Skjelbakken T, Valen G, Vaage J. Perfusing isolated rat hearts with hydrogen peroxide: an experimental model of cardiac dysfunction caused by reactive oxygen species.
Scand J Clin Lab Invest 1996;
56:431-9. [PMID:
8869666 DOI:
10.3109/00365519609088798]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A model of cardiac dysfunction induced by reactive oxygen species (ROS) was established by adding hydrogen peroxide (H2O2) to the perfusate of isolated, Langendorff-perfused rat hearts, and the mechanism of functional injury was investigated. The following groups were included: 1 (n = 7), control perfusion; 2 (n = 11), perfusion with H2O2 (180 mumol 1(-1) for 10 min followed by recovery for 50 min; 3 (n = 4), control perfusion with N-acetylcysteine (NAC, 100 mumol 1(-1); 4 (n = 7), perfusion with H2O2 and NAC; 5 (n = 4), control perfusion with thiourea (15 mmol 1(-1), 6 (n = 7), H2O2 and thiourea together; 7 (n = 4), control perfusion with catalase (150 U ml-1); 8 (n = 7), catalase and H2O2, 9 (n = 4), control perfusion with deferoxamine (5 mmol 1(-1); and 10 (n = 7), deferoxamine and H2O2. coronary flow (CF), left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and heart rate (HR) were measured. All values are mean +/- SEM. When given alone, catalase, thiourea, NAC and deferoxamine did not influence left ventricular pressures, but NAC, catalase and thiourea increased CF. H2O2 increased CF (maximum 146 +/- 6% of baseline value after 5 min, p < 0.001 compared to group 1), decreased LVDP (minimum 14 +/- 5% of baseline value after 10 min, p < 0.0004), and increased LVEDP (from 0 mmHg to a maximum of 54 +/- 7 mmHg after 5 min recovery, p < 0.0003). All these changes gradually reversed during recovery. Catalase and thiourea both inhibited the H2O2-induced effects, but catalase inhibition was more complete. Neither NAC nor deferoxamine had any effect on H2O2-induced cardiac dysfunction. In conclusion, H2O2 perfusion is a convenient and reversible model of ROS-induced functional injury to isolated rat hearts. H2O2, rather than the hydroxyl radical, seems to be the main injurious ROS in this model.
Collapse