1
|
Raghuwanshi VS, Harizanova R, Tatchev D, Hoell A, Rüssel C. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Jordan MA, Welsh DT, Teasdale PR. Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants. Talanta 2014; 125:293-300. [PMID: 24840446 DOI: 10.1016/j.talanta.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Many studies have described alternatives to the BOD5 standard method, with substantial decreases in incubation time observed. However, most of these have not maintained the features that make the BOD5 assay so relevant - a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. Two recently described ferricyanide-mediated (FM)-BOD assays, one for trade wastes and one for WWTP influents and treated effluents, satisfy these criteria and were investigated further here for their suitability for use with diverse biocatalysts. Both FM-BOD assays responded proportionately to increasing substrate concentration with sludges from 11 different WWTPs and temporally (months to years) using sludges from a single WWTP, confirming the broad applicability of both assays. Sludges from four WWTPs were selected as biocatalysts for each FM-BOD assay to compare FM-BOD equivalent values with BOD5 (three different sludge seeds) measurements for 12 real wastewater samples (six per assay). Strong and significant relationships were established for both FM-BOD assays. This study has demonstrated that sludge sourced from many WWTPs may be used as the biocatalyst in either FM-BOD assay, as it is in the BOD5 assay. The industry potential of these findings is substantial given the widespread use of the BOD5 assay, the dramatically decreased incubation period (3-6h) and the superior analytical range of both assays compared to the standard BOD5 assay.
Collapse
Affiliation(s)
- Mark A Jordan
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia; School of Environment, Griffith University, Gold Coast Campus, Qld 4222, Australia
| | - David T Welsh
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia.
| | - Peter R Teasdale
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia
| |
Collapse
|
3
|
Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers. Talanta 2013; 117:366-70. [DOI: 10.1016/j.talanta.2013.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/20/2022]
|
4
|
Jordan MA, Welsh DT, John R, Catterall K, Teasdale PR. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents. WATER RESEARCH 2013; 47:841-849. [PMID: 23200506 DOI: 10.1016/j.watres.2012.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/18/2012] [Accepted: 11/03/2012] [Indexed: 05/20/2023]
Abstract
Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.
Collapse
Affiliation(s)
- Mark A Jordan
- Environmental Futures Centre, Griffith University, Gold Coast campus, Qld 4222, Australia
| | | | | | | | | |
Collapse
|
5
|
Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN. Microbial biosensors for detection of biological oxygen demand (a Review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811010108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Liu C, Ma C, Yu D, Jia J, Liu L, Zhang B, Dong S. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement. Biosens Bioelectron 2011; 26:2074-9. [DOI: 10.1016/j.bios.2010.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
7
|
Jordan MA, Welsh DT, Teasdale PR, Catterall K, John R. A ferricyanide-mediated activated sludge bioassay for fast determination of the biochemical oxygen demand of wastewaters. WATER RESEARCH 2010; 44:5981-5988. [PMID: 20716458 DOI: 10.1016/j.watres.2010.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 06/25/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Activated sludge was successfully incorporated as the biocatalyst in the fast, ferricyanide-mediated biochemical oxygen demand (FM-BOD) bioassay. Sludge preparation procedures were optimized for three potential biocatalysts; aeration basin mixed liquor, aerobic digester sludge and return activated sludge. Following a 24h starving period, the return activated sludge and mixed liquor sludges reported the highest oxidative degradation of a standard glucose/glutamic acid (GGA) mixture and the return activated sludge also recorded the lowest endogenous FM-respiration rate. Dynamic working ranges up to 170 mg BOD(5)L(-1) for OECD standard solutions and 300mg BOD(5)L(-1) for GGA were obtained. This is a considerable improvement upon the BOD(5) standard assay and most other rapid BOD techniques. Time-series ferricyanide-mediated oxidation of the OECD(170) standard approached that of the GGA(198) standard after 3-6h. This is noteworthy given the OECD standard is formulated as a synthetic sewage analogue. A highly significant correlation with the BOD(5) standard method (n=35, p<0.001, R=0.952) was observed for a wide diversity of real wastewater samples. The mean degradation efficiency was indistinguishable from that observed for the BOD(5) assay. These results demonstrate that the activated sludge FM-BOD assay may be used for simple, same-day BOD analysis of wastewaters.
Collapse
Affiliation(s)
- Mark A Jordan
- Environmental Futures Centre, Griffith University, Gold Coast campus, Qld 4222, Australia
| | | | | | | | | |
Collapse
|
8
|
Shimomura-Shimizu M, Karube I. Applications of microbial cell sensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 118:1-30. [PMID: 20087723 DOI: 10.1007/10_2009_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.
Collapse
Affiliation(s)
- Mifumi Shimomura-Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 1920982, Japan
| | | |
Collapse
|
9
|
Rustum R, Adeloye AJ, Scholz M. Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen demand. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2008; 80:32-40. [PMID: 18254396 DOI: 10.2175/106143007x184500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The 5 days at 20 degrees C biochemical oxygen demand (BOD5) is an important parameter for monitoring organic pollution in water and assessing the biotreatability of wastewater. Moreover, BOD5 is used for wastewater treatment plant discharge consents and other water pollution control purposes. However, the traditional bioassay method for estimating the BOD5 involves the incubation of sample water for 5 days. It follows that BOD5 is not available for real-time decisionmaking and process control purposes. On the other hand, previous efforts to solve this problem by developing more rapid biosensors had limited success. This paper reports on the development of Kohonen self-organizing map (KSOM)-based software sensors for the rapid prediction of BOD5. The findings indicate that the KSOM-based BOD5 estimates were in good agreement with those measured using the conventional bioassay method. This offers significant potential for more timely intervention and cost savings during problem diagnosis in water and wastewater treatment processes.
Collapse
Affiliation(s)
- Rabee Rustum
- School of the Build Environment, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | | | | |
Collapse
|
10
|
Nakamura H, Shimomura-Shimizu M, Karube I. Development of microbial sensors and their application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:351-394. [PMID: 18004516 DOI: 10.1007/10_2007_085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many types of microbial sensors have been developed as analytical tools since the first microbial sensor was studied by Karube et al. in 1977. The microbial sensor consists of a transducer and microbe as a sensing element. The characteristics of the microbial sensors are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial sensors have the advantages of tolerance to measuring conditions, a long lifetime, and cost performance, and also have the disadvantage of a long response time. In this review, the long history of microbial sensor development is summarized.
Collapse
Affiliation(s)
- Hideaki Nakamura
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, 192-0982 Tokyo, Japan
| | | | | |
Collapse
|
11
|
Jia J, Tang M, Chen X, Qi L, Dong S. Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. Biosens Bioelectron 2003; 18:1023-9. [PMID: 12782465 DOI: 10.1016/s0956-5663(02)00225-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD(5) method for water samples.
Collapse
Affiliation(s)
- Jianbo Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | | | | | | | | |
Collapse
|
12
|
Catterall K, Zhao H, Pasco N, John R. Development of a rapid ferricyanide mediated assay for biochemical oxygen demand using a mixed microbial consortium. Anal Chem 2003; 75:2584-90. [PMID: 12948124 DOI: 10.1021/ac0206420] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferricyanide-mediated (FM) microbial reactions were used for the rapid determination of the biochemical oxygen demand (BOD) of a range of synthetic and real wastewater samples. Four single-species microbial seeds and a synthetically prepared microbial consortium were compared. In all cases, the microbial consortium exhibited a greater extent and rate of biodegradation compared to the individual microbial seeds. Markedly improved correlation to the standard BOD5 method was also noted for the microbial consortium (compared to the single-species seeds). A linear dynamic range up to 200 mg BOD5 L(-1) was observed, which is considerably greater than the linear range of the standard BOD5 assay and most other rapid BOD assays reported. In addition, biodegradation efficiencies comparable to the 5-day BOD5 assay (and much greater than other rapid BOD assays) were observed in 3 h. A highly significant correlation (R = 0.935, p = 0.000, n = 30) between the FM-BOD method and the standard BOD5 method was found for a wide diversity of real wastewater samples. The results indicate that the FM-BOD assay is a promising, rapid, alternative to the standard 5-day BOD5 assay.
Collapse
Affiliation(s)
- Kylie Catterall
- School of Environmental and Applied Sciences, Griffith University Gold Coast, PMB 50, GCMC, QLD 9726, Australia
| | | | | | | |
Collapse
|
13
|
Abstract
The field of biosensors for measuring biochemical oxygen demand (BOD) is reviewed. Particularly, BOD sensors constructed on the biofilm configuration are discussed regarding performance characteristics like linearity, response time, precision, agreement between BOD values obtained from the biosensors and the conventional 5-days test, as well as toxic resistance to various compounds and operational stability. The techniques for improving the agreement between the sensor BOD and BOD5 are described. Information provided also includes BOD biosensors based on respirometers and other measuring principles, the commercial BOD instruments, as well as the current limitations of BOD biosensor development.
Collapse
Affiliation(s)
- Jing Liu
- Center for Chemistry and Chemical Engineering, Department of Biotechnology, Lund University, P.O. Box 124, S-221 01 Lund, Sweden.
| | | |
Collapse
|
14
|
Riedel K, Kunze G, König A. Microbial sensors on a respiratory basis for wastewater monitoring. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 75:81-118. [PMID: 11783844 DOI: 10.1007/3-540-44604-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In respect of their rapidity, their online capabilities, and their moderate costs, biosensing systems generally offer an attractive alternative to the existing methods of water analysis. Additionally, one particular advantage of microbial biosensors is the ability to measure direct effects on living cells, e.g., their respiratory activity and its alteration caused by environmental pollutants. It is true that microbial sensors, often do not provide the optimum solution for the determination of individual analytes when compared to established physico-chemical analysis methods. However, these biosensing devices are predestined for the summary determination of environmentally relevant compounds and their complex effects, respectively. For this reason, microbial sensors allow an integral evaluation of the degree of environmental pollution including the interaction of various compounds. Moreover, in some cases specific metabolic pathways in microorganisms are used, resulting in the development of microbial sensors for the more selective analysis for those compounds or pollutants, which cannot be measured by simple enzyme reactions, e.g., the determination of aromatic compounds and heavy metals. This chapter gives an overview of microbiological biosensors on respiratory basis for the measurement of the following environmentally relevant compounds: inorganic N-compounds, heavy metals, organic xenobiotics and the estimation of sum parameters or so-called complex parameters such as BOD, ADOC, N-BOD, and the inhibition of nitrification.
Collapse
Affiliation(s)
- Klaus Riedel
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | | | |
Collapse
|
15
|
Chee GJ, Nomura Y, Ikebukuro K, Karube I. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens Bioelectron 2000; 15:371-6. [PMID: 11219750 DOI: 10.1016/s0956-5663(00)00093-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An optical fiber biosensor was developed for the evaluation of low Biochemical Oxygen Demand (BOD) values in river waters. Artificial wastewater (AWW) solution was employed as standards for the calibration of the BOD sensor. The response time of the sensor was 15 min, and the optimal BOD response was observed at 30 degrees C, pH 7.0. A linear relationship was obtained between the output voltage and BOD5 values, and the range of determination was 1-10 mg l(-1) BOD. The sensor response was almost not influenced by chloride ion up to 1000 mg l(-1), and also not affected by heavy metal ions (Fe3+, Cu2+, Mn2+, Cr3+, Zn2+). The BOD of river waters was estimated by using the optical fiber biosensor, and good correlation between the sensor and BOD5 test was obtained (r2 = 0.971).
Collapse
Affiliation(s)
- G J Chee
- Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
16
|
Liu J, Björnsson L, Mattiasson B. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 2000; 14:883-93. [PMID: 10722146 DOI: 10.1016/s0956-5663(99)00064-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4-8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below +/- 5.6%, standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. +/- 15% standard deviation.
Collapse
Affiliation(s)
- J Liu
- Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
17
|
|
18
|
Abstract
A microbial biochemical oxygen demand (BOD) sensor consisting of Serratia marcescens LSY 4 and an oxygen electrode was prepared for estimation of the biochemical oxygen demand. The response of the BOD sensor was insensitive to pH in the range of pH 6.0-8.0, and the baseline drift of the signal was nearly absent even in unbuffered aqueous solution. Because heavy metal ions were precipitated from the phosphate buffer solution, unbuffered solution was used to investigate the effect of the concentration of heavy metal ions on the sensor response. Contrary to previous studies, not only Cu2+ and Ag+ but also Cd2+ and Zn2+ significantly decreased the response of the BOD sensor in unbuffered solution. Graft polymerization of sodium styrene sulfonate on the surface of the porous teflon membrane was carried out to absorb the heavy metal ions permeating through the membrane. Tolerance against Zn2+ was induced for S. marcescens LSY 4 to make the cells less sensitive to the presence of heavy metal ions. The membrane modification and the Zn2+ tolerance induction showed some positive effects in such a way that they reduced the inhibitory effects of Zn2+ and Cd2+ on the sensitivity of the BOD sensor. However, they had no effect on the protection of the cells against the interference of Cu2+ and Ag+ on the performance of the sensor.
Collapse
Affiliation(s)
- M N Kim
- Department of Biology, Sangmyung University, Seoul, South Korea
| | | |
Collapse
|