1
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
2
|
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
|
3
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2014; 83:591-603. [PMID: 25404032 DOI: 10.1128/iai.02811-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.
Collapse
|
5
|
Levofloxacin-ceftriaxone combination attenuates lung inflammation in a mouse model of bacteremic pneumonia caused by multidrug-resistant Streptococcus pneumoniae via inhibition of cytolytic activities of pneumolysin and autolysin. Antimicrob Agents Chemother 2014; 58:5164-80. [PMID: 24957840 DOI: 10.1128/aac.03245-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, our objective was to determine whether a synergistic antimicrobial combination in vitro would be beneficial in the downregulation of pneumococcal virulence genes and whether the associated inflammation of the lung tissue induced by multidrug-resistant Streptococcus pneumoniae infection in vivo needs to be elucidated in order to consider this mode of therapy in case of severe pneumococcal infection. We investigated in vivo changes in the expression of these virulence determinants using an efficacious combination determined in previous studies. BALB/c mice were infected with 10(6) CFU of bacteria. Intravenous levofloxacin at 150 mg/kg and/or ceftriaxone at 50 mg/kg were initiated 18 h postinfection; the animals were sacrificed 0 to 24 h after the initiation of treatment. The levels of cytokines, chemokines, and C-reactive protein (CRP) in the serum and lungs, along with the levels of myeloperoxidase and nitric oxide the inflammatory cell count in bronchoalveolar lavage fluid (BALF), changes in pneumolysin and autolysin gene expression and COX-2 and inducible nitric oxide synthase (iNOS) protein expression in the lungs were estimated. Combination therapy downregulated inflammation and promoted bacterial clearance. Pneumolysin and autolysin expression was downregulated, with a concomitant decrease in the expression of COX-2 and iNOS in lung tissue. Thus, the combination of levofloxacin and ceftriaxone can be considered for therapeutic use even in cases of pneumonia caused by drug-resistant isolates.
Collapse
|
6
|
Amos MR, Healey GD, Goldstone RJ, Mahan SM, Düvel A, Schuberth HJ, Sandra O, Zieger P, Dieuzy-Labaye I, Smith DGE, Sheldon IM. Differential endometrial cell sensitivity to a cholesterol-dependent cytolysin links Trueperella pyogenes to uterine disease in cattle. Biol Reprod 2014; 90:54. [PMID: 24478394 DOI: 10.1095/biolreprod.113.115972] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purulent disease of the uterus develops in 40% of dairy cows after parturition, when the epithelium of the endometrium is disrupted to expose the underlying stroma to bacteria. The severity of endometrial pathology is associated with isolation of Trueperella pyogenes. In the present study, T. pyogenes alone caused uterine disease when infused into the uterus of cattle where the endometrial epithelium was disrupted. The bacterium secretes a cholesterol-dependent cytolysin, pyolysin (PLO), and the plo gene was identical and the plo gene promoter was highly similar amongst 12 clinical isolates of T. pyogenes. Bacteria-free filtrates of the T. pyogenes cultures caused hemolysis and endometrial cytolysis, and PLO was the main cytolytic agent, because addition of anti-PLO antibody prevented cytolysis. Similarly, a plo-deletion T. pyogenes mutant did not cause hemolysis or endometrial cytolysis. Endometrial stromal cells were notably more sensitive to PLO-mediated cytolysis than epithelial or immune cells. Stromal cells also contained more cholesterol than epithelial cells, and reducing stromal cell cholesterol content using cyclodextrins protected against PLO. Although T. pyogenes or plo-deletion T. pyogenes stimulated accumulation of inflammatory mediators, such as IL-1beta, IL-6, and IL-8, from endometrium, PLO did not stimulate inflammatory responses by endometrial or hematopoietic cells, or in vitro organ cultures of endometrium. The marked sensitivity of stromal cells to PLO-mediated cytolysis provides an explanation for how T. pyogenes acts as an opportunistic pathogen to cause pathology of the endometrium once the protective epithelium is lost after parturition.
Collapse
Affiliation(s)
- Matthew R Amos
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu EYM, Chang FY, Chang JC, Fung CP. Differences in virulence of pneumolysin and autolysin mutants constructed by insertion duplication mutagenesis and in-frame deletion in Streptococcus pneumoniae. BMC Biotechnol 2014; 14:16. [PMID: 24558977 PMCID: PMC3936844 DOI: 10.1186/1472-6750-14-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 02/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background Insertion duplication mutagenesis (IDM) and in-frame deletion (IFD) are common techniques for studying gene function, and have been applied to pneumolysin (ply), a virulence gene in Streptococcus pneumoniae (D39). Discrepancies in virulence between the two techniques were observed in both the previous and present studies. This phenomenon was also observed during mutation analysis of autolysin (lytA). Results Our data showed that target gene restoration (TGR) occurred in IDM mutants, even in the presence of antibiotics, while the IFD mutants were stable. In PCR result, TGR occurred later in IDM-ply and -lytA mutants cultured in non-supplemented medium (4–5 h) compared with those grown in medium supplemented with erythromycin (erm)/chloramphenicol (cat) (3–4 h), but plateaued faster. Real-time PCR for detecting TGR had been performed. When compared with 8-h culture, TGR detection increased from Day 1 and Day 2 of IDM mutant’s culture. erm-sensitive clones from IDM mutant were found. Southern blot hybridization and Western blotting also confirmed the phenomenon of TGR. The median survival of mice following intraperitoneal (IP) injection with a 3-h culture of IDM-mutants was significantly longer than that with an 8-h culture, irrespective of antibiotic usage. The median survival time of mice following IP injection of a 3-h culture versus an 8-h culture of IDM-ply in the absence of antibiotics was 10 days versus 2 days (p = 0.031), respectively, while in the presence of erm, the median survival was 5 days versus 2.5 days (p = 0.037), respectively. For an IDM-lytA mutant, the corresponding values were 8.5 days versus 2 days (p = 0.019), respectively, for non-supplemented medium, and 2.5 versus 2 days (p = 0.021), respectively, in the presence of cat. A comparable survival rate was observed between WT D39 and an 8-h IDM culture. Conclusion TGR in IDM mutants should be monitored to avoid inconsistent results, and misinterpretation of data due to TGR could lead to important biological meaning being overlooked. Therefore, based on these results, IFD is preferable to IDM for disruption of target genes.
Collapse
Affiliation(s)
| | | | | | - Chang-Phone Fung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| |
Collapse
|
8
|
Mini-review: novel therapeutic strategies to blunt actions of pneumolysin in the lungs. Toxins (Basel) 2013; 5:1244-60. [PMID: 23860351 PMCID: PMC3737495 DOI: 10.3390/toxins5071244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/11/2023] Open
Abstract
Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.
Collapse
|
9
|
Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One 2009; 4:e7993. [PMID: 19956717 PMCID: PMC2776357 DOI: 10.1371/journal.pone.0007993] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pneumolysin (PLN) is an intracellular toxin of Streptococcus pneumoniae that has been implicated as a major virulence factor in infections caused by this pathogen. Conserved bacterial motifs are recognized by the immune system by pattern recognition receptors among which the family of Toll-like receptors (TLRs) prominently features. The primary objective of the present study was to determine the role of TLR2 and TLR4 in lung inflammation induced by intrapulmonary delivery of PLN. METHODOLOGY/RESULTS First, we confirmed that purified PLN activates cells via TLR4 (not via TLR2) in vitro, using human embryonic kidney cells transfected with either TLR2 or TLR4. Intranasal administration of PLN induced an inflammatory response in the pulmonary compartment of mice in vivo, as reflected by influx of neutrophils, release of proinflammatory cytokines and chemokines, and a rise in total protein concentrations in bronchoalveolar lavage fluid. These PLN-induced responses were dependent in part, not only on TLR4, but also on TLR2, as indicated by studies using TLR deficient mice. CONCLUSION These data suggest that although purified PLN is recognized by TLR4 in vitro, PLN elicits lung inflammation in vivo by mechanisms that may involve multiple TLRs.
Collapse
|
10
|
Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infect Immun 2008; 76:4079-87. [PMID: 18559434 DOI: 10.1128/iai.01747-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of otitis media, pneumonia, meningitis, and septicemia in humans. The host defense against this pathogen largely depends on bacterial killing by neutrophils. A peculiar property of pneumococci is their tendency to undergo autolysis, i.e., autoinduced disruption of the bacterial cell wall mediated by activation of the enzyme LytA, under stationary growth conditions. LytA is a virulence factor, but the molecular background for this has not been fully clarified. Here we examine how bacterial compounds released upon autolysis affect the production of reactive oxygen species (ROS) in neutrophils. We found that the S. pneumoniae strains A17 and D39 induced activation of the NADPH oxidase and the production of ROS in human neutrophils and that this activation was blocked when LytA was inactivated. The ROS-inducing bacterial substance released from autolyzed bacteria was identified as the cytoplasmic toxin pneumolysin. Further screening of clinical pneumococcal strains of various sero- and genotypes revealed that selected strains expressing toxins with reduced pneumolysin-dependent hemolytic activity had decreased abilities to induce ROS in neutrophils. Furthermore, a mutated form of purified pneumolysin lacking hemolytic and complement binding functions (PdT) did not induce any oxygen radical production. The ROS produced in response to pneumolysin formed mainly intracellularly, which may explain why this production was not detected previously. ROS released intracellularly may function as signaling molecules, modifying the function of neutrophils in bacterial defense.
Collapse
|
11
|
Popowska M, Markiewicz Z. Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity. Arch Microbiol 2006; 186:69-86. [PMID: 16763838 DOI: 10.1007/s00203-006-0122-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/15/2023]
Abstract
Listeria monocytogenes is an ubiquitous gram-positive, opportunistic food-borne human and animal pathogen. To date, five L. monocytogenes autolysins have been characterized: p60, p45, Ami, MurA and Auto and the preliminary results of our studies show that FlaA, a flagellar protein of L. monocytogenes, also has murein-degrading activity. In this study, a gene coding a 144 kDa protein (Lmo0327) with murein hydrolase activity was identified from a lambda Zap expression library of L. monocytogenes EGD genomic DNA, using a direct screening protocol involving the plating of infected Escherichia coli XL1-blue MRF' cells onto medium containing Bacillus subtilis murein, a substrate for autolytic proteins. Protein Lmo0327 has a signal sequence, a N-terminal LRR domain and a C-terminal wall-anchoring LPXTG motif. In order to examine the roles of this enzyme and the putative transcription regulator coded by gene lmo0326 located upstream of lmo0327, both structural genes were insertionally inactivated by site-specific integration of a temperature-sensitive plasmid. We show that Lmo0327 is a surface protein covalently linked to murein and that the putative transcription regulator Lmo0326 can be assumed to positively regulate the expression of gene lmo0327. The enzyme, which we have shown to have murein-hydrolysing activity, plays a role in cell separation and murein turnover.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of General Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | |
Collapse
|
12
|
Jost BH, Billington SJ. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie van Leeuwenhoek 2005; 88:87-102. [PMID: 16096685 DOI: 10.1007/s10482-005-2316-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Arcanobacterium pyogenes is a commensal and an opportunistic pathogen of economically important livestock, causing diseases as diverse as mastitis, liver abscessation and pneumonia. This organism possesses a number of virulence factors that contribute to its pathogenic potential. A. pyogenes expresses a cholesterol-dependent cytolysin, pyolysin, which is a haemolysin and is cytolytic for immune cells, including macrophages. Expression of pyolysin is required for virulence and this molecule is the most promising vaccine candidate identified to date. A. pyogenes also possesses a number of adherence mechanisms, including two neuraminidases, the action of which are required for full adhesion to epithelial cells, and several extracellular matrix-binding proteins, including a collagen-binding protein, which may be required for adhesion to collagen-rich tissue. A. pyogenes also expresses fimbriae, which are similar to the type 2 fimbriae of Actinomyces naeslundii, and forms biofilms. However, the role of these factors in the pathogenesis of A. pyogenes infections remains to be elucidated. A. pyogenes also invades and survives within epithelial cells and can survive within J774A.1 macrophages for up to 72 h, suggesting an important role for A. pyogenes interaction with host cells during pathogenesis. The two component regulatory system, PloSR, up-regulates pyolysin expression and biofilm formation but down-regulates expression of proteases, suggesting that it may act as a global regulator of A. pyogenes virulence. A. pyogenes is a versatile pathogen, with an arsenal of virulence determinants. However, most aspects of the pathogenesis of infection caused by this important opportunistic pathogen remain poorly characterized.
Collapse
Affiliation(s)
- B Helen Jost
- Department of Veterinary Science and Microbiology, University of Arizona, 1117 East Lowell Street, Tucson, AZ 85721, USA.
| | | |
Collapse
|
13
|
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| |
Collapse
|
14
|
Hirst RA, Kadioglu A, O'callaghan C, Andrew PW. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 2004; 138:195-201. [PMID: 15498026 PMCID: PMC1809205 DOI: 10.1111/j.1365-2249.2004.02611.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Diseases caused by Streptococcus pneumoniae include pneumonia, septicaemia and meningitis. All these are associated with high morbidity and mortality. The pneumococcus can colonize the nasopharynx, and this can be a prelude to bronchopneumonia and invasion of the vasculature space. Proliferation in the blood can result in a breach of the blood-brain barrier and entry into the cerebrospinal fluid (CSF) where the bacteria cause inflammation of the meningeal membranes resulting in meningitis. The infected host may develop septicaemia and/or meningitis secondary to bronchopneumonia. Also septicaemia is a common precursor of meningitis. The mechanisms surrounding the sequence of infection are unknown, but will be dependent on the properties of both the host and bacterium. Treatment of these diseases with antibiotics leads to clearance of the bacteria from the infected tissues, but the bacteriolytic nature of antibiotics leads to an acute release of bacterial toxins and thus after antibiotic therapy the patients can be left with organ-specific deficits. One of the main toxins released from pneumococci is the membrane pore forming toxin pneumolysin. Here we review the extensive studies on the role of pneumolysin in the pathogenesis of pneumococcal diseases.
Collapse
Affiliation(s)
- R A Hirst
- Department of Infection, Inflamation and Immunity, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
15
|
Blue CE, Mitchell TJ. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect Immun 2003; 71:4405-13. [PMID: 12874319 PMCID: PMC166049 DOI: 10.1128/iai.71.8.4405-4413.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial two-component signal transduction systems (TCS) enable bacteria to respond to environmental changes and regulate a range of genes accordingly. They have a crucial role in regulating many cellular responses and have excellent potential as antibacterial-drug targets. We have constructed mutations in a TCS response regulator gene for two different strains of the human pathogen Streptococcus pneumoniae. These mutants have been analyzed in our murine model of infection. Data suggest that in a D39 background the response regulator gene is essential for virulence; an isogenic mutant is avirulent via intraperitoneal, intranasal, and intravenous routes of infection. This mutant, which does not show impaired growth in vitro, is unable to grow in the lung tissue or in blood. Mutation of the response regulator in a 0100993 background results in a strain that is fully virulent intraperitoneally and intravenously but shows decreased levels of bacteremia and increased murine survival following intranasal infection. The ability to grow in the lung tissue is not impaired in this mutant, suggesting that it has an impaired ability to disseminate from the lungs to the systemic circulation. Our data highlight the importance of assessing the contribution of putative virulence factors to the infection process at different sites of infection and provide evidence that virulence determinants can behave very differently based on the genetic background of the bacterial strain. These important findings may be relevant to other bacterial pathogens.
Collapse
Affiliation(s)
- Clare E Blue
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | |
Collapse
|
16
|
Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 2001; 65:187-207 ; first page, table of contents. [PMID: 11381099 PMCID: PMC99024 DOI: 10.1128/mmbr.65.2.187-207.2001] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease.
Collapse
Affiliation(s)
- M J Jedrzejas
- Department of Microbiology, University of Alabama at Birmingham, 933 19th Street South, Birmingham, AL 35294.
| |
Collapse
|
17
|
Balachandran P, Hollingshead SK, Paton JC, Briles DE. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol 2001; 183:3108-16. [PMID: 11325939 PMCID: PMC95211 DOI: 10.1128/jb.183.10.3108-3116.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously proposed that autolysin's primary role in the virulence of pneumococci was to release pneumolysin to an extracellular location. This interpretation came into question when pneumolysin was observed to be released in significant amounts from some pneumococci during log-phase growth, because autolysis was not believed to occur at this time. We have reexamined this phenomenon in detail for one such strain, WU2. This study found that the extracellular release of pneumolysin from WU2 was not dependent on autolysin action. A mutant lacking autolysin showed the same pattern of pneumolysin release as the wild-type strain. Addition of mitomycin C to a growing WU2 culture did not induce lysis, indicating the absence of resident bacteriophages that could potentially harbor lytA-like genes. Furthermore, release of pneumolysin was unaltered by growth in 2% choline, a condition which is reported to inactivate autolysin, as well as most known pneumococcal phage lysins. Profiles of total proteins in the cytoplasm and in the supernatant media supported the hypothesis that release of pneumolysin is independent of pneumococcal lysis. Finally, under some infection conditions, mutations in pneumolysin and autolysin had different effects on virulence.
Collapse
Affiliation(s)
- P Balachandran
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
18
|
Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14:336-63. [PMID: 11292642 PMCID: PMC88978 DOI: 10.1128/cmr.14.2.336-363.2001] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States. The precise role of bacterial infection in the course and pathogenesis of COPD has been a source of controversy for decades. Chronic bacterial colonization of the lower airways contributes to airway inflammation; more research is needed to test the hypothesis that this bacterial colonization accelerates the progressive decline in lung function seen in COPD (the vicious circle hypothesis). The course of COPD is characterized by intermittent exacerbations of the disease. Studies of samples obtained by bronchoscopy with the protected specimen brush, analysis of the human immune response with appropriate immunoassays, and antibiotic trials reveal that approximately half of exacerbations are caused by bacteria. Nontypeable Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae are the most common causes of exacerbations, while Chlamydia pneumoniae causes a small proportion. The role of Haemophilus parainfluenzae and gram-negative bacilli remains to be established. Recent progress in studies of the molecular mechanisms of pathogenesis of infection in the human respiratory tract and in vaccine development guided by such studies promises to lead to novel ways to treat and prevent bacterial infections in COPD.
Collapse
Affiliation(s)
- S Sethi
- Division of Pulmonary and Critical Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | | |
Collapse
|
19
|
Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 2000; 68:5690-5. [PMID: 10992472 PMCID: PMC101524 DOI: 10.1128/iai.68.10.5690-5695.2000] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The choline binding proteins (CBPs) are a family of surface proteins noncovalently bound to the phosphorylcholine moiety of the cell wall of Streptococcus pneumoniae by a conserved choline binding domain. Six new members of this family were identified, and these six plus two recently described cell wall hydrolases, LytB and LytC, were characterized for their roles in virulence. CBP-deficient mutants were constructed and tested for adherence to eukaryotic cells, colonization of the rat nasopharynx, and ability to cause sepsis. Five CBP mutants, CbpD, CbpE, CbpG, LytB, and LytC, showed significantly reduced colonization of the nasopharynx. For CbpE and -G this was attributable to a decreased ability to adhere to human cells. CbpG, a putative serine protease, also played a role in sepsis, the first observation of a pneumococcal virulence determinant strongly operative both on the mucosal surface and in the bloodstream.
Collapse
Affiliation(s)
- K K Gosink
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Previous studies led to the development of a model of contact-induced enhanced gonococcal invasion of human reproductive cells that utilizes the lutropin receptor (LHr) as both the induction signal for conversion to this enhanced-gonococcal-invasion phenotype (Inv(+) GC) and as the specific Inv(+) GC uptake mechanism. This model proposes that gonococci express a surface feature that mimics human chorionic gonadotropin (hCG), the cognate ligand for LHr, and that this structure is responsible for the specific and productive interaction of GC with LHr. In this report, we identify a 13-kDa gonococcal protein with immunological similarities to hCG. The antiserum reactivity is specific since interaction with the 13-kDa gonococcal protein can be blocked by the addition of highly purified hCG. This gonococcal "hCG-like" protein, purified from two-dimensional gels and by immunoprecipitation, was determined by N-terminal sequencing to be the ribosomal protein L12. We present evidence that gonococcal L12 is membrane associated and surface exposed in gonococci, as shown by immunoblot analysis of soluble and insoluble gonococcal protein and antibody adsorption studies with fixed GC. Using highly purified recombinant gonococcal L12, we show that preincubation of Inv(-) GC with micromolar amounts of rL12 leads to a subsequent five- to eightfold increase in invasion of the human endometrial cell line, Hec1B. In addition, nanomolar concentrations of exogenous L12 inhibits gonococcal invasion to approximately 70% of the level in controls. Thus, we propose a novel cellular location for the gonococcal ribosomal protein L12 and concomitant function in LHr-mediated gonococcal invasion of human reproductive cells.
Collapse
Affiliation(s)
- J M Spence
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
21
|
Overweg K, Kerr A, Sluijter M, Jackson MH, Mitchell TJ, de Jong AP, de Groot R, Hermans PW. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 2000; 68:4180-8. [PMID: 10858235 PMCID: PMC101721 DOI: 10.1128/iai.68.7.4180-4188.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface-exposed proteins often play an important role in the interaction between pathogenic bacteria and their host. We isolated a pool of hydrophobic, surface-associated proteins of Streptococcus pneumoniae. The opsonophagocytic activity of hyperimmune serum raised against this protein fraction was high and species specific. Moreover, the opsonophagocytic activity was independent of the capsular type and chromosomal genotype of the pneumococcus. Since the opsonophagocytic activity is presumed to correlate with in vivo protection, these data indicate that the protein fraction has the potential to elicit species-specific immune protection with cross-protection against various pneumococcal strains. Individual proteins in the extract were purified by two-dimensional gel electrophoresis. Antibodies raised against three distinct proteins contributed to the opsonophagocytic activity of the serum. The proteins were identified by mass spectrometry and N-terminal amino acid sequencing. Two proteins were the previously characterized pneumococcal surface protein A and oligopeptide-binding lipoprotein AmiA. The third protein was the recently identified putative proteinase maturation protein A (PpmA), which showed homology to members of the family of peptidyl-prolyl cis/trans isomerases. Immunoelectron microscopy demonstrated that PpmA was associated with the pneumococcal surface. In addition, PpmA was shown to elicit species-specific opsonophagocytic antibodies that were cross-reactive with various pneumococcal strains. This antibody cross-reactivity was in line with the limited sequence variation of ppmA. The importance of PpmA in pneumococcal pathogenesis was demonstrated in a mouse pneumonia model. Pneumococcal ppmA-deficient mutants showed reduced virulence. The properties of PpmA reported here indicate its potential for inclusion in multicomponent protein vaccines.
Collapse
Affiliation(s)
- K Overweg
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Streptococcus pneumoniae is a major pathogen of man causing diseases such as pneumonia, meningitis and otitis media. The mechanisms by which this organism causes these diseases are still largely unknown. The use of molecular approaches to identifying and studying putative virulence factors in combination with the application of animal models has allowed some of the mechanisms of the disease process to be defined.
Collapse
Affiliation(s)
- T J Mitchell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK.
| |
Collapse
|
23
|
Sicard M, Gasc AM, Giammarinaro P, Lefrançois J, Pasta F, Samrakandi M. Molecular biology of Streptococcus pneumoniae: an everlasting challenge. Res Microbiol 2000; 151:407-11. [PMID: 10961452 DOI: 10.1016/s0923-2508(00)00176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Streptococcus pneumoniae is a model for elucidating: 1) recombination steps of DNA, from its discovery to polarity of integration; 2) long-patch mismatch repair, short-patch repair triggered by A/G and exclusion of deletions; 3) resistance to beta-lactam antibiotics; and 4) factors of virulence. Several of these topics remain a challenge for future investigations.
Collapse
Affiliation(s)
- M Sicard
- Laboratoire de microbiologie et de génétique moléculaire du C.N.R.S. et Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Pneumolysin is a thiol-activated membrane-damaging toxin produced by Streptococcus pneumoniae. The toxin plays a role in virulence of the pneumococcus in animal models of infection. Pneumolysin has a range of biological activity including the ability to lyse eukaryotic cells and to interfere with the function of cells and soluble molecules of the immune system. The use of purified native and mutant toxin and of isogenic mutants of the pneumococcus expressing altered versions of the toxin has allowed the contribution of the various activities of this multifunctional toxin to virulence to be defined.
Collapse
Affiliation(s)
- T J Mitchell
- Division of Infection and Immunity, University of Glasgow, Scotland
| | | |
Collapse
|
25
|
Paton JC, Berry AM, Lock RA. Molecular analysis of putative pneumococcal virulence proteins. Microb Drug Resist 2000; 3:1-10. [PMID: 9109091 DOI: 10.1089/mdr.1997.3.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the polysaccharide capsule has been recognized as a sine qua non of virulence, recent attention has focused on the role of pneumococcal proteins in pathogenesis, particularly in view of their potential as vaccine antigens. The contribution of pneumolysin, two distinct neuraminidases, autolysin, hyaluronidase, and the 37 kDa pneumococcal surface adhesin A has been examined by specifically mutagenizing the respective genes in the pneumococcal chromosome and examining the impact on virulence in animal models. The vaccine potential of these proteins has also been assessed by immunization of mice with purified antigens, followed by challenge with virulent pneumococci.
Collapse
Affiliation(s)
- J C Paton
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A., Australia
| | | | | |
Collapse
|
26
|
Morrison DA. Streptococcal competence for genetic transformation: regulation by peptide pheromones. Microb Drug Resist 2000; 3:27-37. [PMID: 9109094 DOI: 10.1089/mdr.1997.3.27] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the capacity for genetic transformation is perhaps the most famous attribute of pneumococcus, use of this genetic phenomenon as a tool for study of the biology of the organism and of its pathogenicity has been largely restricted to a few favored unencapsulated strains, both by the delicacy of the conditions required for development of competence, and by experience that encapsulated strains transformed poorly. We discuss here the recent discovery of a small stable inexpensive peptide pheromone that acts as a quorum-sensing signal and that induces competence under a wide variety of conditions and in encapsulated strains. Its use circumvents some if not all limitations to the expression of transformability in pneumococcus and therefore expands opportunities for application of tools molecular genetics to many strains of pneumococcus without prior genetic manipulation.
Collapse
|
27
|
Berry AM, Paton JC. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 2000; 68:133-40. [PMID: 10603379 PMCID: PMC97112 DOI: 10.1128/iai.68.1.133-140.2000] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the polysaccharide capsule of Streptococcus pneumoniae has been recognized as a sine qua non of virulence, much recent attention has focused on the role of pneumococcal proteins in pathogenesis, particularly in view of their potential as vaccine antigens. The individual contributions of pneumolysin (Ply), the major neuraminidase (NanA), autolysin (LytA), hyaluronidase (Hyl), pneumococcal surface protein A (PspA), and choline-binding protein A (CbpA) have been examined by specifically mutagenizing the respective genes in the pneumococcal chromosome and comparing the impact on virulence in a mouse intraperitoneal challenge model. Mutagenesis of either the ply, lytA, or pspA gene in S. pneumoniae D39 significantly reduced virulence, relative to that of the wild-type strain, indicating that the respective gene products contribute to pathogenesis. On the other hand, mutations in nanA, hyl, or cbpA had no significant impact. The virulence of D39 derivatives carrying a ply deletion mutation as well as an insertion-duplication mutation in one of the other genes was also examined. Mutagenesis of either nanA or lytA did not result in an additional attenuation of virulence in the ply deletion background. However, significant additive attenuation in virulence was observed for the strains with ply-hyl, ply-pspA, and ply-cbpA double mutations.
Collapse
Affiliation(s)
- A M Berry
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | | |
Collapse
|
28
|
Whatmore AM, Dowson CG. The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes. Infect Immun 1999; 67:4551-6. [PMID: 10456899 PMCID: PMC96777 DOI: 10.1128/iai.67.9.4551-4556.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lytA-encoded autolysin (N-acetylmuramoyl-L-alanine amidase) of Streptococcus pneumoniae is believed to play an important role in the pathogenesis of pneumococcal infection and has been identified as a putative vaccine target. Allelic diversity of lytA in an extensive collection of clinical isolates was assessed by restriction fragment length polymorphism and confirmatory sequencing studies. Genetic diversity within lytA is limited, especially compared to the high levels of diversity seen in other pneumococcal virulence factor genes, although small blocks generating mosaic structure were identified. Sequence comparisons with genes encoding cell wall lytic enzymes of pneumococcal bacteriophage suggest that localized recombination events have occurred between host lytA and these bacteriophage genes. These results confirm earlier suggestions that recombination between DNA encoding bacteriophage autolytic enzymes and chromosomally encoded lytA might be important in the evolution of lytA. The implications of these findings for understanding the evolution of lytA and the potential utility of LytA as a vaccine target are discussed.
Collapse
Affiliation(s)
- A M Whatmore
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | |
Collapse
|
29
|
Berry AM, Ogunniyi AD, Miller DC, Paton JC. Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 1999; 67:981-5. [PMID: 9916120 PMCID: PMC96416 DOI: 10.1128/iai.67.2.981-985.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumolysin is a 471-amino-acid toxin produced by Streptococcus pneumoniae which has both cytolytic and complement activation properties. We have constructed a derivative of the type 2 S. pneumoniae strain D39 in which the portion of the pneumolysin gene encoding amino acids 55 to 437 has been deleted in-frame. The virulence of this strain (DeltaPly) was compared with those of wild-type D39, a pneumolysin insertion-duplication mutant (PLN-A), and a derivative (PdT) carrying a toxin gene with three point mutations known to abolish both cytolytic activity and complement activation. PdT was intermediate in virulence between D39 and either PLN-A or DeltaPly in a mouse intraperitoneal challenge model. This provides unequivocal evidence that pneumolysin has an additional property that is not abolished by point mutations which reduce cytotoxicity and complement activation to virtually undetectable levels.
Collapse
Affiliation(s)
- A M Berry
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A., 5006, Australia
| | | | | | | |
Collapse
|
30
|
Qin X, Singh KV, Xu Y, Weinstock GM, Murray BE. Effect of disruption of a gene encoding an autolysin of Enterococcus faecalis OG1RF. Antimicrob Agents Chemother 1998; 42:2883-8. [PMID: 9797220 PMCID: PMC105960 DOI: 10.1128/aac.42.11.2883] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant (TX5127) of Enterococcus faecalis OG1RF was generated by disruption mutagenesis of a previously described autolysin gene. TX5127 formed longer chains (2 to 10 cells per chain) than wild-type OG1RF (mainly single cells) during growth in broth even though it had a growth rate similar to that of the parental strain as measured by turbidity and cell count. Autolysin activity, as defined by the ability to lyse heat-killed Micrococcus lysodeikticus cells, was absent in TX5127, while this activity was easily detectable in OG1RF. However, disruption of this autolysin gene did not block the ability of TX5127 to hydrolyze E. faecalis cell walls compared to that of OG1RF. The autolysis rate of cells of TX5127 in 10 mM sodium phosphate buffer (pH 6.8) was slower than that of wild-type OG1RF. TX5127 also showed a decreased rate of lysis in the presence of penicillin, as measured by changes in the turbidity of the culture during 24 h of incubation at 37 degrees C and a slightly decreased effect of penicillin as measured by time-kill curves. The virulence of TX5127 was similar to that of OG1RF in the mouse peritonitis model, indicating that the autolysin of E. faecalis is not important for infection in this model.
Collapse
Affiliation(s)
- X Qin
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Michon F, Fusco PC, Minetti CA, Laude-Sharp M, Uitz C, Huang CH, D'Ambra AJ, Moore S, Remeta DP, Heron I, Blake MS. Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine 1998; 16:1732-41. [PMID: 9778749 DOI: 10.1016/s0264-410x(98)00225-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A genetically detoxified pneumolysin, pneumolysoid (PLD), was investigated as a carrier protein for pneumococcal capsular polysaccharide (CPS). Such a CPS-PLD conjugate might provide additional protection against pneumococcal infections and resultant tissue damage. A single point mutant of pneumolysin was selected, which lacked measurable haemolytic activity, but exhibited the overall structural and immunological properties of the wild type. PLD conjugates were prepared from CPS serotypes 6B, 14, 19F, and 23F by reductive amination. The structural features of free PLD, as well as the corresponding CPS-PLD, as assessed by circular dichroism spectroscopy, were virtually indistinguishable from the wild type counterpart. Each of the CPS monovalent and tetravalent conjugate formulations were examined for immunogenicity in mice at both 0.5 and 2.0 micrograms CPS per dose. Tetanus toxoid (TT) conjugates were similarly created and used for comparison. The resultant conjugate vaccines elicited high levels of CPS-specific IgG that was opsonophagocytic for all serotypes tested. Opsonophagocytic titres, expressed as reciprocal dilutions resulting in 50% killing using HL-60 cells, ranged from 100 to 30,000, depending on the serotype and formulation. In general, the lower dose and tetravalent formulations yielded the best responses for all serotypes (i.e., either equivalent or better than the higher dose and monovalent formulations). The PLD conjugates were also generally equivalent to or better in CPS-specific responses than the TT conjugates. In particular, both the PLD conjugate and the tetravalent formulations induced responses for type 23F CPS that were approximately an order of magnitude greater than that of the corresponding TT conjugate and monovalent formulations. In addition, all the PLD conjugates elicited high levels of pneumolysin-specific IgG which were shown to neutralize pneumolysin-induced haemolytic activity in vitro. As a result of these findings, PLD appears to provide an advantageous alternative to conventional carrier proteins for pneumococcal multivalent CPS conjugate vaccines.
Collapse
Affiliation(s)
- F Michon
- North American Vaccine, Inc., Beltsville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McLaughlan AM, Foster SJ. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1359-1367. [PMID: 9611810 DOI: 10.1099/00221287-144-5-1359] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding a 102 kDa autolysin has been cloned from an expression library of Listeria monocytogenes EGD genomic DNA, using a direct screening protocol. The encoded protein has two domains, an N-terminal enzymic domain showing a high level of homology to the amidase domain of the major autolysin (atl) of Staphylococcus aureus, and a C-terminal, putative cell-wall-binding domain containing four imperfect direct repeats. In order to examine the role of the enzyme, the autolysin-encoding gene was insertionally inactivated by site-specific integration of a temperature sensitive plasmid. The enzyme accounts for 66% of the total lytic enzyme activity when L. monocytogenes walls are used as substrate and several of the major autolytic bands are missing on renaturing gels when compared to the wild-type. The enzyme does not appear to be directly involved in cell separation but has a role in motility. Characterization of the recombinant enzyme expressed in Escherichia coli has revealed it to be an amidase and to be able to hydrolyse a range of peptidoglycan substrates.
Collapse
Affiliation(s)
- Anna M McLaughlan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Rubins JB, Janoff EN. Pneumolysin: a multifunctional pneumococcal virulence factor. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 131:21-7. [PMID: 9452123 DOI: 10.1016/s0022-2143(98)90073-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pneumolysin (PLY) is a multifunctional pneumococcal virulence factor that appears to augment intrapulmonary growth and dissemination during the early pathogenesis of Streptococcus pneumoniae infection. Through its cytotoxicity to respiratory epithelium and endothelium, PLY disrupts pulmonary tissue barriers that serve as mechanical pulmonary defenses, thus facilitating S. pneumoniae growth and dissemination. Through direct inhibitory effects on immune and inflammatory cells and by activating complement, PLY inhibits bacterial clearance from the pulmonary interstitium and the blood. Because PLY stimulates local and systemic immune responses and enhances the immunogenicity of S. pneumoniae polysaccharide (PS), PLY-PS conjugates may form the basis for vaccines that not only induce protective and durable immune responses to pneumococcal PS but also generate neutralizing anti-PLY antibodies that can protect the respiratory mucosa from toxin-induced injury.
Collapse
Affiliation(s)
- J B Rubins
- Pulmonary and Infectious Diseases Sections, Veterans Affairs Medical Center, University of Minnesota School of Medicine, Minneapolis 55417, USA
| | | |
Collapse
|
34
|
Abstract
Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in cosmid vectors pBeloBAC11 and pLAFRx, and screened with a serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Seventy-five cosmid clones reacted with at least two of the sera. Thirty-eight of the 75 immunopositive clones were considered to contain distinct inserts based on their DNA restriction patterns and were chosen for further subcloning into a pBluescript vector. Each sublibrary was screened with one of the five sera, and the DNA sequence of the immunopositive subclones was determined. Analysis of these sequences revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones, and one such cosmid clone produced a nonprotein antigen in Escherichia coli.
Collapse
Affiliation(s)
- Y Xu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | | | | | |
Collapse
|
35
|
Benton KA, Paton JC, Briles DE. The hemolytic and complement-activating properties of pneumolysin do not contribute individually to virulence in a pneumococcal bacteremia model. Microb Pathog 1997; 23:201-9. [PMID: 9344781 DOI: 10.1006/mpat.1997.0150] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The virulence of pneumococcal capsular type 2 strain D39 and derivatives with mutations in the pneumolysin gene were examined in a mouse bacteremia model. In CBA/N-XID mice D39 is known to exhibit exponential growth in the blood until the death of the mice at 24 to 36 h. In contrast, PLN, a pneumolysin-deficient derivative of D39, reaches a plateau in growth that is maintained for several days. The growth patterns of D39 and PLN observed in CBA/N-XID mice were also observed in C3H/HeJ and C3H/HeOuJ mice, but not in 129/SvJ and C57BL/6J mice. These results demonstrate that the effect of pneumolysin on bacteremia is dependent on the genetic background of the mice. D39 derivatives with point mutations which abolish the cytotoxic or complement-activating properties of pneumolysin did not have major individual effects on virulence in CBA/N- XID and C3H/HeOuJ mice. A derivative with mutations affecting both the cytotoxic and complement- activating properties resulted in a modest, yet statistically significant, increase in survival time of i.v. challenged CBA/N-XID mice. However, the effect was less marked than that seen with PLN. These findings suggest that the virulence effects of pneumolysin in bacteremia must be due in part to properties other than hemolysis and complement fixation.
Collapse
Affiliation(s)
- K A Benton
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
36
|
Dunn BE, Vakil NB, Schneider BG, Miller MM, Zitzer JB, Peutz T, Phadnis SH. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect Immun 1997; 65:1181-8. [PMID: 9119449 PMCID: PMC175115 DOI: 10.1128/iai.65.4.1181-1188.1997] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori is a spiral, gram-negative bacterium which causes chronic gastritis and plays a critical role in peptic ulcer disease, gastric carcinoma, and gastric lymphoma. H. pylori expresses significant urease activity which is an essential virulence factor. Since a significant fraction of urease activity is located on the surface of the bacterium, the urease molecule is a logical choice as an antigen for a vaccine; currently recombinant urease apoenzyme is being tested as a vaccine in phase II clinical trials. We have recently demonstrated that urease and HspB (a homolog of the GroEL heat shock protein) become associated with the surface of H. pylori in vitro in a novel manner: these cytoplasmic proteins are released by bacterial autolysis and become adsorbed to the surface of intact bacteria, reflecting the unique characteristics of the outer membrane. To determine if similar mechanisms are operative in vivo, we determined the ultrastructural locations of urease and HspB within bacteria present in human gastric biopsies. Our results demonstrate that both urease and HspB are located within the cytoplasm of all bacteria examined in human gastric biopsies. Interestingly, a significant proportion of the bacteria examined also possessed variable amounts of surface-associated urease and HspB antigen (from 5 to 50% of the total antigenic material), indicating that in vivo, H. pylori has surface characteristics which enable it to adsorb cytoplasmic proteins. This is consistent with our altruistic autolysis model in which H. pylori uses genetically programmed bacterial autolysis to release urease and other cytoplasmic proteins which are subsequently adsorbed onto the surface of neighboring viable bacteria. These observations have important implications regarding pathogenesis and development of vaccines for H. pylori.
Collapse
Affiliation(s)
- B E Dunn
- Department of Pathology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Benton KA, Paton JC, Briles DE. Differences in virulence for mice among Streptococcus pneumoniae strains of capsular types 2, 3, 4, 5, and 6 are not attributable to differences in pneumolysin production. Infect Immun 1997; 65:1237-44. [PMID: 9119457 PMCID: PMC175123 DOI: 10.1128/iai.65.4.1237-1244.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We observed that differences in the in vivo growth kinetics of pneumococcal strains of capsular types 3, 4, 5, and 6 were reminiscent of differences that we had previously reported for type 2 strain D39 and its pneumolysin-deficient mutant, PLN. Capsular type 2 Streptococcus pneumoniae D39 exhibits exponential growth in the blood of XID mice until the death of the mice at 24 to 36 h. In contrast, PLN reaches a plateau in growth that is maintained for several days. Capsular type 3 and 5 strains exhibited exponential growth and caused rapid death of XID mice following intravenous challenge, similar to the observation with D39. Strains of capsular types 4 and 6 exhibited growth kinetics reminiscent of PLN. Since the observed differences in the pathogenesis of types 3 and 5 compared to 4 and 6 were reminiscent of the effects of pneumolysin deficiency in type 2, we examined the levels of in vitro pneumolysin production for the entire panel of strains. The onset of pneumolysin production in most strains was rapid and occurred near the end of log-phase growth. Differences in in vivo growth patterns of capsular type 2, 3, 4, 5, and 6 strains were not found to be associated with differences in the levels of pneumolysin.
Collapse
Affiliation(s)
- K A Benton
- Department of Microbiology, The University of Alabama at Birmingham, USA.
| | | | | |
Collapse
|
38
|
Berry AM, Paton JC. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 1996; 64:5255-62. [PMID: 8945574 PMCID: PMC174516 DOI: 10.1128/iai.64.12.5255-5262.1996] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
psaA encodes a 37-kDa putative pneumococcal surface adhesin. Although its complete nucleotide sequence has been determined, its contribution to the pathogenicity of Streptococcus pneumoniae has not previously been assessed. In this study, we used a PCR-amplified internal fragment of the psaA gene from S. pneumoniae type 2 strain D39 cloned in pVA891, to direct the construction of D39 derivatives in which the psaA gene had been specifically interrupted, by insertion-duplication mutagenesis. Two independent D39 psaA mutants (PsaA-(1) and PsaA-(2)) were significantly less virulent (as judged by intranasal or intraperitoneal challenge of mice) than either the wild-type D39 strain or a derivative of PsaA-(1) in which the psaA gene had been reconstituted by back-transformation with an intact copy of the cloned gene. pVA891-directed mutagenesis of an open reading frame (designated ORF3) immediately 3' to psaA or insertion of pVA891 between psaA and ORF3 had no impact on intranasal virulence. However, a small but significant difference in virulence was observed between these two derivatives and the parental D39 strain in a low-dose intraperitoneal challenge model, suggesting that the ORF3 product may also contribute to pathogenesis. Adherence of PsaA-(1) to A549 cells (type II pneumocytes) was only 9% of that for D39, while the ORF3-negative strain exhibited intermediate adherence (23%). This is the first functional evidence that PsaA is an adhesin. Sequence analysis of the psaA gene from D39 indicated significant deviation from that previously published for the homolog from S. pneumoniae R36A. The deduced amino acid sequences of mature PsaA from the two strains had only 81% homology, with the bulk of the variation occurring in the amino-terminal portion.
Collapse
Affiliation(s)
- A M Berry
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A., Australia
| | | |
Collapse
|
39
|
Berry AM, Lock RA, Paton JC. Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J Bacteriol 1996; 178:4854-60. [PMID: 8759848 PMCID: PMC178267 DOI: 10.1128/jb.178.16.4854-4860.1996] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is believed to produce more than one form of neuraminidase, but there has been uncertainty as to whether this is due to posttranslational modification of a single gene product or the existence of more than one neuraminidase-encoding gene. Only one stable pneumococcal neuraminidase gene (designated nanA) has been described. In the present study, we isolated and characterized a second neuraminidase gene (designated nanB), which is located close to nanA on the pneumococcal chromosome (approximately 4.5kb downstream). nanB was located on an operon separate from that of nanA, which includes at least five other open reading frames. NanB has a predicted size of 74.5 kDa after cleavage of a 29-amino-acid signal peptide. There was negligible amino acid homology between NanA and NanB, but NanB did exhibit limited homology with the sialidase of Clostridium septicum. NanB was purified from recombinant Escherichia coli and found to have a pH optimum of 4.5, compared with 6.5 to 7.0 for NanA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis suggested that NanB has a molecular size of approximately 65 kDa. The discrepancy between this estimate and the size predicted from the nucleotide sequence is most likely a consequence of C-terminal processing or anomalous electrophoretic behavior.
Collapse
Affiliation(s)
- A M Berry
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | |
Collapse
|
40
|
Sato K, Quartey MK, Liebeler CL, Le CT, Giebink GS. Roles of autolysin and pneumolysin in middle ear inflammation caused by a type 3 Streptococcus pneumoniae strain in the chinchilla otitis media model. Infect Immun 1996; 64:1140-5. [PMID: 8606070 PMCID: PMC173895 DOI: 10.1128/iai.64.4.1140-1145.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptococcus pneumoniae cell wall and pneumolysin are important contributors to pneumococcal pathogenicity in some animal models. To further explore these factors in middle ear inflammation caused by pneumococci, penicillin-induced inflammatory acceleration was studied by using three closely related pneumococcal strains: a wild-type 3 strain (WT3), its pneumolysin-negative derivative (P-1), and into autolysin-negative derivative (A-1). Both middle ears of chinchillas were inoculated with one of the three pneumococcal strains. During the first 12 h, all three strains grew in vivo at the same rate, and all three strains induced similar inflammatory cell responses in middle ear fluid (MEF). Procaine penicillin G was given as 12 h to one-half of the animals in each group, and all treated chinchillas had sterile MEF at 24 h. Penicillin significantly accelerated MEF inflammatory cell influx into WT3-and P-1-infected ears at 18 and 24 h in comparison with the rate for penicillin-treated A-1-infected ears. Inflammatory cell influx was slightly, but not significantly, greater after treatment of WT3 infection than after treatment of P-1 infection. Interleukin (IL)-1beta and IL-6, but not IL-8, concentrations in MEF at 24 h reflected the penicillin effect on MEF inflammatory cells; however, differences between treatment groups were not significant. Results suggest that pneumococcal otitis media pathogenesis is triggered principally by the inflammatory effects of intact and lytic cell wall products in the middle ear, with at most a modes additional pneumolysin effect. Investigation strategies that limit the release of these products or neutralize them warrant further investigation.
Collapse
Affiliation(s)
- K Sato
- Otitis Media Research Center, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
41
|
Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun 1996; 64:905-12. [PMID: 8641799 PMCID: PMC173855 DOI: 10.1128/iai.64.3.905-912.1996] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is a gram-negative bacterium which causes chronic gastritis and is associated with peptic ulcer disease, gastric carcinoma, and gastric lymphoma. The bacterium is characterized by potent urease activity, thought to be located on the outer membrane, which is essential for survival at low pH. The purpose of the present study was to investigate mechanisms whereby urease and HspB, a GroEL homolog, become surface associated in vitro. Urease, HspB, and catalase were located almost exclusively within the cytoplasm in fresh log-phase cultures assessed by cryo- immunoelectron microscopy. In contrast, significant amounts of surface-associated antigen were observed in older or subcultured preparations concomitantly with the appearance of significant amounts of extracellular antigen, amorphous debris, and membrane fragments. By use of a variety of biochemical methods, a significant fraction of urease and HspB was associated with the outer membrane in subcultured preparations of H. pylori. Taken together, these results strongly suggest that H. pylori cells undergo spontaneous autolysis during culture and that urease and HspB become surface associated only concomitant with bacterial autolysis. By comparing enzyme sensitivity to flurofamide (a potent, poorly diffusible urease inhibitor) in whole cells with that in deliberately lysed cells, we show that both extracellular and intracellular urease molecules are active enzymatically. Autolysis of H. pylori is an important phenomenon to recognize since it likely exerts significant effects on the behavior of H. pylori. Furthermore, the surface properties of H. pylori must be unique in promoting adsorption of cytoplasmic proteins.
Collapse
Affiliation(s)
- S H Phadnis
- Department of Pathology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- J C Paton
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, Australia.
| |
Collapse
|
43
|
Brunskill EW, Bayles KW. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol 1996; 178:611-8. [PMID: 8550490 PMCID: PMC177702 DOI: 10.1128/jb.178.3.611-618.1996] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously in our laboratory, a PCR-based strategy was used to isolate potential sensor gene fragments from the Staphyloccus aureus genome. One DNA fragment was isolated that shared strong sequence similarity to genes encoding bacterial sensor proteins, indicating that it originated from within a potential staphylococcal sensor protein gene. In this study, the DNA surrounding the PCR product origin was cloned and sequenced. This analysis revealed the presence of two genes, termed lytS and lytR, whose deduced amino acid sequences were similar to those of members of the two-component regulatory system family of proteins. S. aureus cells containing an insertional disruption of lytS exhibited a marked propensity to form aggregates in liquid culture, suggesting that alterations in cell surface components exist in this strain. Transmission electron microscopic examination of these cells revealed that the cell surface was rough and diffuse and that a large proportion of the cell population had lysed. The lytS mutant also exhibited increased autolysis and an altered level of murein hydrolase activity produced compared with the parental strain, NCTC 8325-4. These data suggest that the lytS and lytR gene products control the rate of autolysis in S. aureus by affecting the intrinsic murein hydrolase activity associated with the cell.
Collapse
Affiliation(s)
- E W Brunskill
- Program in Molecular and Cell Biology, University of Maryland, Baltimore County 21228, USA
| | | |
Collapse
|
44
|
Kuo J, Douglas M, Ree HK, Lindberg AA. Characterization of a recombinant pneumolysin and its use as a protein carrier for pneumococcal type 18C conjugate vaccines. Infect Immun 1995; 63:2706-13. [PMID: 7790088 PMCID: PMC173362 DOI: 10.1128/iai.63.7.2706-2713.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pneumolysin from Streptococcus pneumoniae was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified by affinity and hydroxylapatite chromatography. The purified recombinant pneumolysin (rPL), with a molecular mass of 53 kDa, had a specific activity of 3 x 10(5) hemolytic units per mg of protein on rabbit erythrocytes and reacted identically in immunodiffusion with the antisera against native pneumolysin. The rPL was used as a protein carrier to prepare conjugate vaccine with pneumococcal type 18C polysaccharide (PS18C). The PS18C was directly coupled to rPL by reductive animation or was indirectly coupled to rPL via a spacer molecule, adipic acid dihydrazide. The conjugates were nontoxic for mice and guinea pigs at 100 micrograms per dose. The immunogenicity and protective efficacy of both conjugates were tested in mice. A single dose of either of the vaccines elicited a rise in immunoglobulin G antibody production; after two booster injections of the vaccines, statistically significant booster responses (P < 0.001) to both rPL and PS18C were produced. The sera containing the antibodies to rPL were capable of neutralizing the hemolytic activity of rPL to rabbit erythrocytes and the cytotoxicity of rPL to bovine pulmonary endothelial cells. Immunization with the conjugate vaccines conferred statistically significant protection in mice against lethal challenge with type 18C pneumococci.
Collapse
Affiliation(s)
- J Kuo
- Lederle-Praxis Biologicals, Lederle Laboratories, Pearl River, New York 10965, USA
| | | | | | | |
Collapse
|
45
|
Watson DA, Musher DM, Verhoef J. Pneumococcal virulence factors and host immune responses to them. Eur J Clin Microbiol Infect Dis 1995; 14:479-90. [PMID: 7588820 DOI: 10.1007/bf02113425] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The principal virulence determinant of most encapsulated bacterial pathogens is the possession of an extracellular capsule. This paper discusses biological aspects of the Streptococcus pneumoniae capsule, putative roles played by accessory virulence factors of this pathogen and prospects for improvement of the currently available pneumococcal vaccine. Even though the interruption of genes encoding selected proteins has been shown to attenuate virulence to some degree, the physical removal of the pneumococcal capsule or the interruption of encapsulation genes completely abolishes virulence in mice. The role of the capsule in pathogenesis is not completely clear, however, since it is not known whether this structure is important in colonization, the obligatory first step in the process. In addition, a number of proteins have been implicated as possible accessory virulence factors. These include pneumolysin, two distinct neuraminidases, an IgA1 protease and two surface proteins, pspA and psaA. While interruption of the expression of some of these proteins examined to date has been shown to attenuate virulence, so far it has not proven possible to completely abolish virulence in this fashion. Proteinaceous accessory virulence factors may prove important to the development of second-generation pneumococcal vaccines, however. Pneumococcal and other proteins conjugated to pneumococcal polysaccharides are currently being evaluated as carriers in attempts to improve the immunogenicity of polysaccharide vaccines, primarily in small children.
Collapse
Affiliation(s)
- D A Watson
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo 58105, USA
| | | | | |
Collapse
|
46
|
Berry AM, Alexander JE, Mitchell TJ, Andrew PW, Hansman D, Paton JC. Effect of defined point mutations in the pneumolysin gene on the virulence of Streptococcus pneumoniae. Infect Immun 1995; 63:1969-74. [PMID: 7729909 PMCID: PMC173251 DOI: 10.1128/iai.63.5.1969-1974.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The thiol-activated toxin pneumolysin is a known pneumococcal virulence factor, with both cytotoxic (hemolytic) and complement activation properties. Copies of the pneumolysin gene carrying defined point mutations affecting either or both of these properties were introduced into the chromosome of Streptococcus pneumoniae D39 by insertion-duplication mutagenesis. The virulences of these otherwise isogenic strains were then compared. There was no significant difference in either the median survival time or overall survival rate between mice challenged with D39 derivatives producing the wild-type toxin and those expressing a pneumolysin gene with an Asp-385-->Asn mutation, which abolishes the complement activation property. However, mice challenged with strains carrying either His-367-->Arg or Trp-433-->Phe plus Cys-428-->Gly mutations, which reduce hemolytic activity to approximately 0.02 and 0.0001% of the wild-type level, respectively, had significantly greater median survival times and overall survival rates than mice challenged with D39 derivatives expressing a wild-type pneumolysin gene. No additional reduction in virulence was observed when mice were challenged with a D39 derivative carrying Trp-433-->Phe, Cys-428-->Gly, and Asp-385-->Asn, rather than Trp-433-->Phe and Cys-428-->Gly, mutations in the pneumolysin gene. Thus, it appears that in the intraperitoneal challenge model, the contribution of pneumolysin to virulence is largely attributable to its hemolytic (cytotoxic) properties rather than to its capacity to activate complement. Interestingly, however, the amount of pneumolysin required for full virulence may be very small, as D39 derivatives carrying the Trp-433-->Phe mutation (which reduces hemolytic activity to 0.1% of the wild-type level) had intermediate virulence.
Collapse
Affiliation(s)
- A M Berry
- Department of Microbiology, Women's and Children's Hospital, North Adelaide, South Australia
| | | | | | | | | | | |
Collapse
|
47
|
Benton KA, Everson MP, Briles DE. A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect Immun 1995; 63:448-55. [PMID: 7822009 PMCID: PMC173016 DOI: 10.1128/iai.63.2.448-455.1995] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pneumolysin is a cytoplasmic virulence factor of Streptococcus pneumoniae that can interfere with phagocyte function in vitro. We have examined the effects of pneumolysin in vitro and in vivo and have found that it protects intravenously injected pneumococci against infection-induced host resistance. We employed a virulent capsular type 2 pneumococcal strain, D39, and its isogenic pneumolysin-negative mutant, PLN. Strain D39 exhibited exponential net growth in mice (doubling time, 1.4 h); 24 to 28 h after infection with 10(4) CFU, the numbers of pneumococci reached 10(9) to 10(10) CFU/ml and the mice died. Strain PLN yielded identical net growth in mice until reaching 10(6) to 10(7) CFU/ml at 12 to 18 h postinfection. At this time, the increase in the level of PLN CFU per milliliter ceased and remained constant for several days. PLN exhibited wild-type growth kinetics in mice when coinfected simultaneously with strain D39. This observation suggests that pneumolysin exerts its effects at a distance. By 12 to 18 h postinfection with PLN, mice exhibited the following evidence of an induced inflammatory response: (i) elevated plasma interleukin-6, (ii) a halt in the net growth of PLN, and (iii) control of the net growth of pneumolysin-producing D39 pneumococci upon subsequent challenge. Our data suggest that pneumolysin plays a critical role in sepsis during the first few hours after infection by enabling pneumococci to cause acute sepsis rather than a chronic bacteremia. However, once chronic bacteremia was established, it appeared that pneumolysin was no longer able to act as a virulence factor.
Collapse
Affiliation(s)
- K A Benton
- Department of Microbiology, University of Alabama at Birmingham
| | | | | |
Collapse
|
48
|
Rayner CF, Jackson AD, Rutman A, Dewar A, Mitchell TJ, Andrew PW, Cole PJ, Wilson R. Interaction of pneumolysin-sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect Immun 1995; 63:442-7. [PMID: 7822008 PMCID: PMC173015 DOI: 10.1128/iai.63.2.442-447.1995] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and pneumolysin, a hemolytic toxin, is thought to be an important virulence factor. We have studied the interaction of a pneumolysin-sufficient type II S. pneumoniae strain (PL+) and an otherwise identical pneumolysin-deficient derivative (PL-) with human respiratory mucosa in an organ culture with an air interface for up to 48 h. Ciliary beat frequency (CBF) was measured by a photometric technique, and adherence to and invasion of the epithelium were assessed by scanning and transmission electron microscopy. PL+ and PL- caused a progressive fall in CBF compared with the control which became significant (P < 0.01) at 24 h for PL+ and at 48 h for PL-. At 24 h, there was a significant increase in the percentage of the mucosa of the organ culture that was damaged for PL+ compared with the control (P < 0.01) and PL- (P < 0.02). At 48 h, there was a significant increase in mucosal damage for both PL+ (P < 0.005) and PL- (P < 0.05) compared with the control. At 24 and 48 h, PL+ and PL- adhered predominantly to mucus and damaged cells. PL+ infection alone caused separation of tight junctions between epithelial cells, and at 48 h PL+ cells were adherent to the separated edges of otherwise healthy unciliated cells. PL+ and PL- both caused damage to the epithelial cell ultrastructure. S. pneumoniae infection caused patchy damage to the respiratory mucosa and a lowered CBF. These changes were more severe and occurred earlier with the pneumolysin-sufficient variant.
Collapse
Affiliation(s)
- C F Rayner
- Host Defence Unit, Royal Brompton National Heart and Lung Institute, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rubins JB, Charboneau D, Paton JC, Mitchell TJ, Andrew PW, Janoff EN. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J Clin Invest 1995; 95:142-50. [PMID: 7814608 PMCID: PMC295392 DOI: 10.1172/jci117631] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is one of the most common etiologic agents of community-acquired pneumonia, particularly bacteremic pneumonia. Pneumolysin, a multifunctional cytotoxin, is a putative virulence factor for S. pneumoniae; however, a direct role for pneumolysin in the early pathogenesis of pneumococcal pneumonia has not been confirmed in vivo. We compared the growth of a pneumolysin-deficient (PLY[-]) type 2 S. pneumoniae strain with its isogenic wild-type strain (PLY[+]) after direct endotracheal instillation of bacteria into murine lungs. Compared with PLY(-) bacteria, infection with PLY(+) bacteria produced greater injury to the alveolar-capillary barrier, as assayed by albumin concentrations in alveolar lavage, and substantially greater numbers of PLY(+) bacteria were recovered in alveolar lavages and lung homogenates at 3 and 6 h after infection. The presence of pneumolysin also contributed to the development of bacteremia, which was detected at 3 h after intratracheal instillation of PLY(+) bacteria. The direct effects of pneumolysin on lung injury and on the ability of pneumococci to evade local lung defenses was confirmed by addition of purified recombinant pneumolysin to inocula of PLY(-) pneumococci, which promoted growth of PLY(-) bacteria in the lung to levels comparable to those seen with the PLY(+) strain. We further demonstrated the contributions of both the cytolytic and the complement-activating properties of pneumolysin on enhanced bacterial growth in murine lungs using genetically modified pneumolysin congeners and genetically complement-deficient mice. Thus, pneumolysin facilitates intraalveolar replication of pneumococci, penetration of bacteria from alveoli into the interstitium of the lung, and dissemination of pneumococci into the bloodstream during experimental pneumonia. Moreover, both the cytotoxic and the complement-activating activities of pneumolysin may contribute independently to the acute pulmonary injury and the high rates of bacteremia which characterize pneumococcal pneumonia.
Collapse
Affiliation(s)
- J B Rubins
- Pulmonary Disease Division, Veterans Affairs Medical Center, Minneapolis, Minnesota
| | | | | | | | | | | |
Collapse
|
50
|
Alexander JE, Lock RA, Peeters CC, Poolman JT, Andrew PW, Mitchell TJ, Hansman D, Paton JC. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 1994; 62:5683-8. [PMID: 7960154 PMCID: PMC303321 DOI: 10.1128/iai.62.12.5683-5688.1994] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pneumolysin is the thiol-activated cytolysin produced by Streptococcus pneumoniae. Mice were immunized with a genetically engineered toxoid version of pneumolysin, which was derived from a serotype 2 pneumococcus. The toxoid carried the mutation Trp-433-->Phe. Alum was used as the adjuvant. Immunized mice had significantly increased levels of anti-pneumolysin antibodies, principally immunoglobulin G1. Mice were challenged intraperitoneally or intranasally with 12 strains covering capsular serotypes 1 to 6, 7F, 8, and 18C. Following challenge, the survival rate and/or the time of death of nonsurvivors (survival time) was significantly greater than that of sham-immunized mice for all nine serotypes. However, differences in the degree of protection were noted between different strains. The route of challenge also appeared to influence the degree of protection. Nevertheless, the significant, albeit in some cases partial, protection provided against all nine pneumococcal serotypes supports the conclusion that pneumolysin toxoids warrant consideration for inclusion in a human vaccine.
Collapse
Affiliation(s)
- J E Alexander
- Department of Microbiology and Immunology, University of Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|