Snyder MJ, Chang ES. Role of the midgut gland in metabolism and excretion of ecdysteroids by lobsters, Homarus americanus.
Gen Comp Endocrinol 1992;
85:286-96. [PMID:
1601260 DOI:
10.1016/0016-6480(92)90013-a]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chromatographic profile of ecdysteroids (Ecds) from the midgut gland (MG) of juvenile female lobsters, Homarus americanus, was examined using high-performance liquid chromatography (HPLC) and radioimmunoassay (RIA) over four stages of the molt cycle. Upon initial examination, highly polar Ecd conjugates appeared to be the principal metabolites found in all molt stages. HPLC fractions containing apolar Ecds initially exhibited low RIA activity. Upon hydrolysis with a Helix pomatia enzyme preparation and reanalysis, significant amounts of other Ecds were released. Amounts of apolar Ecd conjugates were estimated, at their highest levels, to be at least 50% of the total Ecds in MGs of molt stage D3 lobsters. Only the MG formed significant amounts of apolar Ecds upon in vitro culture with [3H]ecdysone ([3H]E). Epidermis and antennal gland significantly increased their rates of [3H]E metabolism in vitro between molt stages C4 and D1. This result further supports the idea that regulation of ecdysteroid metabolism, at least in selected tissues, may be important in the molt cycle regulation of hormone titers. Using gel filtration column chromatography and sucrose density gradient centrifugation analyses, evidence was found for association of apolar Ecds with a protein(s) from MG cytosol. The protein was estimated to have a molecular weight of 180,000-200,000 and specifically bound apolar Ecds.
Collapse