1
|
Turek I, Freihat L, Vyas J, Wheeler J, Muleya V, Manallack DT, Gehring C, Irving H. The discovery of hidden guanylate cyclases (GCs) in the Homo sapiens proteome. Comput Struct Biotechnol J 2023; 21:5523-5529. [PMID: 38022692 PMCID: PMC10665587 DOI: 10.1016/j.csbj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Recent discoveries have established functional guanylate cyclase (GC) catalytic centers with low activity within kinase domains in plants. These crypto GCs generate guanosine 3',5'-cyclic monophosphate (cGMP) essential for both intramolecular and downstream signaling. Here, we have set out to search for such crypto GCs moonlighting in kinases in the H. sapiens proteome and identified 18 candidates, including the neurotropic receptor tyrosine kinase 1 (NTRK1). NTRK1 shows a domain architecture much like plant receptor kinases such as the phytosulfokine receptor, where a functional GC essential for downstream signaling is embedded within a kinase domain. In vitro characterization of the NTRK1 shows that the embedded NTRK1 GC is functional with a marked preference for Mn2+ over Mg2+. This therefore points to hitherto unsuspected roles of cGMP in intramolecular and downstream signaling of NTRK1 and the role of cGMP in NTRK1-dependent growth and neoplasia.
Collapse
Affiliation(s)
- Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
| | - Lubna Freihat
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jignesh Vyas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Janet Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio building, Bundoora, VIC 3086, Australia
| | - Victor Muleya
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David T. Manallack
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chris Gehring
- Department of Chemistry, Biochemistry and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Xie Y, Zhang H, Pan Y, Chai Y. Combined effect of stimulation and electromagnetic induction on absence seizure inhibition in coupled thalamocortical circuits. Eur J Neurosci 2023; 57:867-879. [PMID: 36696966 DOI: 10.1111/ejn.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) and electromagnetic induction are new techniques that are increasingly used in modern epilepsy treatments; however, the mechanism of action remains unclear. In this study, we constructed a bidirectional-coupled cortico-thalamic model, based on which we proposed three regulation schemes: isolated regulation of DBS, isolated regulation of electromagnetic induction and combined regulation of the previous two. In particular, we introduced DBS with a lower amplitude and considered the influence of electromagnetic induction caused by the transmembrane current on the membrane potential. The most striking finding of this study is that the three therapeutic schemes could effectively control abnormal discharge, and combined regulation could reduce the occurrence of epileptic seizures more effectively. The present study bridges the gap between the bidirectional coupling model and combined control. In this way, the damage induced by electrical stimulation of the patient's brain tissue could be reduced, and the abnormal physiological discharge pattern of the cerebral cortex was simultaneously regulated by different techniques. This work opens new avenues for improving brain dysfunction in patients with epilepsy, expands ideas for promoting the development of neuroscience and is meaningful for improving the health of modern society and developing the field of science.
Collapse
Affiliation(s)
- Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
| | - Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
| | - Yufeng Pan
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
| |
Collapse
|
3
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Li Y, Wei C, Wang W, Li Q, Wang Z. Tropomyosin receptor kinase B (TrkB) signalling: targeted therapy in neurogenic tumours. J Pathol Clin Res 2022; 9:89-99. [PMID: 36533776 PMCID: PMC9896160 DOI: 10.1002/cjp2.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Tropomyosin receptor kinase B (TrkB), a transmembrane receptor protein, has been found to play a pivotal role in neural development. This protein is encoded by the neurotrophic receptor tyrosine kinase 2 (NTRK2) gene, and its abnormal activation caused by NTRK2 overexpression or fusion can contribute to tumour initiation, progression, and resistance to therapeutics in multiple types of neurogenic tumours. Targeted therapies for this mechanism have been designed and developed in preclinical and clinical studies, including selective TrkB inhibitors and pan-TRK inhibitors. This review describes the gene structure, biological function, abnormal TrkB activation mechanism, and current-related targeted therapies in neurogenic tumours.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Zhi‐Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| |
Collapse
|
5
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
6
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Abstract
During the development of the nervous system, neurons respond to diffusible cues secreted by target cells. Because such target-derived factors regulate development, maturation, and maintenance of axons as well as somatodendritic compartments, signals initiated at distal axons must be retrogradely transmitted toward cell bodies. Neurotrophins, including the nerve growth factor (NGF), provide one of the best-known examples of target-derived growth factors. The cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies are key mechanisms by which target-derived neurotrophins influence neurons. Evidence accumulated over the past several decades has begun to uncover the molecular mechanisms of formation, transport, and biological functions of these specialized endosomes called "signaling endosomes."
Collapse
|
8
|
Sun M, Cai S, Li P, Zhang F, Zhang H, Zhou J. Design, synthesis and biological activity of bicyclic carboxamide derivatives as TRK inhibitors. Bioorg Med Chem 2020; 28:115811. [PMID: 33069129 DOI: 10.1016/j.bmc.2020.115811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/18/2022]
Abstract
'precision medicine' is characterized by the selection of targeted drugs based on genetic characteristics of tumor from patients, and no longer selected basis on the type of cancer tissue. Among them, clinical trials on neurotrophin receptor tyrosine kinase genes (NTRK) have proven that great anti-cancer effects can be achieved in different cancer patients. In this paper, a novel total of twenty compounds in two categories have been designed and synthesized. Results of Kinase activity tests showed that I-9 (TRKA IC50 = 1.3 nM, TRKAG595R IC50 = 6.1 nM), and I-10 (TRKA IC50 = 1.1 nM, TRKAG595R IC50 = 5.3 nM) have significant inhibitory activity, and results of cell viability tests showed that I-9 and I-10 can maintain a great inhibitory effect in the Ba/F3-LMNA-NTRK1 cell line(IC50 = 81.1 nM and 41.7 nM, respectively), and in Ba/F3-LMNA-NTRK1-G595R cell line, I-9 and I-10 have better cell activity (IC50 was 495.3 nM, 336.6 nM, respectively) compared with the positive control drug LOXO-101. These results indicate that I-9 and I-10 are potential TRK inhibitors that can overcome drug resistance for further investigation.
Collapse
Affiliation(s)
- Minghao Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Cai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Pei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Fangqing Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
9
|
Neuroprotection by Neurotropin through Crosstalk of Neurotrophic and Innate Immune Receptors in PC12 Cells. Int J Mol Sci 2020; 21:ijms21186456. [PMID: 32899630 PMCID: PMC7555716 DOI: 10.3390/ijms21186456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin®, NTP) was found to induce infarct tolerance in mice receiving permanent ischemic attack to the middle cerebral artery. Likewise, we report herein that NTP prevented the neurite retraction in PC12 cells by nerve growth factor (NGF) deprivation. This effect was accompanied by interaction of Fyn with high-affinity NGF receptor TrkA. Sucrose density gradient subcellular fractionation of NTP-treated cells showed heretofore unidentified membrane fractions with a high-buoyant density containing Trk, B subunit of cholera toxin-bound ganglioside, flotillin-1 and Fyn. Additionally, these new membrane fractions also contained Toll-like receptor 4 (TLR4). Inhibition of TLR4 function by TAK-242 prevented the formation of these unidentified membrane fractions and suppressed neuroprotection by NTP. These observations indicate that NTP controls TrkA-mediated signaling through the formation of clusters of new membrane microdomains, thus providing a platform for crosstalk between neurotrophic and innate immune receptors. Neuroprotective mechanisms through the interaction with innate immune systems may provide novel mechanism for neuroprotection.
Collapse
|
10
|
Kiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, Lemmon MA. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Sci Signal 2020; 13:13/645/eaaz5267. [PMID: 32817373 DOI: 10.1126/scisignal.aaz5267] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In responses to activation of receptor tyrosine kinases (RTKs), crucial cell fate decisions depend on the duration and dynamics of ERK signaling. In PC12 cells, epidermal growth factor (EGF) induces transient ERK activation that leads to cell proliferation, whereas nerve growth factor (NGF) promotes sustained ERK activation and cell differentiation. These differences have typically been assumed to reflect distinct feedback mechanisms in the Raf-MEK-ERK signaling network, with the receptors themselves acting as simple upstream inputs. We failed to confirm the expected differences in feedback type when investigating transient versus sustained signaling downstream of the EGF receptor (EGFR) and NGF receptor (TrkA). Instead, we found that ERK signaling faithfully followed RTK dynamics when receptor signaling was modulated in different ways. EGFR activation kinetics, and consequently ERK signaling dynamics, were switched from transient to sustained when receptor internalization was inhibited with drugs or mutations, or when cells expressed a chimeric receptor likely to have impaired dimerization. In addition, EGFR and ERK signaling both became more sustained when substoichiometric levels of erlotinib were added to reduce duration of EGFR kinase activation. Our results argue that RTK activation kinetics play a crucial role in determining MAP kinase cascade signaling dynamics and cell fate decisions, and that signaling outcome can be modified by activating a given RTK in different ways.
Collapse
Affiliation(s)
- Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daryl E Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve Growth Factor Signaling and Its Contribution to Pain. J Pain Res 2020; 13:1223-1241. [PMID: 32547184 PMCID: PMC7266393 DOI: 10.2147/jpr.s247472] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein essential for the growth, differentiation, and survival of sympathetic and sensory afferent neurons during development. A substantial body of evidence, based on both animal and human studies, demonstrates that NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred development of a variety of novel analgesics that target the NGF signaling pathway. Here, we present a narrative review designed to summarize how NGF receptor activation and downstream signaling alters nociception through direct sensitization of nociceptors at the site of injury and changes in gene expression in the dorsal root ganglion that collectively increase nociceptive signaling from the periphery to the central nervous system. This review illustrates that NGF has a well-known and multifunctional role in nociceptive processing, although the precise signaling pathways downstream of NGF receptor activation that mediate nociception are complex and not completely understood. Additionally, much of the existing knowledge derives from studies performed in animal models and may not accurately represent the human condition. However, available data establish a role for NGF in the modulation of nociception through effects on the release of inflammatory mediators, nociceptive ion channel/receptor activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in nociception and the generation and/or maintenance of chronic pain has led to it becoming a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.
Collapse
Affiliation(s)
- Philip A Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Patrick Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology and the Center for Sensory-Motor Interaction/Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
12
|
Shen J, Sun D, Shao J, Chen Y, Pang K, Guo W, Lu B. Extracellular Juxtamembrane Motif Critical for TrkB Preformed Dimer and Activation. Cells 2019; 8:cells8080932. [PMID: 31430955 PMCID: PMC6721692 DOI: 10.3390/cells8080932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023] Open
Abstract
Receptor tyrosine kinases are believed to be activated through ligand-induced dimerization. We now demonstrate that in cultured neurons, a substantial amount of endogenous TrkB, the receptor for brain-derived neurotrophic factor (BDNF), exists as an inactive preformed dimer, and the application of BDNF activates the pre-existing dimer. Deletion of the extracellular juxtamembrane motif (EJM) of TrkB increased the amount of preformed dimer, suggesting an inhibitory role of EJM on dimer formation. Further, binding of an agonistic antibody (MM12) specific to human TrkB-EJM activated the full-length TrkB and unexpectedly also truncated TrkB lacking ECD (TrkBdelECD365), suggesting that TrkB is activated by attenuating the inhibitory effect of EJM through MM12 binding-induced conformational changes. Finally, in cells co-expressing rat and human TrkB, MM12 could only activate TrkB human-human dimer but not TrkB human-rat TrkB dimer, indicating that MM12 binding to two TrkB monomers is required for activation. Our results support a model that TrkB preforms as an inactive dimer and BDNF induces TrkB conformation changes leading to its activation.
Collapse
Affiliation(s)
- Jianying Shen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100084, China
| | - Dang Sun
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingyu Shao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yanbo Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- R & D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
- R & D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
13
|
Ricci D, Marrocco I, Blumenthal D, Dibos M, Eletto D, Vargas J, Boyle S, Iwamoto Y, Chomistek S, Paton JC, Paton AW, Argon Y. Clustering of IRE1α depends on sensing ER stress but not on its RNase activity. FASEB J 2019; 33:9811-9827. [PMID: 31199681 DOI: 10.1096/fj.201801240rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The sensors of the unfolded protein response react to endoplasmic reticulum (ER) stress by transient activation of their enzymatic activities, which initiate various signaling cascades. In addition, the sensor IRE1α exhibits stress-induced clustering in a transient time frame similar to activation of its endoRNase activity. Previous work had suggested that the clustering response and RNase activity of IRE1α are functionally linked, but here we show that they are independent of each other and have different behaviors and modes of activation. Although both clustering and the RNase activity are responsive to luminal stress conditions and to depletion of the ER chaperone binding protein, RNase-inactive IRE1α still clusters and, conversely, full RNase activity can be accomplished without clustering. The clusters formed by RNase-inactive IRE1α are much larger and persist longer than those induced by ER stress. Clustering requires autophosphorylation, and an IRE1α mutant whose RNase domain is responsive to ligands that bind the kinase domain forms yet a third type of stress-independent cluster, with distinct physical properties and half-lives. These data suggest that IRE1α clustering can follow distinct pathways upon activation of the sensor.-Ricci, D., Marrocco, I., Blumenthal, D., Dibos, M., Eletto, D., Vargas, J., Boyle, S., Iwamoto, Y., Chomistek, S., Paton, J. C., Paton, A. W., Argon, Y. Clustering of IRE1α depends on sensing ER stress but not on its RNase activity.
Collapse
Affiliation(s)
- Daniela Ricci
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ilaria Marrocco
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Blumenthal
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miriam Dibos
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniela Eletto
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jade Vargas
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Boyle
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuichiro Iwamoto
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Chomistek
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James C Paton
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, South Australia, Australia
| | - Adrienne W Paton
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, South Australia, Australia
| | - Yair Argon
- Division of Cell Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
NGF protects bone marrow mesenchymal stem cells against 2,5-hexanedione-induced apoptosis in vitro via Akt/Bad signal pathway. Mol Cell Biochem 2019; 457:133-143. [DOI: 10.1007/s11010-019-03518-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
|
15
|
Yu X, Qi Y, Zhao T, Fang J, Liu X, Xu T, Yang Q, Dai X. NGF increases FGF2 expression and promotes endothelial cell migration and tube formation through PI3K/Akt and ERK/MAPK pathways in human chondrocytes. Osteoarthritis Cartilage 2019; 27:526-534. [PMID: 30562625 DOI: 10.1016/j.joca.2018.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Vascular invasion is observed at the osteochondral junction in osteoarthritis (OA). Nerve growth factor (NGF) as an angiogenic factor is expressed in OA. This study is to investigate the effects of NGF on angiogenesis in vitro in human chondrocytes. DESIGN Articular cartilages of knee joints were harvested from healthy and OA patients. Expressions of NGF and tropomyosin-related kinase A (TrkA) were detected by western blot, Safranin-O and fast green staining and immunohistochemistry in cartilage. Expression of fibroblast growth factor 2 (FGF2) was detected by western blot in cultured chondrocytes. Chondrocytes were transfected by lentiviral vectors to knock down TrkA. Migration and tube formation of human microvascular endothelial cell (HMVEC) were assessed by using transwell co-culture with chondrocyte after treatment of NGF. RESULTS We confirmed expressions of NGF and TrkA were significantly up-regulated in OA. NGF induced expression of FGF2 in a time- and dose-dependent manner. Angiogenic activities of endothelial cells were greatly enhanced after co-cultured with NGF pre-treated chondrocytes, while knock-down of TrkA significantly abolished the above effects. We further found that NGF-induced expression of FGF2 promoted angiogenic activities of endothelial cells through PI3K/Akt and ERK/MAPK signaling pathways. CONCLUSIONS NGF promotes expression of FGF2 in vitro via PI3K/Akt and ERK/MAPK signaling pathways in human chondrocytes and it increases angiogenesis, which is mediated by TrkA. NGF could be responsible for vascular up-growth from subchondral bone in OA.
Collapse
Affiliation(s)
- X Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China; Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Shixin Road 590#, Hangzhou 311215, PR China
| | - Y Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - T Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - J Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China; Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Shixin Road 590#, Hangzhou 311215, PR China
| | - X Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - T Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - Q Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - X Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China.
| |
Collapse
|
16
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
17
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
18
|
Cao CY, Zhang CC, Shi XW, Li D, Cao W, Yin X, Gao JM. Sarcodonin G Derivatives Exhibit Distinctive Effects on Neurite Outgrowth by Modulating NGF Signaling in PC12 Cells. ACS Chem Neurosci 2018; 9:1607-1615. [PMID: 29653489 DOI: 10.1021/acschemneuro.7b00488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sarcodonin G, one of the cyathane diterpenoids isolated from the mushroom Sarcodon scabrosus, possesses pronounced neurotrophic activity but ambiguous mechanical understanding. In this work, sarcodonin G was chosen as a lead compound to prepare a series of 19- O-benzoyl derivatives by semisynthesis and their neuritogenic activities were evaluated. 6 and 15 (10 μM) were investigated with opposite effects in PC12 cells. 6 exhibited a superior activity to sarcodonin G by promoting NGF-induced neurite outgrowth, while 15 showed an inhibitory effect. Supportingly, 6 and 15 (20 μM) significantly induced and suppressed neurite extension in primary cultured rat cortical neurons, respectively. In mechanism, the two derivatives were revealed to influence NGF-induced neurite outgrowth in PC12 cells through the regulation of PKC-dependent and -independent ERK/CREB signaling as well as the upstream TrkA receptor phosphorylation. Furthermore, a possible pattern of interaction among NGF, 6/15 and TrkA was presented using molecular simulations. It revealed that 6/15 may contribute to the stabilization of the NGF-TrkAd5 complex by establishing several hydrophobic and hydrogen-bond interactions with NGF and TrkA, respectively. Taken together, 6 and 15 modulate PKC-dependent and -independent ERK/CREB signaling pathways possibly by influencing the binding affinity of NGF to the receptor TrkA, and finally regulate neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Chen-Yu Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Cheng-Chen Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Xin-Wei Shi
- Xi'an Botanical Garden , Institute of Botany of Shaanxi Province , Xi'an 710061 , Shaanxi China
| | - Ding Li
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Wei Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Xia Yin
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Jin-Ming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|
19
|
Zahavi EE, Steinberg N, Altman T, Chein M, Joshi Y, Gradus-Pery T, Perlson E. The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane. Sci Signal 2018; 11:11/529/eaao4006. [PMID: 29739881 DOI: 10.1126/scisignal.aao4006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Noam Steinberg
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yuvraj Joshi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tal Gradus-Pery
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
20
|
Vilar M. Structural Characterization of the p75 Neurotrophin Receptor: A Stranger in the TNFR Superfamily. VITAMINS AND HORMONES 2016; 104:57-87. [PMID: 28215307 DOI: 10.1016/bs.vh.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although p75 neurotrophin receptor (p75NTR) was the founding member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), it is an atypical TNFRSF protein. p75NTR like TNF-R1 and Fas-R contain an extracellular domain with four cysteine-rich domains (CRD) and a death domain (DD) in the intracellular region. While TNFRSF proteins are activated by trimeric TNFSF ligands, p75NTR forms dimers activated by dimeric neurotrophins that are structurally unrelated to TNFSF proteins. In addition, although p75NTR shares with other members the interaction with the TNF receptor-associated factors to activate the NF-κB and cell death pathways, p75NTR does not interact with the DD-containing proteins FADD, TRADD, or MyD88. By contrast, the DD of p75NTR is able to recruit several protein interactors via a full catalog of DD interactions not described before in the TNFRSF. p75-DD forms homotypic symmetrical DD-DD complexes with itself and with the related p45-DD; forms heterotypic DD-CARD interactions with the RIP2-CARD domain, and forms a new interaction between a DD and RhoGDI. All these features, in addition to its promiscuous interactions with several ligands and coreceptors, its processing by α- and γ-secretases, the dimeric nature of its transmembrane domain and its "special" juxtamembrane region, make p75NTR a truly stranger in the TNFR superfamily. In this chapter, I will summarize the known structural aspects of p75NTR and I will analyze from a structural point of view, the similitudes and differences between p75NTR and the other members of the TNFRSF.
Collapse
Affiliation(s)
- M Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of Valencia (IBV-CSIC), València, Spain.
| |
Collapse
|
21
|
Offermann B, Knauer S, Singh A, Fernández-Cachón ML, Klose M, Kowar S, Busch H, Boerries M. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation. Front Genet 2016; 7:44. [PMID: 27148350 PMCID: PMC4830832 DOI: 10.3389/fgene.2016.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.
Collapse
Affiliation(s)
- Barbara Offermann
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Steffen Knauer
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Amit Singh
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - María L Fernández-Cachón
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Silke Kowar
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| |
Collapse
|
22
|
Abstract
UNLABELLED The p75 neurotrophin receptor (p75(NTR)) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75(NTR) interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75(NTR) signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75(NTR) is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75(NTR) activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75(NTR) activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75(NTR) confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. SIGNIFICANCE STATEMENT The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75(NTR) predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75(NTR) activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75(NTR) begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity.
Collapse
|
23
|
Thiede-Stan NK, Schwab ME. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. J Cell Sci 2015; 128:2403-14. [PMID: 26116576 DOI: 10.1242/jcs.165555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.
Collapse
Affiliation(s)
- Nina K Thiede-Stan
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
24
|
Wang GX, Zhao XY, Lin JD. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab 2015; 26:231-7. [PMID: 25843910 PMCID: PMC4417028 DOI: 10.1016/j.tem.2015.03.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
Abstract
Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein (UCP)1-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development.
Collapse
Affiliation(s)
- Guo-Xiao Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xu-Yun Zhao
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
25
|
Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 2014; 1596:13-21. [PMID: 25454796 DOI: 10.1016/j.brainres.2014.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
Activation of the high-affinity nerve growth factor (NGF) receptor Trk occurs through multiple processes consisted of translocation and clustering within the plasma membrane lipid rafts, dimerization and autophosphorylation. Here we found that a nonprotein extract of inflamed rabbit skin inoculated with vaccinia virus (Neurotropin(®)) enhanced efficiency of NGF signaling. In rat pheochromocytoma PC12 cells overexpressing Trk (PCtrk cells), Neurotropin augmented insufficient neurite outgrowth observed at suboptimal concentration of NGF (2ng/mL) in a manner depending on Trk kinase activity. Cellular exposure to Neurotropin resulted in an accumulation of Trk-GM1 complexes without affecting dimerization or phosphorylation states of Trk. Following NGF stimulation, Neurotropin significantly facilitated the time course of NGF-induced Trk autophosphorylation. These observations provide a unique mechanism controlling efficiency of NGF signaling, and raise the therapeutic potential of Neurotropin for various neurological conditions associated with neurotrophin dysfunction.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Takao Fukui
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Chika Hikichi
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tomomasa Ishikawa
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Kenichiro Murate
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Adachi
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Hideki Imai
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Koki Fukuhara
- The National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Allen P Kaplan
- Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
26
|
Zhao J, Cheng YY, Fan W, Yang CB, Ye SF, Cui W, Wei W, Lao LX, Cai J, Han YF, Rong JH. Botanical drug puerarin coordinates with nerve growth factor in the regulation of neuronal survival and neuritogenesis via activating ERK1/2 and PI3K/Akt signaling pathways in the neurite extension process. CNS Neurosci Ther 2014; 21:61-70. [PMID: 25310912 DOI: 10.1111/cns.12334] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023] Open
Abstract
AIM Nerve growth factor (NGF) regulates neuronal survival and differentiation by activating extracellular signal-regulated-kinases (ERK) 1/2 and phosphoinositide-3-kinase (PI3K)/Akt pathways in two distinct processes: latency process and neurite extension process. This study was designed to investigate whether botanical drug C-glucosylated isoflavone puerarin coordinates with NGF to regulate neuritogenesis via activating ERK1/2 and PI3K/Akt in neurite extension process. METHODS We investigated the neuroprotective and neurotrophic activities of puerarin in MPTP-lesioned mice and dopaminergic PC12 cells. The effects of puerarin on ERK1/2, Akt, Nrf2, and HO-1 were assessed by Western blotting. The neurite outgrowth was assayed by neurite outgrowth staining kit. RESULTS Puerarin protected dopaminergic cells and ameliorated the behavioral impairments in MPTP-lesioned mice. Puerarin potentiated the effect of NGF on neuritogenesis in PC12 cells by >10-fold. Mechanistic studies revealed: (1) puerarin rapidly activated ERK1/2 and Akt, leading to the activation of Nrf2/heme oxygenase-1 (HO-1) pathways; (2) ERK1/2, PI3K/Akt, and HO-1 inhibitors attenuated the neuritogenic activity of puerarin. Notably, puerarin enhanced NGF-induced neuritogenesis in a timing-dependent manner. CONCLUSION Puerarin effectively coordinated with NGF to stimulate neuritogenesis via activating ERK1/2 and PI3K/Akt pathways in neurite extension process. These results demonstrated a general mechanism supporting the therapeutic application of puerarin-related compounds in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
28
|
Ceni C, Unsain N, Zeinieh MP, Barker PA. Neurotrophins in the regulation of cellular survival and death. Handb Exp Pharmacol 2014; 220:193-221. [PMID: 24668474 DOI: 10.1007/978-3-642-45106-5_8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neurotrophins play crucial roles regulating survival and apoptosis in the developing and injured nervous system. The four neurotrophins exert profound and crucial survival effects on developing peripheral neurons, and their expression and action is intimately tied to successful innervation of peripheral targets. In the central nervous system, they are dispensable for neuronal survival during development but support neuronal survival after lesion or other forms of injury. Neurotrophins also regulate apoptosis of both peripheral and central neurons, and we now recognize that there are regulatory advantages to having the same molecules regulate life and death decisions. This chapter examines the biological contexts in which these events take place and highlights the specific ligands, receptors, and signaling mechanisms that allow them to occur.
Collapse
Affiliation(s)
- Claire Ceni
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada, H3A 2B4
| | | | | | | |
Collapse
|
29
|
Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci U S A 2013; 110:10747-52. [PMID: 23754423 DOI: 10.1073/pnas.1308950110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute traumatic brain injury (TBI) is associated with long-term cognitive and behavioral dysfunction. In vivo studies have shown histone deacetylase inhibitors (HDACis) to be neuroprotective following TBI in rodent models. HDACis are intriguing candidates because they are capable of provoking widespread genetic changes and modulation of protein function. By using known HDACis and a unique small-molecule pan-HDACi (LB-205), we investigated the effects and mechanisms associated with HDACi-induced neuroprotection following CNS injury in an astrocyte scratch assay in vitro and a rat TBI model in vivo. We demonstrate the preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI. HDACi treatment up-regulated the expression of NGF, phospho-TrkA, phospho-protein kinase B (p-AKT), NF-κB, and B-cell lymphoma 2 (Bcl-2) cell survival factors while down-regulating the expression of p75 neurotrophin receptor (NTR), phospho-JNK, and Bcl-2-associated X protein apoptosis factors. HDACi treatment also increased the expression of the stem cell biomarker nestin, and decreased the expression of reactive astrocyte biomarker GFAP within damaged tissue following TBI. These findings provide further insight into the mechanisms by which HDACi treatment after TBI is neuroprotective and support the continued study of HDACis following acute TBI.
Collapse
|
30
|
Chi HT, Ly BTK, Kano Y, Tojo A, Watanabe T, Sato Y. ETV6–NTRK3 as a therapeutic target of small molecule inhibitor PKC412. Biochem Biophys Res Commun 2012; 429:87-92. [DOI: 10.1016/j.bbrc.2012.10.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
31
|
Mehta HM, Woo SB, Neet KE. Comparison of nerve growth factor receptor binding models using heterodimeric muteins. J Neurosci Res 2012; 90:2259-71. [PMID: 22903500 DOI: 10.1002/jnr.23116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/29/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high-affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7-84-103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF-induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild-type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7-84-103, and Δ9/13 were each able to compete for cold-temperature, cold-chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high-affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7-84-103 >> Δ9/13. Htm1 and 7-84-103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75-NGF-TrkA.
Collapse
Affiliation(s)
- Hrishikesh M Mehta
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois, USA
| | | | | |
Collapse
|
32
|
Boulle F, Kenis G, Cazorla M, Hamon M, Steinbusch HWM, Lanfumey L, van den Hove DLA. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog Neurobiol 2012; 98:197-206. [PMID: 22705453 DOI: 10.1016/j.pneurobio.2012.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 01/04/2023]
Abstract
The interaction of brain-derived neurotrophic factor (BDNF) with its tropomyosin-related kinase receptor B (TrkB) is involved in fundamental cellular processes including neuronal proliferation, differentiation and survival as well as neurotransmitter release and synaptic plasticity. TrkB signaling has been widely associated with beneficial, trophic effects and many commonly used psychotropic drugs aim to increase BDNF levels in the brain. However, it is likely that a prolonged increased TrkB activation is observed in many pathological conditions, which may underlie the development and course of clinical symptoms. Interestingly, genetic and pharmacological studies aiming at decreasing TrkB activation in rodent models mimicking human pathology have demonstrated a promising therapeutic landscape for TrkB inhibitors in the treatment of various diseases, e.g. central nervous system (CNS) disorders and several types of cancer. Up to date, only a few selective and potent TrkB inhibitors have been developed. As such, the use of crystallography and in silico approaches to model BDNF-TrkB interaction and to generate relevant pharmacophores represent powerful tools to develop novel compounds targeting the TrkB receptor.
Collapse
Affiliation(s)
- Fabien Boulle
- Department of Psychiatry and Neuropsychology, Maastricht University, European Graduate School for Neuroscience (EURON), Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Hamada N, Fujita Y, Kojima T, Kitamoto A, Akao Y, Nozawa Y, Ito M. MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochem Int 2012; 60:743-50. [DOI: 10.1016/j.neuint.2012.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 02/05/2023]
|
34
|
Gordon LR, Gribble KD, Syrett CM, Granato M. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 2012; 139:1023-33. [PMID: 22318632 DOI: 10.1242/dev.071555] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In zebrafish, the MuSK receptor initiates neuromuscular synapse formation by restricting presynaptic growth cones and postsynaptic acetylcholine receptors (AChRs) to the center of skeletal muscle cells. Increasing evidence suggests a role for Wnts in this process, yet how muscle cells respond to Wnt signals is unclear. Here, we show that in vivo, wnt11r and wnt4a initiate MuSK translocation from muscle membranes to recycling endosomes and that this transition is crucial for AChR accumulation at future synaptic sites. Moreover, we demonstrate that components of the planar cell polarity pathway colocalize to recycling endosomes and that this localization is MuSK dependent. Knockdown of several core components disrupts MuSK translocation to endosomes, AChR localization and axonal guidance. We propose that Wnt-induced trafficking of the MuSK receptor to endosomes initiates a signaling cascade to align pre- with postsynaptic elements. Collectively, these findings suggest a general mechanism by which Wnt signals shape synaptic connectivity through localized receptor endocytosis.
Collapse
Affiliation(s)
- Laura R Gordon
- Department of Cell and Developmental Biology, University of Pennsylvania. Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
35
|
Li B, Sheng X, Song M, Zhang H, Weng J, Zhang M, Hu X, Zhou J, Xu M, Weng Q, Watanabe G, Taya K. Expression of nerve growth factor and its receptors TrkA and p75 in the uterus of wild female ground squirrel (Citellus dauricus Brandt). Gen Comp Endocrinol 2012; 176:62-9. [PMID: 22226760 DOI: 10.1016/j.ygcen.2011.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In this study, we investigated the presence of nerve growth factor (NGF) and its receptors tyrosine kinase A (TrkA) and p75 in the uterus of the wild ground squirrels during the estrous period, early pregnancy and non-breeding period. In the estrous period and early pregnancy, NGF and TrkA were immunolocalized in stromal cells, luminal epithelial cells, glandular cells and smooth muscle cells whereas in the non-breeding period, both of them were detected only in luminal epithelial cells and glandular cells, but not in stromal cells or smooth muscle cells. Stronger immunostaining of NGF and TrkA was observed in luminal epithelial cells and glandular cells in the estrous period and early pregnancy as compared to the non-breeding period. p75 was immunolocalized only in luminal epithelial and glandular cells during the estrous period, early pregnancy and non-breeding period. The intensity of the immunohistochemical signals for p75 did not vary significantly in the estrous period, early pregnancy and non-breeding period. The mean mRNA levels of NGF and TrkA and p75 were significantly higher in the estrous period and early pregnancy as compared to the non-breeding period. Besides, plasma estradiol-17β and progesterone concentrations were higher in the estrous period and early pregnancy than in the non-breeding period, suggesting that the expression patterns of NGF and TrkA are correlated with changes in plasma estradiol-17β and progesterone concentrations. These results indicate that NGF and its receptor TrkA may be involved in the regulation of seasonal changes in the uterine functions of wild female ground squirrels.
Collapse
Affiliation(s)
- Ben Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.
Collapse
|
37
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
38
|
Nerve growth factor induces cord formation of mesenchymal stem cell by promoting proliferation and activating the PI3K/Akt signaling pathway. Acta Pharmacol Sin 2011; 32:1483-90. [PMID: 22139028 DOI: 10.1038/aps.2011.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To investigate whether nerve growth factor (NGF) induced angiogenesis of bone marrow mesenchymal stem cells (MSCs) and the underlying mechanisms. METHODS Bone marrow MSCs were isolated from femors or tibias of Sprague-Dawley rat, and cultured. The cells were purified after 3 to 5 passages, seeded on Matrigel-coated 24-well plates and treated with NGF. Tube formation was observed 24 h later. Tropomyosin-related kinase A (TrkA) and p75NTR gene expression was examined using PCR analysis and flow cytometry. Growth curves were determined via cell counting. Expression of VEGF and pAkt/Akt were analyzed with Western blot. RESULTS NGF (25, 50, 100 and 200 μg/L) promoted tube formation of MSCs. The tubular length reached the maximum of a 2.24-fold increase, when the cells were treated with NGF (50 μg/L). NGF (50 μg/L) significantly enhanced Akt phosphorylation. Pretreatment with the specific PI3K inhibitor LY294002 (10 μmol/L) blocked NGF-stimulated Akt phosphorylation, tube formation and angiogenesis. NGF (25-200 μg/L) did not affect the expression of TrkA and vascular endothelial growth factor (VEGF), but significantly suppressed the expression of p75NTR. NGF (50 μg/L) markedly increased the proliferation of MSCs. CONCLUSION NGF promoted proliferation of MSCs and activated the PI3K/Akt signaling pathway, which may be responsible for NGF induction of MSC angiogenesis.
Collapse
|
39
|
Skeldal S, Matusica D, Nykjaer A, Coulson EJ. Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays 2011; 33:614-25. [PMID: 21717487 DOI: 10.1002/bies.201100036] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The common neurotrophin receptor (p75(NTR) ) regulates various functions in the developing and adult nervous system. Cell survival, cell death, axonal and growth cone retraction, and regulation of the cell cycle can be regulated by p75(NTR) -mediated signals following activation by either mature or pro-neurotrophins and in combination with various co-receptors, including Trk receptors and sortilin. Here, we review the known functions of p75(NTR) by cell type, receptor-ligand combination, and whether regulated intra-membrane proteolysis of p75(NTR) is required for signalling. We highlight that the generation of the intracellular domain fragment of p75(NTR) is associated with many of the receptor functions, regardless of its ligand and co-receptor interactions.
Collapse
Affiliation(s)
- Sune Skeldal
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
40
|
Takahashi Y, Shimokawa N, Esmaeili-Mahani S, Morita A, Masuda H, Iwasaki T, Tamura J, Haglund K, Koibuchi N. Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett 2011; 585:1741-7. [PMID: 21570973 DOI: 10.1016/j.febslet.2011.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/13/2023]
Abstract
Nerve growth factor (NGF) binding to its receptor TrkA, which belongs to the family of receptor tyrosine kinases (RTKs), is known to induce its internalization, endosomal trafficking and subsequent lysosomal degradation. The Cbl family of ubiquitin ligases plays a major role in mediating ubiquitination and degradation of RTKs. However, it is not known whether Cbl participates in mediating ubiquitination of TrkA. Here we report that c-Cbl mediates ligand-induced ubiquitination and degradation of TrkA. TrkA ubiquitination and degradation required direct interactions between c-Cbl and phosphorylated TrkA. c-Cbl and ubiquitinated TrkA are found in a complex after NGF stimulation and are degraded in lysosomes. Taken together, our data demonstrate that c-Cbl can induce downregulation of NGF-TrkA complexes through ubiquitination and degradation of TrkA.
Collapse
Affiliation(s)
- Yuga Takahashi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shen J, Maruyama IN. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett 2010; 585:295-9. [DOI: 10.1016/j.febslet.2010.12.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/05/2010] [Accepted: 12/19/2010] [Indexed: 11/28/2022]
|
42
|
Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci 2010; 30:15616-27. [PMID: 21084617 DOI: 10.1523/jneurosci.3888-10.2010] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by loss of the FMR1 gene product FMRP (fragile X mental retardation protein), a repressor of mRNA translation. According to the metabotropic glutamate receptor (mGluR) theory of FXS, excessive protein synthesis downstream of mGluR5 activation causes the synaptic pathophysiology that underlies multiple aspects of FXS. Here, we use an in vitro assay of protein synthesis in the hippocampus of male Fmr1 knock-out (KO) mice to explore the molecular mechanisms involved in this core biochemical phenotype under conditions where aberrant synaptic physiology has been observed. We find that elevated basal protein synthesis in Fmr1 KO mice is selectively reduced to wild-type levels by acute inhibition of mGluR5 or ERK1/2, but not by inhibition of mTOR (mammalian target of rapamycin). The mGluR5-ERK1/2 pathway is not constitutively overactive in the Fmr1 KO, however, suggesting that mRNA translation is hypersensitive to basal ERK1/2 activation in the absence of FMRP. We find that hypersensitivity to ERK1/2 pathway activation also contributes to audiogenic seizure susceptibility in the Fmr1 KO. These results suggest that the ERK1/2 pathway, and other neurotransmitter systems that stimulate protein synthesis via ERK1/2, represent additional therapeutic targets for FXS.
Collapse
|
43
|
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 2010; 70:271-88. [PMID: 20186709 DOI: 10.1002/dneu.20774] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development, neural networks are established in a highly organized manner, which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
44
|
Simi A, Ibáñez CF. Assembly and activation of neurotrophic factor receptor complexes. Dev Neurobiol 2010; 70:323-31. [PMID: 20186713 DOI: 10.1002/dneu.20773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.
Collapse
Affiliation(s)
- Anastasia Simi
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institutet, Stockholm S-17177, Sweden
| | | |
Collapse
|
45
|
Yasui H, Ito N, Yamamori T, Nakamura H, Okano J, Asanuma T, Nakajima T, Kuwabara M, Inanami O. Induction of neurite outgrowth by α-phenyl-N-tert-butylnitrone through nitric oxide release and Ras-ERK pathway in PC12 cells. Free Radic Res 2010; 44:645-54. [DOI: 10.3109/10715761003692537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Lu J, Wu DM, Hu B, Zheng YL, Zhang ZF, Wang YJ. NGF-Dependent activation of TrkA pathway: A mechanism for the neuroprotective effect of troxerutin in D-galactose-treated mice. Brain Pathol 2010; 20:952-65. [PMID: 20456366 DOI: 10.1111/j.1750-3639.2010.00397.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
D-galactose-(D-gal)-treated mouse, with cognitive impairment, has been used for neurotoxicity investigation and anti-neurotoxicity pharmacology research. In this study, we investigated the mechanism underlying the neuroprotective effect of troxerutin. The results showed that troxerutin improved behavioral performance in D-gal-treated mice by elevating Cu, Zn-superoxide dismutases (Cu, Zn-SOD) activity and decreasing reactive oxygen species levels. Furthermore, our results showed that troxerutin significantly promoted nerve growth factor (NGF) mRNA expression which resulted in TrkA activation. On one hand, NGF/TrkA induced activation of Akt and ERK1/2, which led to neuronal survival; on the other hand, NGF/TrkA mediated CaMKII and CREB phosphorylation and increased PSD95 expression, which improved cognitive performance. However, the neuroprotective effect of troxerutin was blocked by treatment with K252a, an antagonist for TrkA. No neurotoxicity was observed in mice treated with K252a or troxerutin alone. In conclusion, administration of troxerutin to D-gal-injected mice attenuated cognitive impairment and brain oxidative stress through the activation of NGF/TrkA signaling pathway.
Collapse
Affiliation(s)
- Jun Lu
- Xuzhou Normal University, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
47
|
Chung J, Kubota H, Ozaki YI, Uda S, Kuroda S. Timing-dependent actions of NGF required for cell differentiation. PLoS One 2010; 5:e9011. [PMID: 20126402 PMCID: PMC2814856 DOI: 10.1371/journal.pone.0009011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 01/06/2010] [Indexed: 01/25/2023] Open
Abstract
Background Continuous NGF stimulation induces PC12 cell differentiation. However, why continuous NGF stimulation is required for differentiation is unclear. In this study, we investigated the underlying mechanisms of the timing-dependent requirement of NGF action for cell differentiation. Methodology/Principal Findings To address the timing-dependency of the NGF action, we performed a discontinuous stimulation assay consisting of a first transient stimulation followed by an interval and then a second sustained stimulation and quantified the neurite extension level. Consequently, we observed a timing-dependent action of NGF on cell differentiation, and discontinuous NGF stimulation similarly induced differentiation. The first stimulation did not induce neurite extension, whereas the second stimulation induced fast neurite extension; therefore, the first stimulation is likely required as a prerequisite condition. These observations indicate that the action of NGF can be divided into two processes: an initial stimulation-driven latent process and a second stimulation-driven extension process. The latent process appears to require the activities of ERK and transcription, but not PI3K, whereas the extension-process requires the activities of ERK and PI3K, but not transcription. We also found that during the first stimulation, the activity of NGF can be replaced by PACAP, but not by insulin, EGF, bFGF or forskolin; during the second stimulation, however, the activity of NGF cannot be replaced by any of these stimulants. These findings allowed us to identify potential genes specifically involved in the latent process, rather than in other processes, using a microarray. Conclusions/Significance These results demonstrate that NGF induces the differentiation of PC12 cells via mechanically distinct processes: an ERK-driven and transcription-dependent latent process, and an ERK- and PI3K-driven and transcription-independent extension process.
Collapse
Affiliation(s)
- Jaehoon Chung
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kubota
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Yu-ichi Ozaki
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Shinsuke Uda
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Shinya Kuroda
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
48
|
Hur J, Lee P, Moon E, Kang I, Kim SH, Oh MS, Kim SY. Neurite outgrowth induced by spicatoside A, a steroidal saponin, via the tyrosine kinase A receptor pathway. Eur J Pharmacol 2009; 620:9-15. [DOI: 10.1016/j.ejphar.2009.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/21/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
49
|
Hisatsune A, Kawasaki M, Nakayama H, Mikami Y, Miyata T, Isohama Y, Katsuki H, Kim KC. Internalization of MUC1 by anti-MUC1 antibody from cell membrane through the macropinocytotic pathway. Biochem Biophys Res Commun 2009; 388:677-82. [PMID: 19683510 DOI: 10.1016/j.bbrc.2009.08.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. It is thought to serve as a physical barrier from the extracellular environment and also as a receptor for various extracellular molecules. However, little is known about the fate of MUC1 during and after the interaction with these molecules. In the present study, we used anti-MUC1 antibody as an interacting molecule and investigated the cellular trafficking of MUC1. Our results showed that: (1) anti-MUC1 antibody was internalized only in MUC1 expressing cells and triggered internalization and down-regulation of MUC1; (2) the internalization of MUC1 by anti-MUC1 antibody required the cytoplasmic tail of MUC1 and was suppressed by inhibitors of Na(+)/H(+) exchanger, and caveola/raft-dependent internalization, but not by an inhibitor of clathrin-dependent internalization. We conclude that antibody-induced internalization of MUC1 involves the macropinocytotic pathway.
Collapse
Affiliation(s)
- Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto 862-0973, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Metabolites of sesamin, a major lignan in sesame seeds, induce neuronal differentiation in PC12 cells through activation of ERK1/2 signaling pathway. J Neural Transm (Vienna) 2009; 116:841-52. [DOI: 10.1007/s00702-009-0250-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022]
|