cord can be partly repaired by oligodendrocyte precursors transplanted at a distance of 6-8 mm from the lesion. Using a non-toxic fluorescent dye (Hoechst 33342) as a cell marker, we demonstrate that transplanted oligodendrocyte precursors from different origins (periventricular zone fragments from newborn mouse and cultured rat oligodendrocyte progenitor cells) can migrate along specific pathways (i.e. white matter fasciculi, ependymal wall, meninges and blood vessels). These cells can be attracted when passing at the vicinity of the lesion as well as differentiate and remyelinate axons with the lesion. Myelin repair thus appears to be the result of distinct successive events: migration, specific attraction, differentiation and myelination. This can occur in both shiverer and normal adult hosts.
Collapse
Affiliation(s)
- L Vignais
- INSERM U-134, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|