1
|
Silvestre I, Nunes A, Borges V, Isidro J, Silva C, Vieira L, Gomes JP, Borrego MJ. Genomic insights on DNase production in Streptococcus agalactiae ST17 and ST19 strains. INFECTION GENETICS AND EVOLUTION 2021; 93:104969. [PMID: 34147652 DOI: 10.1016/j.meegid.2021.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus agalactiae evasion from the human defense mechanisms has been linked to the production of DNases. These were proposed to contribute to the hypervirulence of S. agalactiae ST17/capsular-type III strains, mostly associated with neonatal meningitis. We performed a comparative genomic analysis between ST17 and ST19 human strains with different cell tropism and distinct DNase production phenotypes. All S. agalactiae ST17 strains, with the exception of 2211-04, were found to display DNase activity, while the opposite scenario was observed for ST19, where 1203-05 was the only DNase(+) strain. The analysis of the genetic variability of the seven genes putatively encoding secreted DNases in S. agalactiae revealed an exclusive amino acid change in the predicted signal peptide of GBS0661 (NucA) of the ST17 DNase(-), and an exclusive amino acid change alteration in GBS0609 of the ST19 DNase(+) strain. Further core-genome analysis identified some specificities (SNVs or indels) differentiating the DNase(-) ST17 2211-04 and the DNase(+) ST19 1203-05 from the remaining strains of each ST. The pan-genomic analysis evidenced an intact phage without homology in S. agalactiae and a transposon homologous to TnGBS2.3 in ST17 DNase(-) 2211-04; the transposon was also found in one ST17 DNase(+) strain, yet with a different site of insertion. A group of nine accessory genes were identified among all ST17 DNase(+) strains, including the Eco47II family restriction endonuclease and the C-5 cytosine-specific DNA methylase. None of these loci was found in any DNase(-) strain, which may suggest that these proteins might contribute to the lack of DNase activity. In summary, we provide novel insights on the genetic diversity between DNase(+) and DNase(-) strains, and identified genetic traits, namely specific mutations affecting predicted DNases (NucA and GBS0609) and differences in the accessory genome, that need further investigation as they may justify distinct DNase-related virulence phenotypes in S. agalactiae.
Collapse
Affiliation(s)
- Inês Silvestre
- Department of Life Sciences, UCIBIO, Nova School of Science and Technology, 2829-516 Caparica, Portugal; National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; CBIOS - Research Center for Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Maria José Borrego
- National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
2
|
Naveed M, Mehboob MZ, Hussain A, Ikram K, Talat A, Zeeshan N. Structural and Functional Annotation of Conserved Virulent Hypothetical Proteins in Chlamydia Trachomatis: An In-Silico Approach. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181107111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Though after a start of genome sequencing most of the protein sequences are deposited in databases, some proteins remain to be unannotated and functionally uncharacterized. Chlamydia trachomatis L2C is a gram-negative pathogen bacterium involved in causing severe disorders like lymphogranuloma venereum, nongonococcal urethritis, and cervicitis. <P> Objectives: Analyzing and annotating the hypothetical proteins can help to understand its pathogenicity and therapeutic hotspots. Its genome encodes a total of 221 hypothetical proteins and out of these, 14 hypothetical proteins are declared as virulent by virulence prediction server (VirulentPred). <P> Methods: In this study, the functional and structural analysis was carried out by conserve domain finding servers, protein function annotators and physiochemical properties predictors. Proteinprotein interactions studies revealed the involvement of these virulent HPs in a number of pathways, which would be of interest for drug designers. <P> Results: Classifier tool was used to classify the virulent hypothetical proteins into enzymes, membrane protein, transporter and regulatory protein groups. <P> Conclusion: Our study would help to understand the mechanisms of pathogenesis and new potential therapeutic targets for a couple of diseases caused by C. trachomatis.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Aadil Hussain
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Khadija Ikram
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Attha Talat
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
3
|
Jalili Z, Saleh M, Bouzari S, Pooya M. Characterization of killed but metabolically active uropathogenic Escherichia coli strain as possible vaccine candidate for urinary tract infection. Microb Pathog 2018; 122:184-190. [DOI: 10.1016/j.micpath.2018.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
|
4
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
5
|
Hema K, Priyadarshini IV, Swargam S, Pradeep N, Chiranjeevi P, Umamaheswari A. 202 Subunit vaccine design against pathogens causing atherosclerosis. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Monnet J, Grange W, Strick TR, Joly N. Mfd as a central partner of transcription coupled repair. Transcription 2013; 4:109-13. [PMID: 23756341 PMCID: PMC4042583 DOI: 10.4161/trns.24934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 01/14/2023] Open
Abstract
Transcription-coupled repair (TCR) is one of the key of the nucleotide excision repair (NER) pathways required to preserve genome integrity. Although understanding TCR is still a major challenge, recent single-molecule experiments have brought new insights into the initial steps of TCR leading to new perspectives.
Collapse
Affiliation(s)
- Jordan Monnet
- Institut Jacques Monod; CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité F-75205; Paris, France
| | - Wilfried Grange
- Institut Jacques Monod; CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité F-75205; Paris, France
| | - Terence R Strick
- Institut Jacques Monod; CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité F-75205; Paris, France
| | - Nicolas Joly
- Institut Jacques Monod; CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité F-75205; Paris, France
| |
Collapse
|
7
|
Paz MM, Pritsos CA. The Molecular Toxicology of Mitomycin C. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Weng MW, Zheng Y, Jasti VP, Champeil E, Tomasz M, Wang Y, Basu AK, Tang MS. Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: a new model. Nucleic Acids Res 2010; 38:6976-84. [PMID: 20647419 PMCID: PMC2978355 DOI: 10.1093/nar/gkq576] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitomycin C induces both MC-mono-dG and cross-linked dG-adducts in vivo. Interstrand cross-linked (ICL) dG-MC-dG-DNA adducts can prevent strand separation. In Escherichia coli cells, UvrABC repairs ICL lesions that cause DNA bending. The mechanisms and consequences of NER of ICL dG-MC-dG lesions that do not induce DNA bending remain unclear. Using DNA fragments containing a MC-mono-dG or an ICL dG-MC-dG adduct, we found (i) UvrABC incises only at the strand containing MC-mono-dG adducts; (ii) UvrABC makes three types of incisions on an ICL dG-MC-dG adduct: type 1, a single 5′ incision on 1 strand and a 3′ incision on the other; type 2, dual incisions on 1 strand and a single incision on the other; and type 3, dual incisions on both strands; and (iii) the cutting kinetics of type 3 is significantly faster than type 1 and type 2, and all of 3 types of cutting result in producing DSB. We found that UvrA, UvrA + UvrB and UvrA + UvrB + UvrC bind to MC-modified DNA specifically, and we did not detect any UvrB- and UvrB + UvrC–DNA complexes. Our findings challenge the current UvrABC incision model. We propose that DSBs resulted from NER of ICL dG-MC-dG adducts contribute to MC antitumor activity and mutations.
Collapse
Affiliation(s)
- Mao-wen Weng
- Department of Environmental Medicine, Pathology, and Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Damage to the genome is unavoidable in living creatures, because of sunlight exposure as well as environmental chemicals present in food and drinking water. There is a need to monitor and purify the drinking water; therefore, several methods of detection have been developed. A very promising model system for this purpose is the zebrafish (Danio rerio), which is endowed with special qualities for detecting external as well as internal abnormalities. Grossman and Wei's assay [Grossman L, Wei Q (1995) Clin Chem 12:1854-1863], which measures the expression level of a nonreplicating recombinant plasmid DNA containing a UV-damaged luciferase reporter gene, shows that zebrafish can repair chromosomal lesions to a much greater extent than the human population. This vertebrate model is still very promising after possible down-regulation of the DNA repair enzymes.
Collapse
Affiliation(s)
- Raquel Sussman
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
10
|
Kang J, Blaser MJ. Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat Rev Microbiol 2006; 4:826-36. [PMID: 17041630 DOI: 10.1038/nrmicro1528] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microorganisms that persist in single hosts face particular challenges. Helicobacter pylori, an obligate bacterial parasite of the human stomach, has evolved a lifestyle that features interstrain competition and intraspecies cooperation, both of which involve horizontal gene transfer. Microbial species must maintain genomic integrity, yet H. pylori has evolved a complex nonlinear system for diversification that exists in dynamic tension with the mechanisms for ensuring fidelity. Here, we review these tensions and propose that they create a dynamic pool of genetic variants that is sufficiently genetically diverse to allow H. pylori to occupy all of the potential niches in the stomach.
Collapse
Affiliation(s)
- Josephine Kang
- Departments of Medicine and Microbiology, New York University School of Medicine, New York, New York, 10016 USA
| | | |
Collapse
|
11
|
Johnson NA, McKenzie R, McLean L, Sowers LC, Fletcher HM. 8-oxo-7,8-dihydroguanine is removed by a nucleotide excision repair-like mechanism in Porphyromonas gingivalis W83. J Bacteriol 2004; 186:7697-703. [PMID: 15516584 PMCID: PMC524907 DOI: 10.1128/jb.186.22.7697-7703.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A consequence of oxidative stress is DNA damage. The survival of Porphyromonas gingivalis in the inflammatory microenvironment of the periodontal pocket requires an ability to overcome oxidative stress caused by reactive oxygen species (ROS). 8-oxo-7,8-dihydroguanine (8-oxoG) is typical of oxidative damage induced by ROS. There is no information on the presence of 8-oxoG in P. gingivalis under oxidative stress conditions or on a putative mechanism for its repair. High-pressure liquid chromatography with electrochemical detection analysis of chromosomal DNA revealed higher levels of 8-oxoG in P. gingivalis FLL92, a nonpigmented isogenic mutant, than in the wild-type strain. 8-oxoG repair activity was also increased in cell extracts from P. gingivalis FLL92 compared to those from the parent strain. Enzymatic removal of 8-oxoG was catalyzed by a nucleotide excision repair (NER)-like mechanism rather than the base excision repair (BER) observed in Escherichia coli. In addition, in comparison with other anaerobic periodontal pathogens, the removal of 8-oxoG was unique to P. gingivalis. Taken together, the increased 8-oxoG levels in P. gingivalis FLL92 could further support a role for the hemin layer as a unique mechanism in oxidative stress resistance in this organism. In addition, this is the first observation of an NER-like mechanism as the major mechanism for removal of 8-oxoG in P. gingivalis.
Collapse
Affiliation(s)
- N A Johnson
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
12
|
DellaVecchia MJ, Croteau DL, Skorvaga M, Dezhurov SV, Lavrik OI, Van Houten B. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling. J Biol Chem 2004; 279:45245-56. [PMID: 15308661 DOI: 10.1074/jbc.m408659200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.
Collapse
Affiliation(s)
- Matthew J DellaVecchia
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lage C, de Pádula M, de Alencar TAM, da Fonseca Gonçalves SR, da Silva Vidal L, Cabral-Neto J, Leitão AC. New insights on how nucleotide excision repair could remove DNA adducts induced by chemotherapeutic agents and psoralens plus UV-A (PUVA) in Escherichia coli cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:143-57. [PMID: 14644316 DOI: 10.1016/j.mrrev.2003.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.
Collapse
Affiliation(s)
- Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciencias da Saude, Universidade de Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Tang MS, Pfeifer GP, Denissenko MF, Feng Z, Hu W, Pao A, Zheng Y, Zheng JB, Li H, Chen JX. Mapping polycyclic aromatic hydrocarbon and aromatic amine-induced DNA damage in cancer-related genes at the sequence level. Int J Hyg Environ Health 2002; 205:103-13. [PMID: 12018002 DOI: 10.1078/1438-4639-00135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genomic injury induced by environmental carcinogens, such as polycyclic aromatic hydrocarbons and aromatic amines, is the initial step that can trigger mutagenesis and carcinogenesis. In addition to the physico-chemical property of DNA damaging agents, several important factors such as primary sequence, chromatin structure, methylation, protein association, and transcriptional activity can affect not only the initial level and distribution of DNA damage but also the efficiency of repair. Therefore, mapping the DNA damage induced by environmental agents in cancer-related genes such as p53 and ras at the sequence level provides essential information for assessing their carcinogenic potential. Recently, using the E. coli nucleotide excision enzyme complex, UvrABC nucleases in combination with ligation-mediated polymerase chain reaction, we developed a method to map DNA damage in the p53 and ras genes. These studies led us to conclude that targeted DNA damage, in combination with growth selection, contributes greatly in shaping the mutation spectrum in these genes in human cancer. Here we present the rationale and details of this approach, typical experimental results and necessary precautions.
Collapse
Affiliation(s)
- Moon-shong Tang
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grossman L. Nucleotide excision repair: Dick Setlow: how he influenced my scientific life. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:144-152. [PMID: 11746748 DOI: 10.1002/em.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L Grossman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
16
|
Eggleston AK, Rahim NA, Kowalczykowski SC. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res 1996; 24:1179-86. [PMID: 8614617 PMCID: PMC145774 DOI: 10.1093/nar/24.7.1179] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.
Collapse
Affiliation(s)
- A K Eggleston
- Division of Biological Sciences, University of California, Davis 95616-8665, USA
| | | | | |
Collapse
|
17
|
Tomer G, Cohen-Fix O, O'Donnell M, Goodman M, Livneh Z. Reconstitution of repair-gap UV mutagenesis with purified proteins from Escherichia coli: a role for DNA polymerases III and II. Proc Natl Acad Sci U S A 1996; 93:1376-80. [PMID: 8643639 PMCID: PMC39945 DOI: 10.1073/pnas.93.4.1376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using a cell-free system for UV mutagenesis, we have previously demonstrated the existence of a mutagenic pathway associated with nucleotide-excision repair gaps. Here, we report that this pathway can be reconstituted by using six purified proteins: UvrA, UvrB, UvrC, DNA helicase II, DNA polymerase III core, and DNA ligase. This establishes the minimal requirements for repair-gap UV mutagenesis. DNA polymerase II could replace DNA polymerase III, although less effectively, whereas DNA polymerase I, the major repair polymerase, could not. DNA sequence analysis of mutations generated in the in vitro reaction revealed a spectrum typical of mutations targeted to UV lesions. These observations suggest that repair-gap UV mutagenesis is performed by DNA polymerase III, and to a lesser extent by DNA polymerase II, by filling-in of a rare class of excision gaps that contain UV lesions.
Collapse
Affiliation(s)
- G Tomer
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
18
|
Lambert B, Jestin JL, Bréhin P, Oleykowski C, Yeung AT, Mailliet P, Prétot C, Le Pecq JB, Jacquemin-Sablon A, Chottard JC. Binding of the Escherichia coli UvrAB proteins to the DNA mono- and diadducts of cis-[N-2-amino-N-2-methylamino-2,2,1-bicycloheptane]dichloroplatinum(II ) and cisplatin. Analysis of the factors controlling recognition and proof of monoadduct-mediated UvrB-DNA cross-linking. J Biol Chem 1995; 270:21251-7. [PMID: 7673159 DOI: 10.1074/jbc.270.36.21251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interactions of the Escherichia coli endonuclease UvrAB proteins with the DNA mono- and diadducts of both the cis-racemic exo-[N-2-amino-N-2-methylamino-2,2,1-bicycloheptane]dichloroplatin um(II) (complex 1) and cisplatin (cis-diamminedichloroplatinum(II) (cis-DDP)), have been studied. Complex 1 reacts faster with DNA than cis-DDP and gives monoadducts with a longer lifetime (8 h 20 min chelation t 1/2 compared with 2 h 40 min for cis-DDP). Using pSP65 plasmid [3H]DNA, the filter binding assay was associated with the analysis of the nucleoprotein complexes to characterize the UvrAB recognition of the platinum adducts and to demonstrate the occurrence of platinum-mediated DNA-protein cross-linking. First, it is shown that the UvrAB proteins recognize the complex 1 mono- and diadducts with a higher affinity than those of cis-DDP. Fifteen times more cis-DDP adducts per plasmid are required than complex 1 adducts, to lead to similar UvrAB binding. However, the UvrAB proteins recognize monoadducts and diadducts of each complex with a similar affinity. Second, it is shown that UvrB is the protein involved in the nucleo-protein complexes formed from mono- and diadducts of complex 1 and cis-DDP. This protein is also partly cross-linked to DNA with a similar efficiency by monoadducts derived from complex 1 and cis-DDP. However, as UvrB has a greater affinity for the DNA adducts of complex 1 than for those of cis-DDP, more UvrB-platinum-DNA cross-links are formed with complex 1 than with cis-DDP. This study, using a bacterial repair system as a model, points to a possible strategy for making new cytotoxic platinum complexes for mammalian cells.
Collapse
Affiliation(s)
- B Lambert
- Institut Gustave Roussy, URA 147 CNRS, U 140 INSERM, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The use of monoclonal antibodies for studying intermediates in DNA repair by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Kraemer KH, Levy DD, Parris CN, Gozukara EM, Moriwaki S, Adelberg S, Seidman MM. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J Invest Dermatol 1994; 103:96S-101S. [PMID: 7963692 DOI: 10.1111/1523-1747.ep12399329] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Xeroderma pigmentosum, Cockayne syndrome, the xeroderma pigmentosum-Cockayne syndrome complex, and trichothiodystrophy cells have defects in DNA repair and are associated with clinical and cellular hypersensitivity to ultraviolet radiation (UV). Familial dysplastic nevus syndrome cells have UV hypermutability. Although xeroderma pigmentosum and dysplastic nevus syndrome have markedly increased cancer risk. Cockayne syndrome and trichothiodystrophy do not. At the molecular level, these disorders are associated with several different genetic defects as evidenced by the existence of multiple overlapping complementation groups. Recent progress has been made in identifying the chromosomal location and cloning the defective genes in these disorders. Using plasmid shuttle vectors we have shown abnormal repair and mutagenesis of DNA damaged by 254-nm (UVC) or 295-nm (UVB) radiation or the chemical carcinogen aflatoxin in cells from patients with xeroderma pigmentosum. Although xeroderma pigmentosum cells are defective in repair of all photoproducts, Cockayne syndrome cells appear to be defective in repair of cyclobutane dimers and have normal repair of nondimer photoproducts. DNS cells have post UV plasmid hypermutability. These diseases may serve as models for examining molecular mechanisms of carcinogenesis in humans.
Collapse
Affiliation(s)
- K H Kraemer
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
21
|
Ramaswamy M, Yeung AT. The reactivity of 4,5',8-trimethylpsoralen with oligonucleotides containing AT sites. Biochemistry 1994; 33:5411-3. [PMID: 8180164 DOI: 10.1021/bi00184a008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pyrimidine bases of duplex DNA, of appropriate sequence context, are photoreactive toward 4,5',8-trimethylpsoralen in the presence of long-wavelength UV light. It is generally believed that a 5'-AT site is less photoreactive with psoralen than a 5'-TA site. We have compared the reactivities of these two sites using oligonucleotide duplexes of different sequence context and found that 5'-TA and 5'-AT sites are equally reactive in certain sequences. The presence of alternating pyrimidine and purine (5'-PyATPu-3') bases in oligonucleotide duplexes optimizes the reactivity of 4,5',8-trimethylpsoralen in the 5'-AT sites.
Collapse
Affiliation(s)
- M Ramaswamy
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
22
|
Cohen-Fix O, Livneh Z. In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37638-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Sequence-specific interactions of UvrABC endonuclease with psoralen interstrand cross-links. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42376-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Betina S, Masek F, Kleibl K. Enhancement of the uvrA gene dosage reduces pyrimidine dimer excision in UV-irradiated Escherichia coli. Mutat Res 1993; 290:249-54. [PMID: 7694116 DOI: 10.1016/0027-5107(93)90165-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E. coli possesses an efficient repair mechanism able to remove pyrimidine dimers from UV-irradiated DNA, which is catalyzed by UvrABC endonuclease. In E. coli B/r Hcr+ cells transformed with a multicopy plasmid harboring a gene coding for UvrA, the excision capacity was greatly reduced. The course of thymine dimer excision was investigated using the enzymatic as well as the radiochromatographic method and the results are discussed in term of nonspecific interaction between the excess of UvrA protein and undamaged DNA duplex.
Collapse
Affiliation(s)
- S Betina
- Department of Microbiology, Faculty of Chemistry, Slovak Technical University, Bratislava
| | | | | |
Collapse
|
25
|
Visse R, de Ruijter M, Ubbink M, Brandsma JA, van de Putte P. The first zinc-binding domain of UvrA is not essential for UvrABC-mediated DNA excision repair. Mutat Res 1993; 294:263-74. [PMID: 7692266 DOI: 10.1016/0921-8777(93)90009-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Specific mutations in uvrA were introduced to analyze the role of the zinc-binding domains of the protein in DNA excision repair. Zinc-coordinating cysteines were substituted into non-coordinating serine or glycine residues. Mutations leading to changes in the second zinc-binding domain had a profound effect on UV survival in vivo; however these mutant proteins could not be isolated for in vitro analyses. Amino acid substitutions in the first zinc-binding domain had very little effect on UV survival in vivo. In vitro analyses showed that although this domain no longer coordinates zinc, ATPase activity, helicase activity, DNA binding, incision of damaged DNA and DNA repair synthesis appeared to be normal. Therefore it seems that the first zinc-binding domain of UvrA is not essential for DNA excision repair.
Collapse
Affiliation(s)
- R Visse
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Abstract
The Haemophilus influenzae mutB+ gene complements Escherichia coli uvrD mutants. The E. coli uvrD+ gene complements H. influenzae mutB1 mutants.
Collapse
Affiliation(s)
- J H Stuy
- Department of Biological Sciences, Florida State University, Tallahassee 32306
| | | |
Collapse
|
27
|
Protić M, Levine AS. Detection of DNA damage-recognition proteins using the band-shift assay and southwestern hybridization. Electrophoresis 1993; 14:682-92. [PMID: 8404810 DOI: 10.1002/elps.11501401109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe electrophoresis and biochemical conditions that allow detection of damaged DNA-binding proteins in cell extracts. In addition, we present an overview of the damage-recognition DNA-binding proteins from eukaryotic cells and discuss their hypothetical role in DNA repair.
Collapse
Affiliation(s)
- M Protić
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
28
|
van Assendelft GB, Rigney EM, Hickson ID. Purification of a HeLa cell nuclear protein that binds selectively to DNA irradiated with ultra-violet light. Nucleic Acids Res 1993; 21:3399-404. [PMID: 8346019 PMCID: PMC331437 DOI: 10.1093/nar/21.15.3399] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ultraviolet (UV) light induces a variety of lesions in DNA of which the pyrimidine dimer represents the major species. Pyrimidine dimers exist as both a cyclobutane type and a 6-4' (pyrimidine-2'-one) photoproduct. We have purified a protein of M(r) approximately 125,000 from HeLa cell nuclei which binds efficiently to double-stranded DNA irradiated with UV light but not to undamaged DNA. This protein was designated UVBP1 (UV damage binding protein 1). UVBP1 did not recognise DNA damaged by cisplatin. Using oligonucleotides with a single dipyrimidine site for induction of UV photoproducts, binding of UVBP1 to a TC-containing substrate was shown to be more efficient than to substrates containing a TT, a CT or a CC pair. This binding specificity implies selective recognition of the 6-4' photoproduct. Further evidence for this was provided by the finding that hot alkali treatment of the substrate (which selectively hydrolyses 6-4' photoproducts) abrogated binding of UVBP1, whereas incubation with DNA photolyase to remove cyclobutane dimers did not. No detectable DNA helicase, ATPase or exonuclease activity was associated with the purified protein. We suggest that UVBP1 may be involved in the lesion recognition step of DNA excision repair and could contribute to the preferential repair of 6-4' photoproducts from the DNA of UV-irradiated mammalian cells.
Collapse
Affiliation(s)
- G B van Assendelft
- Imperial Cancer Research Fund, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
29
|
Londoño-Vallejo JA, Dubnau D. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 1993; 9:119-31. [PMID: 8412657 DOI: 10.1111/j.1365-2958.1993.tb01674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have sequenced and genetically characterized comF, a Bacillus subtilis competence locus, previously identified by Tn917 transposon insertion mutagenesis. Expression of the locus, in which three open reading frames (ORFs) were found, is driven by a single sigma A-like promoter in front of comFORF1 and is dependent on early regulatory competence genes and only expressed in competence medium. The predicted amino acid sequences of two of the ORFs showed similarities to known proteins in the GenBank and SwissProt databases: ComFORF1 is similar to an extensive family of ATP-dependent RNA/DNA helicases with closer similarity to the DEAD protein subfamily and to the PriA protein in Escherichia coli. The latter is a DNA translocase/helicase required for primosome assembly at the replication fork of phage phi X174. ComFORF3 is 22% identical to Com101, a protein required for genetic competence in Haemophilus influenzae, a naturally competent Gram-negative bacterium. In-frame comFORF1 deletions were 1000-fold deficient in transformability compared to the wild-type, whereas disruptions of the other two ORFs were only five- to 10-fold lower. These observations allow us to hypothesize that the ComFORF1 late gene product plays an essential role during the binding and uptake events involved in Bacillus subtilis transformation.
Collapse
|
30
|
Pfeifer GP, Drouin R, Holmquist GP. Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat Res 1993; 288:39-46. [PMID: 7686264 DOI: 10.1016/0027-5107(93)90206-u] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many carcinogens and mutagens interact with DNA to form specific adducts. Base-specificity and sequence-specificity of adduct formation has been analyzed previously with cloned, end-labelled DNA fragments. However, the distribution of adducts along a mammalian chromosome may be modulated by chromatin structure and could be different from that in naked plasmid DNA. Recently, a method has been developed that utilizes the sensitivity of the polymerase chain reaction (PCR) to detect DNA adducts at the DNA sequence level in mammalian cells. The sequence position of adducts can be mapped whenever it is possible to convert the adduct, either chemically or enzymatically, into a DNA strand break with a 5'-phosphate group. Fragments containing these ligatable breaks are amplified in a single-sided, ligation-mediated PCR reaction. We have used ligation-mediated PCR for detection of alkylguanine adducts and UV-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. We discuss the sensitivity of the method, its limitations, and its potential for mapping other DNA adducts at the DNA sequence level in mammalian cells.
Collapse
Affiliation(s)
- G P Pfeifer
- Beckman Research Institute of the City of Hope, Department of Biology, Duarte, CA 91010
| | | | | |
Collapse
|
31
|
Bardwell AJ, Bardwell L, Johnson DK, Friedberg EC. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Mol Microbiol 1993; 8:1177-88. [PMID: 8361362 DOI: 10.1111/j.1365-2958.1993.tb01662.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Saccharomyces cerevisiae Rad1 and Rad10 proteins are required for damage-specific incision during nucleotide excision repair and also for certain mitotic recombination events between repeated sequences. Previously we have demonstrated that Rad1 and Rad10 form a specific complex in vitro. Using the 'two-hybrid' genetic assay system we now report that Rad1 and Rad10 proteins are subunits of a specific complex in the cell nucleus. The Rad10-binding domain of Rad1 protein maps to a localized region between amino acids 809-997. The Rad1-binding domain of Rad10 protein maps between amino acids 90-210. These domains are evolutionarily conserved and are hydrophobic in character. Although significant homology exists between Rad10 and the human-DNA-repair protein Ercc1 in this region, we were unable to detect any interaction between Ercc1 and Rad1 proteins. We conclude that Rad1 and Rad10 operate in DNA repair and mitotic recombination as a constitutive complex.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | | | | | | |
Collapse
|
32
|
Oleykowski C, Mayernik J, Lim S, Groopman J, Grossman L, Wogan G, Yeung A. Repair of aflatoxin B1 DNA adducts by the UvrABC endonuclease of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53055-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Naegeli H, Bardwell L, Friedberg EC. Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry 1993; 32:613-21. [PMID: 8380702 DOI: 10.1021/bi00053a029] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The yeast nucleotide excision repair gene RAD3 is absolutely required for damage-specific incision of DNA. Rad3 protein is a DNA helicase, and previous studies have shown that its catalytic activity is inhibited by ultraviolet (UV) radiation damage. This inhibition is observed when base damage is confined to the DNA strand on which Rad3 protein binds and translocates, and not when damage is present exclusively on the complementary strand. In the present study, we show that Rad3 DNA helicase activity is inhibited in an identical strand-specific fashion by bulky base adducts formed by treating DNA with the antineoplastic agent cisplatin or the antibiotic compound CC-1065, which alter the secondary structure of DNA in different ways. In addition, Rad3 helicase activity is inhibited by small adducts generated by treatment of DNA with diethyl sulfate and by the presence of sites at which pyrimidines have been lost (abasic sites). No inhibition of Rad3 helicase activity was detected when DNA was methylated at various base positions. Cisplatin-modified single-stranded DNA and poly(deoxyuridylic acid) containing abasic sites are more effective competitors for Rad3 helicase activity than their undamaged counterparts, suggesting that Rad3 protein is sequestered at such lesions, resulting in the formation of stable Rad3 protein-DNA complexes. The observations of strand-specific inhibition of Rad3 helicase activity and the formation of stable complexes with the covalently modified strand suggest a general mechanism by which the RAD3 gene product may be involved in nucleotide excision repair in yeast.
Collapse
Affiliation(s)
- H Naegeli
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | |
Collapse
|
34
|
Van Houten B, Snowden A. Mechanism of action of the Escherichia coli UvrABC nuclease: clues to the damage recognition problem. Bioessays 1993; 15:51-9. [PMID: 8466476 DOI: 10.1002/bies.950150108] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the process of E. coli nucleotide excision repair, DNA damage recognition and processing are achieved by the action of the uvrA, uvrB, and uvrC gene products. The availability of highly purified proteins has lead to a detailed molecular description of E. coli nucleotide excision repair that serves as a model for similar processes in eukaryotes. An interesting aspect of this repair system is the protein complex's ability to work on a vast array of DNA lesions that differ widely in their chemical composition and molecular architecture. Here we propose a model for damage recognition in which the UvrB protein serves as the component that confers enhanced specificity to a preincision complex. We hypothesize that one major determinant for the formation of a stable preincision complex appears to be the disruption of base stacking interactions by DNA lesions.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405-0068
| | | |
Collapse
|
35
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
36
|
A comparison of the rates of reaction and function of UVRB in UVRABC- and UVRAB-mediated anthramycin-N2-guanine-DNA repair. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35823-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Shimoi K, Kawabata H, Tomita I. Enhancing effect of heterocyclic amines and beta-carbolines on UV or chemically induced mutagenesis in E. coli. Mutat Res 1992; 268:287-95. [PMID: 1379334 DOI: 10.1016/0027-5107(92)90234-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most heterocyclic amines and beta-carbolines--harman, norharman, harmine, harmaline--enhanced UVC (254 nm) induced mutagenesis without microsomal activation in E. coli B/r WP2. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) was most effective and increased UVAB (295-400 nm) induced mutations as well as UVC induced ones. Trp-P-1 enhanced the frequencies of mutations induced by not only UV but also 4-nitroquinoline-1-oxide (4NQO) or 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF2), while it showed little effect on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or gamma-ray induced mutagenesis. Trp-P-1 decreased the survival of UVC irradiated cells of CM571recA. However, these effects of Trp-P-1 on UVC induced mutagenesis and lethality were not observed in WP2suvrA which is excision repair deficient. The alkaline sucrose gradient sedimentation analysis demonstrated that Trp-P-1 blocked the incision step in DNA excision repair. Further, pretreatment with Trp-P-1 before UVC irradiation showed no effect on UVC induced mutagenesis. Similar effects were also seen in the case of harman or norharman. These results suggest that heterocyclic amines and beta-carbolines inhibit DNA excision repair directly or indirectly, thus enhancing UV or chemically induced mutagenesis.
Collapse
Affiliation(s)
- K Shimoi
- Laboratory of Health Science, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | |
Collapse
|
38
|
Salganik RI, Dianov GL. Molecular mechanisms of the formation of DNA double-strand breaks and induction of genomic rearrangements. Mutat Res 1992; 266:163-70. [PMID: 1373825 DOI: 10.1016/0027-5107(92)90183-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The probability that damage occurs in closely opposed sites on complementary DNA strands increases when DNA is heavily modified with mutagenic agents. Enzymatic excision of the opposite lesions produces DNA double-strand breaks which give rise to genomic rearrangements (deletions, insertions, etc.). Plasmid systems were developed for studying chemical lesions leading to double-strand breaks and the fate of broken plasmid molecules within bacterial cells. Deletions result from the base-pairing of fortuitously located direct repeats flanking the DNA broken ends; as a consequence, the latter are joined, while the DNA fragment between the direct repeats is deleted. Genomic rearrangements arise during the repair of the DNA double-strand breaks, and both events are due to similar repair enzymes which maintain the integrity of the DNA primary structure when conditions are not stressful. A number of genomic rearrangements and point mutations seem to be predetermined by the DNA primary structure.
Collapse
Affiliation(s)
- R I Salganik
- Institute of Cytology and Genetics, U.S.S.R. Academy of Sciences, Siberian Branch, Novosibirsk
| | | |
Collapse
|
39
|
Sicard N, Oreglia J, Estevenon AM. Structure of the gene complementing uvr-402 in Streptococcus pneumoniae: homology with Escherichia coli uvrB and the homologous gene in Micrococcus luteus. J Bacteriol 1992; 174:2412-5. [PMID: 1551859 PMCID: PMC205869 DOI: 10.1128/jb.174.7.2412-2415.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The repair ability for UV-induced damage observed for Streptococcus pneumoniae proceeds through a system similar to the Uvr-dependent system in Escherichia coli. The DNA sequence of a gene complementing uvr-402, a mutation conferring UV sensitivity, was determined. Alignments of the deduced amino acid sequence revealed an extensive sequence homology of 55% with the UvrB protein of E. coli and 59% with the UvrB-homologous protein of Micrococcus luteus. Nucleotide-binding site consensus was observed. The high conservation of the uvrB-like gene among these three species suggests that the role of the UvrB protein and excision repair in general might be very important for cell survival.
Collapse
Affiliation(s)
- N Sicard
- Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
40
|
Abramić M, Levine A, Protić M. Purification of an ultraviolet-inducible, damage-specific DNA-binding protein from primate cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54599-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Belt PB, van Oosterwijk MF, Odijk H, Hoeijmakers JH, Backendorf C. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene. Nucleic Acids Res 1991; 19:5633-7. [PMID: 1945841 PMCID: PMC328968 DOI: 10.1093/nar/19.20.5633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair proficient HeLa cells by means of an Epstein-Barr-virus derived cDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating an ERCC-1 protein with two extra amino acids in a conserved region of its C-terminal part resulted in a significant sensitization of the HeLa transfectants to mitomycin C-induced damage. These results suggest that overexpression of the mutated ERCC-1 protein interferes with proper functioning of the excision repair pathway in repair proficient cells and is compatible with a model in which the mutated ERCC-1 protein competes with the wild-type polypeptide for a specific step in the repair process or for occupation of a site in a repair complex. Apparently, this effect is more pronounced for mitomycin C induced crosslink repair than for UV-induced DNA damage.
Collapse
Affiliation(s)
- P B Belt
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Bellon SF, Coleman JH, Lippard SJ. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry 1991; 30:8026-35. [PMID: 1868076 DOI: 10.1021/bi00246a021] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedichloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-[Pt(NH3)2[d(GpG)]], cis-[Pt(NH3)2(d(ApG)]], and cis-[Pt(NH3)2[d(GpTpG)]] adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymers containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. We find that the cis-GG and cis-AG adducts both unwind DNA by 13 degrees, while the cis-GTG adduct unwinds DNA by 23 degrees. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA, we propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13 degrees and bending by 35 degrees are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.
Collapse
Affiliation(s)
- S F Bellon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
43
|
Abstract
Eukaryotic cells are able to mount several genetically complex cellular responses to DNA damage. The yeast Saccharomyces cerevisiae is a genetically well characterized organism that is also amenable to molecular and biochemical studies. Hence, this organism has provided a useful and informative model for dissecting the biochemistry and molecular biology of DNA repair in eukaryotes.
Collapse
Affiliation(s)
- E C Friedberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| |
Collapse
|
44
|
Rozengurt E, Brown K, Pettican P. Vasopressin inhibition of epidermal growth factor binding to cultured mouse cells. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)70033-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|