1
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|
2
|
Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res Bull 2020; 160:107-120. [DOI: 10.1016/j.brainresbull.2020.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
3
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|
4
|
The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System. Neural Plast 2017; 2017:2727602. [PMID: 28695015 PMCID: PMC5485371 DOI: 10.1155/2017/2727602] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory.
Collapse
|
5
|
Tchekalarova J, Loyens E, Smolders I. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats. Epilepsy Behav 2015; 46:66-71. [PMID: 25922088 DOI: 10.1016/j.yebeh.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022]
Abstract
In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Ellen Loyens
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Hazra A, Rosenbaum R, Bodmann B, Cao S, Josić K, Žiburkus J. β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. J Neurophysiol 2012; 108:658-71. [PMID: 22496530 DOI: 10.1152/jn.00708.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A description of healthy and pathological brain dynamics requires an understanding of spatiotemporal patterns of neural activity and characteristics of its propagation between interconnected circuits. However, the structure and modulation of the neural activation maps underlying these patterns and their propagation remain elusive. We investigated effects of β-adrenergic receptor (β-AR) stimulation on the spatiotemporal characteristics of emergent activity in rat hippocampal circuits. Synchronized epileptiform-like activity, such as interictal bursts (IBs) and ictal-like events (ILEs), were evoked by 4-aminopyridine (4-AP), and their dynamics were studied using a combination of electrophysiology and fast voltage-sensitive dye imaging. Dynamic characterization of the spontaneous IBs showed that they originated in dentate gyrus/CA3 border and propagated toward CA1. To determine how β-AR modulates spatiotemporal characteristics of the emergent IBs, we used the β-AR agonist isoproterenol (ISO). ISO significantly reduced the spatiotemporal extent and propagation velocity of the IBs and significantly altered network activity in the 1- to 20-Hz range. Dual whole cell recordings of the IBs in CA3/CA1 pyramidal cells and optical analysis of those regions showed that ISO application reduced interpyramidal and interregional synchrony during the IBs. In addition, ISO significantly reduced duration not only of the shorter duration IBs but also the prolonged ILEs in 4-AP. To test whether the decrease in ILE duration was model dependent, we used a different hyperexcitability model, zero magnesium (0 Mg(2+)). Prolonged ILEs were readily formed in 0 Mg(2+), and addition of ISO significantly reduced their durations. Taken together, these novel results provide evidence that β-AR activation dynamically reshapes the spatiotemporal activity patterns in hyperexcitable circuits by altering network rhythmogenesis, propagation velocity, and intercellular/regional synchronization.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
7
|
Nanobashvili ZI, Chachua TR, Bilanishvili IG, Khizanishvili NA, Nebieridze NG, Koreli AG. Peculiarities of the Effects of Stimulation of Emotiogenic Central Structures under Conditions of a Kindling Model of Epilepsy. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Raedt R, Clinckers R, Mollet L, Vonck K, El Tahry R, Wyckhuys T, De Herdt V, Carrette E, Wadman W, Michotte Y, Smolders I, Boon P, Meurs A. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem 2011; 117:461-9. [DOI: 10.1111/j.1471-4159.2011.07214.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Hillman KL, Lei S, Doze VA, Porter JE. Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res 2009; 84:97-109. [PMID: 19201164 DOI: 10.1016/j.eplepsyres.2008.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/19/2008] [Accepted: 12/27/2008] [Indexed: 11/19/2022]
Abstract
The endogenous catecholamine norepinephrine (NE) exhibits anti-epileptic properties, however it is not well understood which adrenergic receptor (AR) mediates this effect. The aim of this study was to investigate alpha(1)-adrenergic receptor activation in region CA1 of the hippocampus, a subcortical structure often implicated in temporal lobe epilepsies. Using cell-attached and whole-cell recordings in rat hippocampal slices, we confirmed that selective alpha(1)-AR activation increases action potential firing in a subpopulation of CA1 interneurons. We found that this response is mediated via the alpha(1A)-AR subtype, initiated by sodium influx, and appears independent of second messenger signaling. In CA1 pyramidal cells, alpha(1A)-AR activation decreases activity due to increased pre-synaptic GABA and somatostatin release. Examination of post-synaptic receptor involvement revealed that while GABA(A) receptors mediate the majority of alpha(1A)-adrenergic effects on CA1 pyramidal cells, significant contributions are also made by GABA(B) and somatostatin receptors. Finally, to test whether alpha(1A)-AR activation could have potential therapeutic implications, we performed AR agonist challenges using two in vitro epileptiform models. When GABA(A) receptors were available, alpha(1A)-AR activation significantly decreased epileptiform bursting in CA1. Together, our findings directly link stimulation of the alpha(1A)-AR subtype to release of GABA and somatostatin at the single cell level and suggest that alpha(1A)-AR activation may represent one mechanism by which NE exerts anti-epileptic effects within the hippocampus.
Collapse
Affiliation(s)
- Kristin L Hillman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
10
|
Carrington CA, Gilby KL, McIntyre DC. Effect of focal low-frequency stimulation on amygdala-kindled afterdischarge thresholds and seizure profiles in fast- and slow-kindling rat strains. Epilepsia 2007; 48:1604-13. [PMID: 17433055 DOI: 10.1111/j.1528-1167.2007.01077.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE To determine whether low-frequency, 1-Hz sine-wave stimulation (LFS) applied to a fully kindled amygdala focus would show antiepileptic properties in rats that were either naturally seizure prone (Fast) or seizure resistant (Slow). METHODS Normal twisted and/or "spanning" bipolar electrode configurations were implanted in the amygdalae of adult male Fast and Slow rats. In experiment one, rats were kindled daily to stage-5 levels through one electrode type until stable afterdischarge thresholds (ADTs) were obtained. Next, LFS was applied through the kindled electrode, and ADTs were redetermined 1 min later, and daily for a week, without reapplying the LFS. In experiment two, a single, normal bipolar kindling electrode was implanted in the amygdala and centered between two poles of a spanning electrode. After stable kindled ADTs were obtained, LFS was applied to the amygdala "area" through the spanning electrode. ADTs were redetermined at the kindled electrode as earlier. RESULTS LFS through the kindling electrode had no effect on ADTs 1 min later, but the ADTs increased dramatically 24 h later and then slowly returned to baseline over days. In experiment two, LFS applied through the nonkindled spanning electrode also showed a small but significant threshold elevation at the interposing kindled electrode. Importantly, no obvious neuropathology was associated with these LFS treatments. CONCLUSIONS LFS applied directly to the kindled network has significant threshold-elevating properties that are less evident when applied to the "general area"; here LFS must be delivered through a larger surface area and/or at higher intensity.
Collapse
Affiliation(s)
- Carys A Carrington
- Department of Psychology, Institute for Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
11
|
Richter F, Mikulik O, Ebersberger A, Schaible HG. Noradrenergic agonists and antagonists influence migration of cortical spreading depression in rat-a possible mechanism of migraine prophylaxis and prevention of postischemic neuronal damage. J Cereb Blood Flow Metab 2005; 25:1225-35. [PMID: 15829916 DOI: 10.1038/sj.jcbfm.9600120] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression (CSD) is thought to be a neuronal mechanism that expands the penumbra zone after focal brain ischemia and that causes migraine aura. Both adrenergic agonists and antagonists significantly influence the size of the penumbra zone and decline the frequency of migraine. To study whether these compounds act by influencing CSD, we applied different drugs topically to an area of the exposed cortex of anesthetized adult rats and observed the migration of CSD-related DC potential deflections across the treated area. The adrenergic agonist norepinephrine (1 mmol/L) and the alpha(2)-agonist clonidine (0.56 mmol/L) blocked reversibly the migration of CSD. The beta-blocker propranolol (250 micromol/L to 1 mmol/L) dose-dependently diminished migration velocity or even blocked migration of CSD. The CSD blockade by the alpha(2)-antagonist yohimbine (1.75 mmol/L) was because of its action on inhibitory 5-HT(1A) receptors. None of the substances in the concentrations used had influence on regional cerebral blood flow or on systemic arterial blood pressure. The data suggest that the interference of these compounds with CSD may contribute to their beneficial therapeutic effect. The effect of beta-receptor antagonists in human migraine needs further exploration, since these drugs also work in migraine without aura.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology-Neurophysiology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
12
|
Jurgens CWD, Boese SJ, King JD, Pyle SJ, Porter JE, Doze VA. Adrenergic receptor modulation of hippocampal CA3 network activity. Epilepsy Res 2005; 66:117-28. [PMID: 16140503 DOI: 10.1016/j.eplepsyres.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/14/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Norepinephrine (NE) has demonstrated proconvulsant and antiepileptic properties; however, the specific pharmacology of these actions has not been clearly established. To address this, we studied the effect of NE on hippocampal CA3 epileptiform activity. Frequency changes of burst discharges in response to NE were biphasic; low concentrations increased the number of bursts, while higher concentrations reduced their frequency, suggesting the involvement of multiple adrenergic receptor (AR) types. This hypothesis was confirmed when, in the presence of betaAR blockade, increasing concentrations of NE caused a monophasic decrease in epileptiform activity. Antagonists selective for alpha1 or alpha2ARs were then used to determine which alphaAR type was involved. While discriminating concentrations of the alpha1AR antagonists prazosin and terazosin had no effect, selective amounts of the alpha2AR antagonists RS79948 and RX821002 significantly reduced the potency of NE in decreasing epileptiform activity. Furthermore, this antiepileptic action of NE persisted when all GABA-mediated inhibition was blocked. This data suggests that, under conditions of impaired GABAergic inhibition, the excitatory and inhibitory effects of NE on hippocampal CA3 epileptiform activity are mediated primarily via beta and alpha2ARs, respectively. Moreover, our results imply that the antiepileptic effect of alpha2AR activation in CA3 is not dependent on the GABAergic system.
Collapse
Affiliation(s)
- Chris W D Jurgens
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203, USA
| | | | | | | | | | | |
Collapse
|
13
|
Goodman JH, Berger RE, Tcheng TK. Preemptive Low-frequency Stimulation Decreases the Incidence of Amygdala-kindled Seizures. Epilepsia 2005; 46:1-7. [PMID: 15660762 DOI: 10.1111/j.0013-9580.2005.03804.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The use of electrical stimulation as a therapy for epilepsy is currently being studied in experimental animals and in patients with epilepsy. This study examined the effect of preemptive, low-frequency, 1-Hz sine wave stimulation (LFS) on the incidence of amygdala-kindled seizures in the rat. METHODS Electrodes were implanted into the basolateral amygdalae of adult male rats. All animals received a kindling stimulus of 60-Hz, 400-microA, sine wave for 1 s twice a day. Experimental animals received an additional LFS consisting of 1 Hz, 50 microA for 30 s immediately before the kindling stimulus. Afterdischarge (AD) duration, behavioral seizure score, the number of stimulations required to elicit the first stage five seizure and to become fully kindled were measured. After 20 stimulations, a crossover procedure was performed. Fully kindled rats from each group were switched, so that the original controls received LFS plus the kindling stimulus, and the original experimental rats received only the kindling stimulus. RESULTS During kindling acquisition, LFS induced a significant decrease in AD duration. A significant increase in the number of times the kindling stimulus failed to elicit an AD was noted. Control rats exhibited an AD 99% of the time compared with 70% in experimental rats (p < 0.0001; Fisher's Exact test). In fully kindled animals, the incidence of stage five seizures in the original controls significantly decreased from 98% to 42% (p < 0.0001) when the LFS was added to the kindling paradigm. CONCLUSIONS The dramatic decrease in the incidence of stage 5 seizures in fully kindled animals after preemptive LFS strongly suggests that LFS may be an effective therapy for the prevention of seizures in patients with epilepsy.
Collapse
|
14
|
Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 2004; 28:507-24. [PMID: 15465138 DOI: 10.1016/j.neubiorev.2004.06.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Revised: 06/13/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
This article provides a brief review of the role of norepinephrine (NE) in epilepsy, starting from early studies reproducing the kindling model in NE-lesioned rats, through the use of specific ligands for adrenergic receptors in experimental models of epilepsy, up to recent advances obtained by using transgenic and knock-out mice for specific genes expressed in the NE system. Data obtained from multiple experimental models converge to demonstrate the antiepileptic role of endogenous NE. This effect predominantly consists in counteracting the development of an epileptic circuit (such as in the kindling model) rather than increasing the epileptic threshold. This suggests that NE activity is critical in modifying epilepsy-induced neuronal changes especially on the limbic system. These data encompass from experimental models to clinical applications as recently evidenced by the need of an intact NE innervation for the antiepileptic mechanisms of vagal nerve stimulation (VNS) in patients suffering from refractory epilepsy. Finally, recent data demonstrate that NE loss increases neuronal damage following focally induced limbic status epilepticus, confirming a protective effect of brain NE, which has already been shown in other neurological disorders.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|
15
|
Goodman JH. Brain Stimulation As a Therapy for Epilepsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:239-47. [PMID: 15250598 DOI: 10.1007/978-1-4757-6376-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The failure of current antiepileptic therapies to adequately treat a significant number of epileptic patients highlights the need for the development of new treatments for the disorder. A new strategy that is currently being developed is to deliver electrical stimulation directly to the brain to decrease or prevent seizure activity. Clinical evidence that electrical stimulation could interfere with seizure activity was initially reported in the 1930's. However, many of these early studies consisted of case reports or were poorly controlled. In addition, there were a number of studies that failed to observe any beneficial effect of brain stimulation on seizures. More recently, deep brain stimulation has been used successfully to treat patients with movement disorders and vagus nerve stimulation has been shown to effectively decrease seizure activity in a select population of epilepsy patients. These advances have led to a reexamination of the potential therapeutic benefits of deep brain stimulation for the treatment of epilepsy. There is now experimental and clinical evidence that direct electrical stimulation of the brain can prevent or decrease seizure activity. However, several fundamental questions remain to be resolved. They include where in the brain the stimulus should be delivered and what type of stimulation would be most effective. One goal of this research is to combine the beneficial aspects of electrical stimulation with seizure detection technology in an implantable responsive stimulator. The device will detect the onset of a seizure and deliver an electrical stimulus that will safely block seizure activity without interfering with normal brain function.
Collapse
Affiliation(s)
- Jeffrey H Goodman
- Center for Neual Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Havenstraw, USA
| |
Collapse
|
16
|
Croce A, Astier H, Récasens M, Vignes M. Opposite effects of alpha 1- and beta-adrenoceptor stimulation on both glutamate- and gamma-aminobutyric acid-mediated spontaneous transmission in cultured rat hippocampal neurons. J Neurosci Res 2003; 71:516-25. [PMID: 12548707 DOI: 10.1002/jnr.10516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of adrenergic receptor stimulation on spontaneous synaptic transmission were investigated in cultured rat hippocampal neurons by recording spontaneous excitatory and inhibitory postsynaptic currents (sEPSC and sIPSC). Noradrenaline (NA) inhibited sEPSC in a concentration-dependent manner, with maximal effect at 10 microM. The alpha(1)- and alpha(2)-adrenoceptor-selective agonists cirazoline and clonidine induced an inhibition of sEPSC appearance, whereas the beta-adrenoceptor agonist isoproterenol elicited an increase. The inhibitory effect of NA was reversed by alpha(1)-adrenoceptor blockade. The participation of gamma-aminobutyric acid (GABA)(B)-receptor stimulation in the inhibitory effect of NA was further examined. GABA(B)-receptor stimulation with baclofen induced a strong inhibition of bursting activity, which was fully reversed by the GABA(B) antagonist CGP 55845. By itself, CGP 55845 exerted a stimulatory effect on sEPSC frequency. In the presence of CGP 55845, the inhibitory effects of cirazoline and clonidine were maintained. NA (1, 10, and 100 microM) and alpha-adrenoceptor agonists decreased miniature EPSC and IPSC occurrence, whereas beta-adrenergic stimulation increased it. In 50% of the cells examined, NA (1, 10 microM) had a stimulatory effect on sIPSC, whereas, in the remaining 50% of cells, NA (1, 10 microM) had an inhibitory effect. In all the cells, 100 microM NA induced an inhibition of sIPSC. The inhibitory effect of NA was due to alpha(1)-receptor stimulation, whereas the excitatory effect was due to beta-receptor stimulation. In cultured hippocampal neurons, spontaneous excitatory and inhibitory synaptic transmissions are both similarly altered by adrenoceptor stimulation. However, in a subset of cells, low concentrations of NA mediate an increase of sIPSC via beta-adrenoceptor activation.
Collapse
Affiliation(s)
- Ariane Croce
- Laboratoire Plasticité Cérébrale, UMR 5102 CNRS, Université Montpellier II, Montpellier, France
| | | | | | | |
Collapse
|
17
|
Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002; 94:213-33. [PMID: 12113799 DOI: 10.1016/s0163-7258(02)00218-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The catecholamines norepinephrine and dopamine are abundant in the CNS, and modulate neuronal excitability via G-protein-coupled receptor signaling. This review covers the history of research concerning the role of catecholamines in modulating seizure susceptibility in animal models of epilepsy. Traditionally, most work on this topic has been anatomical, pharmacological, or physiological in nature. However, the recent advances in transgenic and knockout mouse technology provide new tools to study catecholamines and their roles in seizure susceptibility. New results from genetically engineered mice with altered catecholamine signaling, as well as possibilities for future experiments, are discussed.
Collapse
Affiliation(s)
- David Weinshenker
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Box 357370, Seattle, WA 98195, USA.
| | | |
Collapse
|
18
|
Quigg M, Clayburn H, Straume M, Menaker M, Bertram EH. Effects of circadian regulation and rest-activity state on spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 2000; 41:502-9. [PMID: 10802754 DOI: 10.1111/j.1528-1157.2000.tb00202.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Circadian regulation via the suprachiasmatic nuclei and rest-activity state may influence expression of limbic seizures. METHODS Male rats (n = 14) were made epileptic by electrical stimulation of the hippocampus, causing limbic status epilepticus and subsequent seizures. We monitored seizures with intrahippocampal electrodes in 12-12-h light/dark (LD) cycles and in continuous dark (DD). We used radiotelemetry monitoring of activity to measure state and body temperature to determine circadian phase. Cosinor analysis and chi2 tests determined whether seizures occurred rhythmically when plotted by phase. State was defined as inactive or active in 10-min epochs based on whether activity count was below or above a cut-off value validated from video observation. RESULTS In LD, the peak seizure occurrence was 14:59 h after circadian temperature peak (95% confidence limit, 13:37-16:19). Phasic seizure occurrence persisted in DD for 14:05 (12:31-15:38), p < 0.0001, against uniform mean distribution. In LD, 14,787 epochs contained 1, 268 seizures; seizures preferentially occurred during inactive epochs (965 observed, 878 expected in proportion to the overall distribution of inactive versus active epochs; p < 0.001). In DD, 20, 664 epochs contained 1,609 seizures; seizures had no preferential occurrence by state (999 observed, 1,025 expected; p = 0.16). CONCLUSIONS Limbic seizures occurred with an endogenous circadian rhythm. Seizures preferentially struck during inactivity during entrainment to the light-dark cycle.
Collapse
Affiliation(s)
- M Quigg
- Comprehensive Epilepsy Program, Department of Neurology, National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
19
|
Arakawa S, Nakamura S, Kawashima N, Nishiike S, Fujii Y. Antidromic burst activity of locus coeruleus neurons during cortical spreading depression. Neuroscience 1997; 78:1147-58. [PMID: 9174080 DOI: 10.1016/s0306-4522(96)00679-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrical activity of locus coeruleus neurons was investigated during cortical spreading depression in urethane-anaesthetized rats. Cortical spreading depression was induced by a direct application of 1-3 M KCl solution to the surface of the cerebral cortex. The occurrence of cortical spreading depression was assessed by recording negative d.c. shifts and in some experiments by monitoring the extracellular potassium concentrations. The mean spontaneous firing rate of locus coeruleus neurons was significantly reduced during cortical spreading depression. Approximately 60% of locus coeruleus neurons recorded during cortical spreading depression revealed anomalous burst activity consisting of multiple initial segment spikes as well as full initial segment-somatodendritic spikes with a marked initial segment-somatodendritic break. Each spike of the cortical spreading depression-related burst activity occurred at intervals ranging from 15.0 ms to 90.1 ms (34.9 +/- 0.5 ms). The burst activity appeared unpredictably at variable intervals in a phasic or tonic manner during cortical spreading depression. The cortical spreading depression-related burst activity of locus coeruleus neurons mimicked antidromic spikes induced by train stimulation of the cerebral cortex at short interspike intervals during iontophoretic application of GABA to locus coeruleus neurons, whereas it was totally different from synaptically-activated burst activity induced by tail pinch. The full spikes and initial segment spikes in the cortical spreading depression-related burst activity failed to collide with cortically elicited antidromic spikes, even when they appeared within the collision interval. The proportion of initial segment spikes in the cortical spreading depression-related burst activity was reduced following an increase in membrane excitability by iontophoretic application of glutamate, and increased during a decreased membrane excitability by GABA application. The antidromic burst activity of locus coeruleus neurons also appeared for a short time during cortical spreading depression prior to the occurrence of seizure waves induced by GABA antagonists, while the burst activity could not be observed during seizure activity. These results indicate that the cortical spreading depression-related burst activity was of antidromic origin and that the marked initial segment-somatodendritic break in spontaneous spikes of locus coeruleus neurons during cortical spreading depression was due to reduced excitability of the somatodendritic membrane. The cortical spreading depression-related burst activity may cause release of a large amount of noradrenaline in vast regions of locus coeruleus terminal fields through the numerous axon collaterals, thereby playing a role in functional changes of brain neurons related to cortical spreading depression.
Collapse
Affiliation(s)
- S Arakawa
- Department of Physiology, Faculty of Medicine, Kanazawa University, Ishikawa, Japan
| | | | | | | | | |
Collapse
|