1
|
Kienzler A, Bony S, Devaux A. DNA repair activity in fish and interest in ecotoxicology: a review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:47-56. [PMID: 23571068 DOI: 10.1016/j.aquatox.2013.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 05/20/2023]
Abstract
The knowledge of DNA repair in a target species is of first importance as it is the primary line of defense against genotoxicants, and a better knowledge of DNA repair capacity in fish could help to interpret genotoxicity data and/or assist in the choice of target species, developmental stage and tissues to focus on, both for environmental biomonitoring studies and DNA repair testing. This review focuses in a first part on what is presently known on a mechanistic basis, about the various DNA repair systems in fish, in vivo and in established cell lines. Data on base excision repair (BER), direct reversal with O⁶-alkylguanine transferase and double strand breaks repair, although rather scarce, are being reviewed, as well as nucleotide excision repair (NER) and photoreactivation repair (PER), which are by far the most studied repair mechanisms in fish. Most of these repair mechanisms seem to be strongly species and tissue dependent; they also depend on the developmental stage of the organisms. BER is efficient in vivo, although no data has been found on in vitro models. NER activity is quite low or even inexistent depending on the studies; however this lack is partly compensated by a strong PER activity, especially in early developmental stage. In a second part, a survey of the ecotoxicological studies integrating DNA repair as a parameter responding to single or mixture of contaminant is realized. Three main approaches are being used: the measurement of DNA repair gene expression after exposure, although it has not yet been clearly established whether gene expression is indicative of repair capacity; the monitoring of DNA damage removal by following DNA repair kinetics; and the modulation of DNA repair activity following exposure in situ, in order to assess the impact of exposure history on DNA repair capacity. Since all DNA repair processes are possible targets for environmental pollutants, we can also wonder at which extent such a modulation of repair capacities in fish could be the base for the development of new biomarkers of genotoxicity. Knowing the importance of the germ cell DNA integrity in the reproductive success of aquatic organisms, the DNA repair capacity of such cells deserve to be more studied, as well as DNA repair capacities of established fish cell lines. The limited amount of available data, which shows low/slow DNA repair capacities of fish cell lines compared with mammalian cell lines, concerned mainly the NER system; thus this point merits to be explored more deeply. Additionally, since some of the DNA repair systems appear more efficient in embryo larval stages, it would be of interest to consider embryonic cell lineages more closely.
Collapse
Affiliation(s)
- Aude Kienzler
- UMR LEHNA 5023, Université de Lyon, F-69518 Vaulx-en-Velin, France.
| | | | | |
Collapse
|
2
|
Komura JI, Ikehata H, Mori T, Ono T. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin. Exp Cell Res 2012; 318:623-31. [PMID: 22248875 DOI: 10.1016/j.yexcr.2012.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/27/2022]
Abstract
During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression.
Collapse
Affiliation(s)
- Jun-ichiro Komura
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
3
|
Rainbow AJ, Zacal NJ. Expression of an adenovirus encoded reporter gene and its reactivation following UVC and oxidative damage in cultured fish cells. Int J Radiat Biol 2008; 84:455-66. [PMID: 18470745 DOI: 10.1080/09553000802078370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Recombinant human adenovirus, AdCA35lacZ, was used to examine expression of a reporter gene and its reactivation following UVC (200-280 nm) and oxidative damage in fish cells. MATERIALS AND METHODS AdCA35lacZ is a recombinant nonreplicating human adenovirus, which expresses the beta-galactosidase (beta-gal) reporter gene. UVC light produces DNA damage repaired by nucleotide excision repair (NER). In contrast, methylene blue plus visible light (MB+VL) produces oxidative DNA damage, mainly 8-oxoguanine, that is repaired by base excision repair (BER). We examined expression of the reporter gene and host cell reactivation (HCR) of the UVC-treated and MB+VL-treated reporter gene in fish cells. RESULTS AdCA35lacZ infection of Chinook salmon cells (CHSE-214), eel cells (PBLE) and four rainbow trout cell lines (RTG-2, RT-Gill, RTS-34st and RTS-pBk), but not zebrafish (ZEB) or carp (EPC) cells resulted in expression of beta-gal. HCR of UVC-treated AdCA35lacZ in fish cells varied from that obtained in NER-deficient xeroderma pigmentosum group A fibroblasts to greater than that for NER-proficient normal human fibroblasts. HCR of UVC-treated AdCA35lacZ correlated with beta-gal expression levels for untreated AdCA35lacZ. Exposure of cells to fluorescent light (400-700 nm) increased expression of the undamaged reporter gene in normal human fibroblasts and in all fish cells except PBLE and increased HCR of the UVC-damaged reporter gene in fish cells but not in human fibroblasts. HCR of the MB + VL-treated reporter gene was similar to that in human cells for PBLE, CHSE-214, RTG-2 and RTS-pBk, but was reduced in RT-Gill and RTS-34st cells. CONCLUSIONS These results indicate the detection of functional photoreactivation (PR) of UVC-induced DNA damage in fish cells but not in normal human fibroblasts and a link between NER and transcription of the reporter gene in the fish cells in the absence of PR. We show also efficient BER of the reporter gene in several fish cell lines.
Collapse
Affiliation(s)
- Andrew J Rainbow
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
4
|
Uchida N, Mitani H, Shima A. MULTIPLE EFFECTS OF FLUORESCENT LIGHT ON REPAIR OF ULTRAVIOLET‐INDUCED DNA LESIONS IN CULTURED GOLDFISH CELLS. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1995.tb09246.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nobuhiro Uchida
- Laboratory of Radiation Biology, Zoological Institute, School of Science, University of Tokyo, Tokyo 113, Japan
| | - Hiroshi Mitani
- Laboratory of Radiation Biology, Zoological Institute, School of Science, University of Tokyo, Tokyo 113, Japan
| | - Akihiro Shima
- Laboratory of Radiation Biology, Zoological Institute, School of Science, University of Tokyo, Tokyo 113, Japan
| |
Collapse
|
5
|
Uchida N, Mitani H, Shima A. Repair of (6-4) Photoproducts in Cultured Goldfish Cells at Confluence or Treated with H2O2. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb02536.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Meador JA, Walter RB, Mitchell DL. Induction, Distribution and Repair of UV Photodamage in the Platyfish, Xiphophorus signum¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720260idarou2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
David WM, Mitchell DL, Walter RB. DNA repair in hybrid fish of the genus Xiphophorus. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:301-9. [PMID: 15533788 DOI: 10.1016/j.cca.2004.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/08/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
The genus Xiphophorus is an important vertebrate model for investigating the etiology and genetics of both spontaneous and induced cancers. Xiphophorus are comprised of 23 species most of which can be crossed to produce fertile interspecies hybrid progeny. The Xiphophorus gene map is well developed and allows genetic associations to be studied among cohorts of progeny derived from backcrossing interspecies hybrid animals to one of the parental strains. In interspecies cross-progeny from select Xiphophorus backcrosses, ionizing radiation, ultraviolet light (UVB), and exposure to methylnitrosourea (MNU) have all been shown to induce tumors. Induced tumor types represented in various models include melanoma, fibrosarcoma, schwannoma, retinoblastoma, etc. The well-established backcross hybrid genetics make Xiphophorus fish an excellent system to study the contribution of DNA repair capability to induced tumorigenesis. DNA repair pathways represent multigenic traits that must be tightly regulated to insure genome fidelity. Herein we review initial DNA repair studies that assess repair capacities among different Xiphophorus species and interspecies hybrids. Assessment of both base excision repair (BER) and nucleotide excision repair (NER) have yielded consistent results indicating reduced DNA repair function in hybrid fish tissues. These data provide molecular support for potential reduced fitness in hybrid fish under conditions of environmental stress and may present a plausible explanation for absence of interspecies hybridization in sympatric environments. In addition, they support the role of direct DNA damage and its repair in the initiation of tumors in Xiphophorus hybrids.
Collapse
Affiliation(s)
- Wendi M David
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666-4616, USA
| | | | | |
Collapse
|
8
|
Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S. Determination of pyrimidine dimers in Escherichia coli and Cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Appl Environ Microbiol 2001; 67:4630-7. [PMID: 11571166 PMCID: PMC93213 DOI: 10.1128/aem.67.10.4630-4637.2001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Accepted: 07/20/2001] [Indexed: 11/20/2022] Open
Abstract
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.
Collapse
Affiliation(s)
- K Oguma
- Department of Urban Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Meador JA, Walter RB, Mitchell DL. Induction, distribution and repair of UV photodamage in the platyfish, Xiphophorus signum. Photochem Photobiol 2000; 72:260-6. [PMID: 10946581 DOI: 10.1562/0031-8655(2000)072<0260:idarou>2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genus Xiphophorus is an important model for investigating the etiology and genetics of sunlight-induced melanoma as well as other cancers. We used immunological techniques to determine the induction, distribution and repair of cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone dimers ([6-4]PD) in different tissues of Xiphophorus signum exposed to ultraviolet-B light. We found that the (6-4)PD was induced at 5 to 10-fold lower frequency than the CPD and that scalation provided considerable photoprotection against both photoproducts. Photoenzymatic repair (PER) was very efficient in X. signum with most of the lesions removed within 20 min; PER of CPD occurred at about twice the rate of (6-4)PD. Nucleotide excision repair (NER) was much less efficient than PER and the rates of CPD and (6-4)PD removal were comparable. PER was more efficient in the caudal fin compared to the lateral epidermis; the opposite was true for NER. Although the initial rate of CPD excision was five-fold faster in the lateral epidermis compared to the caudal fin a considerable amount of residual damage remained in both tissues. The diverse photochemical and photobiological responses observed in X. signum suggest that heritable traits governing deoxyribonucleic acid damage induction and repair may be involved in the susceptibility of other Xiphophorus species to melanomagenesis.
Collapse
Affiliation(s)
- J A Meador
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Smithville, TX, USA
| | | | | |
Collapse
|
10
|
Nishigaki R, Mitani H, Shima A. Evasion of UVC-induced apoptosis by photorepair of cyclobutane pyrimidine dimers. Exp Cell Res 1998; 244:43-53. [PMID: 9770347 DOI: 10.1006/excr.1998.4180] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclobutyl pyrimidine dimer (CPD) photolyase is known to reverse pyrimidine dimers specifically under illumination with visible light. OCP13, a Medaka cell line showing a high level expression of the gene for CPD photolyase, completely reversed pyrimidine dimers induced by 20 J/m2 UVC by 1 h of photorepair. When OCP13 cells were irradiated with 20 J/m2 UVC, morphological changes such as shrinkage of cells, distorted nuclear shape, and decrease in the number of nucleoli appeared 2 to 4 h after UVC irradiation. Thereafter, the irradiated cells began to detach from the substratum, and DNA ladders were observed in the DNA extracted from detached cells. Thus, these changes in cells after UVC exposure were used to characterize the progression of UV-induced apoptosis in OCP13 cells. Although formation of DNA ladders and cell detachment were blocked by cycloheximide treatment prior to UVC exposure, the morphological changes were not. With photorepair treatment, even after the morphological changes appeared cells were still able to restore their normal morphological features and remained attached. On the other hand, the cell-cycle progression in UVC-irradiated cells was arrested even after photorepair of pyrimidine dimers. Thus, photorepair can rescue cells from UV-induced apoptosis, although DNA damage other than that of pyrimidine dimers, as well as additional non-DNA damage, possibly remained, and DNA replication was left inhibited. Among the various kinds of damage induced by UVC irradiation, the presence of pyrimidine dimers is proposed to be the major trigger for UVC-induced apoptosis.
Collapse
Affiliation(s)
- R Nishigaki
- Department of Biological Sciences, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | | | | |
Collapse
|
11
|
Mitani H, Shima A. Induction of cyclobutane pyrimidine dimer photolyase in cultured fish cells by fluorescent light and oxygen stress. Photochem Photobiol 1995; 61:373-7. [PMID: 7740081 DOI: 10.1111/j.1751-1097.1995.tb08625.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of a gene for photolyase in RBCF-1 cells, a line of cultured goldfish cells, is known to be enhanced by fluorescent light. We have now found that H2O2 is another strong inducer of cyclobutane pyrimidine dimer photolyase. Northern blot analysis suggested that regulation by H2O2 occurs at the transcriptional level and the time course of induction of photolyase by H2O2 was similar to that by fluorescent light. Treatment with fluorescent light in the presence of riboflavin, which is known as an endogenous photosensitizer, also enhanced the induction of photolyase. These results suggest the involvement of oxygen stress in the induction of photolyase by fluorescent light. A cell clone with high-level expression of the goldfish gene for photolyase was obtained by transfection with plasmids that expressed the goldfish photolyase in OL32 cells derived from another fish, the medaka (Oryzias latipes). The induction of the medaka gene for photolyase was not affected by the high-level expression of the goldfish gene for this enzyme.
Collapse
Affiliation(s)
- H Mitani
- Laboratory of Radiation Biology, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
12
|
Ball NJ, Yohn JJ, Morelli JG, Norris DA, Golitz LE, Hoeffler JP. Ras mutations in human melanoma: a marker of malignant progression. J Invest Dermatol 1994; 102:285-90. [PMID: 8120410 DOI: 10.1111/1523-1747.ep12371783] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study we address whether there is an association between ras mutations and disease progression in malignant melanoma. DNA was extracted from 100 paraffin-embedded melanomas and sequences around the 12th, 13th and 61st codons of N-, H-, and K-ras were amplified using the polymerase chain reaction and probed for single base pair mutations using synthetic oligonucleotide probes. Thirty-six melanomas contained mutations, which in 25 cases (69%) occurred at the 61st codon of N-ras. The results from dot blot hybridizations were confirmed by subcloning and sequencing the polymerase chain reaction products from two tumors. No ras mutations were found in Clark's level I melanomas, whereas 19% of level II and 45% of the more advanced primary tumors contained ras mutations (Chi squared test: p < 0.05). The median Breslow thickness of primary melanomas with ras mutations was 0.72 mm, significantly thicker than the 0.42 mm of melanomas without mutations (Mann-Whitney U test, p = 0.042). Ras mutations were found more frequently in primary tumors from continuously exposed skin (56%) than tumors from intermittently or non-sun exposed sites (21%). Fifty percent of locally recurrent and 47% of metastatic melanomas had ras mutations. We conclude that ras mutations occur in a subset of melanomas from sun-exposed skin as a feature of tumor progression.
Collapse
Affiliation(s)
- N J Ball
- Department of Dermatology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | | | |
Collapse
|
13
|
Mitchell DL, Scoggins JT, Morizot DC. DNA repair in the variable platyfish (Xiphophorus variatus) irradiated in vivo with ultraviolet B light. Photochem Photobiol 1993; 58:455-9. [PMID: 8234482 DOI: 10.1111/j.1751-1097.1993.tb09590.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dark- and light-dependent DNA repair processes were studied in vivo in the variable platyfish, Xiphophorus variatus. Excision (dark) repair of the (6-4) photoproduct was more efficient than that of the cyclobutane dimer with approximately 70% of the (6-4) photoproducts removed by 24 h post-UVB radiation compared to approximately 30% of the cyclobutane dimers. Exposure to photoreactivating light resulted in rapid loss of most (> 90%) of the cyclobutane dimers and increased excision repair of the (6-4) photoproduct. Preexposure to photoreactivating light 8 h prior to UVB radiation increased the rate of photoreactivation two-fold.
Collapse
Affiliation(s)
- D L Mitchell
- University of Texas M.D. Anderson Cancer Center, Science Park/Research Division, Smithville 78957
| | | | | |
Collapse
|
14
|
Downes CS, Ryan AJ, Johnson RT. Fine tuning of DNA repair in transcribed genes: mechanisms, prevalence and consequences. Bioessays 1993; 15:209-16. [PMID: 8489527 DOI: 10.1002/bies.950150311] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cells fine-tune their DNA repair, selecting some regions of the genome in preference to others. In the paradigm case, excision of UV-induced pyrimidine dimers in mammalian cells, repair is concentrated in transcribed genes, especially in the transcribed strand. This is due both to chromatin structure being looser in transcribing domains, allowing more rapid repair, and to repair enzymes being coupled to RNA polymerases stalled at damage sites; possibly other factors are also involved. Some repair-defective diseases may involve repair-transcription coupling: three candidate genes have been suggested. However, preferential excision of pyrimidine dimers is not uniformly linked to transcription. In mammals it varies with species, and with cell differentiation. In Drosophila embryo cells it is absent, and in yeast, the determining factor is nucleosome stability rather than transcription. Repair of other damage departs further from the paradigm, even in some UV-mimetic lesions. No selectivity is known for repair of the very frequent minor forms of base damage. And the most interesting consequence of selective repair, selective mutagenesis, normally occurs for UV-induced, but not for spontaneous mutations. The temptation to extrapolate from mammalian UV repair should be resisted.
Collapse
Affiliation(s)
- C S Downes
- Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
15
|
Yasuhira S, Mitani H, Shima A. Enhancement of photorepair of ultraviolet-induced pyrimidine dimers by preillumination with fluorescent light in the goldfish cell line. The relationship between survival and yield of pyrimidine dimers. Photochem Photobiol 1992; 55:97-101. [PMID: 1603854 DOI: 10.1111/j.1751-1097.1992.tb04214.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The enhancement of photorepair of UV-induced pyrimidine dimers by preillumination with fluorescent light, previously reported with RBCF-1 cells derived from caudal fin of a goldfish, was studied in terms of clonogenic ability and yields of dimers. In the logarithmic growth phase, the ability of photorepair increased with the time after preillumination, reached a maximum at 8 h, and gradually declined. At 8 h, the dose decrement with the photorepair-treatment for 20 min at 7.5 J/m2 UV increased by preillumination for 1 h from 1.6 to 3.1 J/m2 in terms of restoration of survival and from 1.2 to 4.3 J/m2 in terms of the disappearance of dimers. Incubation of the preilluminated cells in the medium containing cycloheximide (0.5 microgram/mL) after preillumination until UV-irradiation diminished their enhancement of photorepair. In the density-inhibited state, the ability of photorepair was higher than in the log phase, and it was hardly enhanced by preillumination.
Collapse
Affiliation(s)
- S Yasuhira
- Laboratory of Radiation Biology, Faculty of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
16
|
Mitani H, Yasuhira S, Komura J, Shima A. Enhancement of repair of UV-irradiated plasmids in cultured fish cells by fluorescent light preillumination and growth arrest. Mutat Res 1991; 255:273-80. [PMID: 1719399 DOI: 10.1016/0921-8777(91)90031-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The UV-irradiated plasmid pBSCATSV, which could express chloramphenicol acetyltransferase (CAT) in the presence of SV40 early promoter, was transfected into RBCF-1 cells derived from the goldfish (Carassius auratus). The cells were incubated in the dark for 24 h and then the CAT activity was measured. CAT expression relative to non-irradiated control was calculated. The CAT expression of the exponentially growing cells transfected with UV-irradiated plasmid was enhanced by fluorescent light (FL) preillumination of the cells 8 h before transfection. The efficiency of photorepair (PR) measured by CAT expression was also enhanced by the same FL preillumination. This suggests that FL preillumination enhances both photorepair and dark repair of RBCF-1 cells for UV-damaged plasmid transfected into the cells. The enhancement of repair of UV damage by FL preillumination was also observed in survival assays. When the UV-irradiated pBSCATSV was transfected into growth-arrested cells in confluent culture, CAT expression was less sensitive to UV irradiation, and FL preillumination was much less effective in enhancing photorepair and dark repair.
Collapse
Affiliation(s)
- H Mitani
- Zoological Institute, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|