1
|
Reduction of cerebral blood flow in community-based adults with subclinical cerebrovascular atherosclerosis: A 3.0T magnetic resonance imaging study. Neuroimage 2019; 188:302-308. [DOI: 10.1016/j.neuroimage.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/21/2023] Open
|
2
|
Jackson S, George RT, Lodge MA, Piotrowski A, Wahl RL, Gujar SK, Grossman SA. The effect of regadenoson on the integrity of the human blood-brain barrier, a pilot study. J Neurooncol 2017; 132:513-519. [PMID: 28315063 DOI: 10.1007/s11060-017-2404-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
Abstract
Regadenoson is an FDA approved adenosine receptor agonist which increases blood-brain barrier (BBB) permeability in rodents. Regadenoson is used clinically for pharmacologic cardiac stress testing using SPECT or CT imaging agents that do not cross an intact BBB. This study was conducted to determine if standard doses of regadenoson transiently disrupt the human BBB allowing higher concentrations of systemically administered imaging agents to enter the brain. Patients without known intracranial disease undergoing clinically indicated pharmacologic cardiac stress tests were eligible for this study. They received regadenoson (0.4 mg) followed by brain imaging with either 99mTc-sestamibi for SPECT or visipaque for CT imaging. Pre- and post-regadenoson penetration of imaging agents into brain were quantified [SPECT: radioactive counts, CT: Hounsfield units (HU)] and compared using a matched-pairs t-test. Twelve patients (33% male, median 60 yo) were accrued: 7 SPECT and 5 CT. No significant differences were noted in pre- and post-regadenoson values using mean radionuclide counts (726 vs. 757) or HU (29 vs. 30). While animal studies have demonstrated that regadenoson transiently increases the permeability of the BBB to dextran and temozolomide, we were unable to document changes in the penetration of contrast agents in humans with intact BBB using the FDA approved doses of regadenoson for cardiac evaluation. Further studies are needed exploring alternate regadenoson dosing, schedules, and studies in patients with brain tumors; as transiently disrupting the BBB to improve drug entry into the brain is critical to improving the care of patients with CNS malignancies.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Richard T George
- Heart and Vascular Institute, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Martin A Lodge
- Nuclear Medicine, Russell H. Morgan Dept. of Radiology and Radiological Sciences, Johns Hopkins University, 601 Caroline St, Baltimore, MD, 21231, USA
| | - Anna Piotrowski
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Richard L Wahl
- Nuclear Medicine, Russell H. Morgan Dept. of Radiology and Radiological Sciences, Johns Hopkins University, 601 Caroline St, Baltimore, MD, 21231, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Sachin K Gujar
- Radiology and Radiological Science, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Abstract
Numerous techniques have been proposed in the last 15 years to measure various perfusion-related parameters in the brain. In particular, two approaches have proven extremely successful: injection of paramagnetic contrast agents for measuring cerebral blood volumes (CBV) and arterial spin labeling (ASL) for measuring cerebral blood flows (CBF). This review presents the methodology of the different magnetic resonance imaging (MRI) techniques in use for CBV and CBF measurements and briefly discusses their limitations and potentials.
Collapse
Affiliation(s)
- E L Barbier
- Laboratoire mixte INSERM U438, Université Joseph Fourier: RMN Bioclinique, LRC-CEA, Hôpital Albert Michallon, Grenoble, France
| | | | | |
Collapse
|