1
|
Haddad HK, Mercado-Reyes JI, Mustafá ER, D’Souza SP, Chung CS, Nestor RRM, Olinski LE, Martinez Damonte V, Saskin J, Vemaraju S, Raingo J, Kauer JA, Lang RA, Oancea E. Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption. Proc Natl Acad Sci U S A 2025; 122:e2403891122. [PMID: 39951488 PMCID: PMC11874419 DOI: 10.1073/pnas.2403891122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that Opn3 is coexpressed with the melanocortin 4 receptor (Mc4r) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gαi/o-dependent manner. Under baseline conditions, OPN3 via Gαi/o potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gαs-independent manner. In mice, we found that Opn3 in Mc4r-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.
Collapse
Affiliation(s)
- Hala K. Haddad
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Jonathan I. Mercado-Reyes
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - E. Román Mustafá
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - C. Sean Chung
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Ramses R. M. Nestor
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Lauren E. Olinski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua Saskin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jesica Raingo
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH45229
| | - Elena Oancea
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| |
Collapse
|
2
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Modulation of GPCRs by monovalent cations and anions. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:363-80. [DOI: 10.1007/s00210-014-1073-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
4
|
Interactions of recombinant human histamine H1, H2, H3, and H4 receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:145-70. [DOI: 10.1007/s00210-011-0704-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
|
5
|
Vošahlíková M, Svoboda P. The influence of monovalent cations on trimeric G protein G(i)1α activity in HEK293 cells stably expressing DOR-G(i)1α (Cys(351)-Ile(351)) fusion protein. Physiol Res 2011; 60:541-7. [PMID: 21401297 DOI: 10.33549/physiolres.932096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effect of monovalent cations on trimeric G protein G(i)1α was measured at equimolar concentration of chloride anion in pertussis-toxin (PTX)-treated HEK293 cells stably expressing PTX-insensitive DOR- G(i)1α (Cys(351)-Ile(351)) fusion protein by high-affinity [(35)S]GTPgammaS binding assay. The high basal level of binding was detected in absence of DOR agonist and monovalent ions and this high level was inhibited with the order of: Na(+) > K(+) > Li(+). The first significant inhibition was detected at 1 mM NaCl. The inhibition by monovalent ions was reversed by increasing concentrations of DOR agonist DADLE. The maximum DADLE response was also highest for sodium and decreased in the order of: Na(+) > K(+) ~ Li(+). Our data indicate i) an inherently high activity of trimeric G protein G(i)1α when expressed within DOR- G(i)1α fusion protein and determined in the absence of monovalent cations, ii) preferential sensitivity of DOR- G(i)1alpha to sodium as far as maximum of agonist response is involved.
Collapse
Affiliation(s)
- M Vošahlíková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
6
|
Geiger S, Nickl K, Schneider EH, Seifert R, Heilmann J. Establishment of recombinant cannabinoid receptor assays and characterization of several natural and synthetic ligands. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:177-91. [PMID: 20617431 DOI: 10.1007/s00210-010-0534-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
Abstract
Cannabinoid receptors (CBR) are important drug targets for the treatment of various inflammatory, metabolic and neurological diseases. Therefore, sensitive test systems for the assessment of ligands are needed. In this study, a steady-state GTPase assay for human CBR subtypes 1 and 2 was developed to characterize the pharmacological property of ligands at a very proximal point of the signal transduction cascade. Establishing these in vitro test sytems, we studied cell or tissue membranes heterogenously or endogenously expressing CBR, such as CBR-infected Human Embryonic Kidney (HEK) 293 cells, rat cerebellum and spleen cells. The lack of effects in the GTPase assay and in [(35)S]GTPgammaS binding experiments in these expression system, directed us to use Spodoptera frugiperda (Sf9) cells. Co-expressing CBR, different Galpha-subunits, Gbetagamma heterodimer, and RGS (Regulator of G-protein signaling)-proteins in Sf9 cell membranes greatly improved the sensitivity of the assay, with highest GTPase activation in the CBR + Galpha(i2) + Gbeta(1)gamma(2) + RGS4 system. We examined exogenous and endogenous standard ligands as well as secondary metabolites as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), dodeca-2E,4E-dienoic acid isobutylamide, an alkylamide from Echinacea purpurea, and an E. purpurea hexane extract according their agonistic and antagonistic properties. The suitability of the assay for screening procedures was also proven by detecting the activity of Delta(9)-THC in a matrix of other less active compounds (Delta(9)-THC-free Cannabis sativa extract). In conclusion, we have developed highly sensitive test systems for the analysis of CBR ligands.
Collapse
Affiliation(s)
- Sarah Geiger
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Kredel S, Wolff M, Wiedenmann J, Moepps B, Nienhaus GU, Gierschik P, Kistler B, Heilker R. CXCR2 inverse agonism detected by arrestin redistribution. JOURNAL OF BIOMOLECULAR SCREENING 2009; 14:1076-91. [PMID: 19773589 DOI: 10.1177/1087057109344616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study CXCR2 modulated arrestin redistribution, the authors employed arrestin as a fusion protein containing either the Aequorea victoria-derived enhanced green fluorescent protein (EGFP) or a recently developed mutant of eqFP611, a red fluorescent protein derived from Entacmaea quadricolor. This mutant, referred to as RFP611, had earlier been found to assume a dimeric quarternary structure. It was therefore employed in this work as a "tandem" (td) construct for pseudo-monomeric fusion protein labeling. Both arrestin fusion proteins, containing either td-RFP611 (Arr-td-RFP611) or enhanced green fluorescent protein (EGFP; Arr-EGFP), were found to colocalize with internalized fluorescently labeled Gro-alpha a few minutes after Gro-alpha addition. Intriguingly, however, Arr-td-RFP611 and Arr-EGFP displayed distinct cellular distribution patterns in the absence of any CXCR2-activating ligand. Under these conditions, Arr-td-RFP611 showed a largely homogeneous cytosolic distribution, whereas Arr-EGFP segregated, to a large degree, into granular spots. These observations indicate a higher sensitivity of Arr EGFP to the constitutive activity of CXCR2 and, accordingly, an increased arrestin redistribution to coated pits and endocytic vesicles. In support of this interpretation, the authors found the known CXCR2 antagonist Sch527123 to act as an inverse agonist with respect to Arr-EGFP redistribution. The inverse agonistic properties of Sch527123 were confirmed in vitro in a guanine nucleotide binding assay, revealing an IC(50) value similar to that observed for Arr-EGFP redistribution. Thus, the redistribution assay, when based on Arr-EGFP, enables the profiling of antagonistic test compounds with respect to inverse agonism. When based on Arr-td-RFP611, the assay may be employed to study CXCR2 agonism or neutral antagonism.
Collapse
Affiliation(s)
- Simone Kredel
- Institute of Zoology and Endocrinology, Ulm University Medical Center, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kleemann P, Papa D, Vigil-Cruz S, Seifert R. Functional reconstitution of the human chemokine receptor CXCR4 with G(i)/G (o)-proteins in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:261-74. [PMID: 18523757 DOI: 10.1007/s00210-008-0313-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/06/2008] [Indexed: 01/10/2023]
Abstract
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) binds to the chemokine receptor CXCR4 that couples to pertussis toxin-sensitive G-proteins of the G(i)/G(o)-family. CXCR4 plays a role in the pathogenesis of autoimmune diseases, human immunodeficiency virus infection and various tumors, fetal development as well as endothelial progenitor and T-cell recruitment. To this end, most CXCR4 studies have focused on the cellular level. The aim of this study was to establish a reconstitution system for the human CXCR4 that allows for the analysis of receptor/G-protein coupling at the membrane level. We wished to study specifically constitutive CXCR4 activity and the G-protein-specificity of CXCR4. We co-expressed N- and C-terminally epitope-tagged human CXCR4 with various G(i)/G(o)-proteins and regulator of G-protein signaling (RGS)-proteins in Sf9 insect cells. Expression of CXCR4, G-proteins, and RGS-proteins was verified by immunoblotting. CXCR4 coupled more effectively to Galpha(i1) and Galpha(i2) than to Galpha(i3) and Galpha(o) and insect cell G-proteins as assessed by SDF-1alpha-stimulated high-affinity steady-state GTP hydrolysis. The RGS-proteins RGS4 and GAIP enhanced SDF-1alpha-stimulated GTP hydrolysis. SDF-1alpha stimulated [(35)S]guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) binding to Galpha(i2). RGS4 did not enhance GTPgammaS binding. Na(+) salts of halides did not reduce basal GTPase activity. The bicyclam, 1-[[1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl]-1,4,8,11-tetrazacyclotetradecane (AMD3100), acted as CXCR4 antagonist but was devoid of inverse agonistic activity. Halides reduced the maximum SDF-1alpha-stimulated GTP hydrolysis in the order of efficacy I(-) > Br(-) > Cl(-). In addition, salts reduced the potency of SDF-1alpha at activating GTP hydrolysis. From our data, we conclude the following: (1) Sf9 cells are a suitable system for expression of functionally intact human CXCR4; (2) Human CXCR4 couples effectively to Galpha(i1) and Galpha(i2); (3) There is no evidence for constitutive activity of CXCR4; (4) RGS-proteins enhance agonist-stimulated GTP hydrolysis, showing that GTP hydrolysis becomes rate-limiting in the presence of SDF-1alpha; (5) By analogy to previous observations made for the beta(2)-adrenoceptor coupled to G(s), the inhibitory effects of halides on agonist-stimulated GTP hydrolysis may be due to increased GDP-affinity of G(i)-proteins, reducing the efficacy of CXCR4 at stimulating nucleotide exchange.
Collapse
Affiliation(s)
- Patrick Kleemann
- Lehrstuhl für Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
9
|
Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Schönbein GW. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 2006; 290:C1633-9. [PMID: 16436471 DOI: 10.1152/ajpcell.00576.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many cells respond to fluid shear stress but in a cell type-specific fashion. Fluid shear stress applied to leukocytes serves to control pseudopod formation, migration, and other functions. Specifically, fresh neutrophils or neutrophilic leukocytes derived from differentiated HL60 cells respond to fluid shear stress by cytoplasmic pseudopod retraction. The membrane elements that sense fluid shear and induce such a specific response are still unknown, however. We hypothesized that membrane receptors may serve as fluid shear sensors. We found that fluid shear decreased the constitutive activity of G protein-coupled receptors (GPCRs). Inhibition of GPCR constitutive activity by inverse agonists abolished fluid shear stress-induced cell area reduction. Among the GPCRs in neutrophils, the formyl peptide receptor (FPR) exhibits relatively high constitutive activity. Undifferentiated HL60 cells that lacked FPR formed few pseudopods and showed no detectable response to fluid shear stress, whereas expression of FPR in undifferentiated HL60 cells caused pseudopod projection and robust pseudopod retraction during fluid shear. FPR small interfering RNA-transfected differentiated HL60 cells exhibited no response to fluid shear stress. These results suggest that GPCRs serve as mechanosensors for fluid shear stress in neutrophils by decreasing its constitutive activity and reducing pseudopod projection.
Collapse
Affiliation(s)
- Ayako Makino
- Dept. of Bioengineering, The Whitaker Institute of Biomedical Engineering, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
10
|
Seifert R, Wenzel-Seifert K. The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Life Sci 2003; 73:2263-80. [PMID: 12941430 DOI: 10.1016/s0024-3205(03)00654-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.
Collapse
Affiliation(s)
- Roland Seifert
- Department of Pharmacology and Toxicology, The University of Kansas, Malott Hall, Room 5064, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA.
| | | |
Collapse
|
11
|
Abstract
Using 2[125I]iodomelatonin as the radioligand, we characterized 2[125I]iodomelatonin binding sites in guinea pig platelet membrane preparations. Saturation radioreceptor studies indicated that these 2[125I]iodomelatonin binding sites were of picomolar affinity and femtomolar density. The dissociation constant (Kd) and maximum number of receptor sites (Bmax) were 42.5 +/- 1.79 pM and 11.8 +/- 0.8 fmol/mg protein (n = 6), respectively. 2[125I]Iodomelatonin competition studies with indoles or drugs indicate the following rank order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin > 6-hydroxymelatonin > N-acetylserotonin > 5-methoxytryptophol, whereas serotonin and its analogs had less than 20% inhibition at 0.1 mM. Guanosine 5'-O-(3-thiotriphosphate) significantly increased the Kd by twofold suggesting that these binding sites are coupled to the guanine nucleotide binding proteins. Immunoblotting studies using anti-MT(1) IgG demonstrated one peptide blockable band with an apparent molecular mass of 37 kDa. Melatonin had no effect on prostacyclin or forskolin-stimulated intracellular 3',5'-cyclic adenosine monophosphate accumulation. A diurnal variation in binding density, which was abolished after the animals were adapted to constant light conditions, was observed. Age related studies demonstrated that Bmax increased as the animal matured. Physiological melatonin concentrations potentiated whereas those at pharmacological levels inhibited adenosine diphosphate- or arachidonic acid-stimulated platelet aggregation. Our study demonstrated G-protein coupled, saturable, reversible and highly specific picomolar affinity 2[125I]iodomelatonin binding sites in guinea pig platelets. Pharmocological and physiological data indicate that they may be different from the nanomolar [3H]melatonin binding sites in human platelets previously reported.
Collapse
Affiliation(s)
- Mabel Y C Yau
- Department of Physiology, The University of Hong Kong, China
| | | | | | | | | |
Collapse
|
12
|
Kourounakis AP, Visser C, de Groote M, IJzerman AP. Allosteric modulation of the rat adenosine A1 receptor: Differential effects on agonist and antagonist binding. Drug Dev Res 2001. [DOI: 10.1002/ddr.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Mills JS, Miettinen HM, Cummings D, Jesaitis AJ. Characterization of the binding site on the formyl peptide receptor using three receptor mutants and analogs of Met-Leu-Phe and Met-Met-Trp-Leu-Leu. J Biol Chem 2000; 275:39012-7. [PMID: 10960471 DOI: 10.1074/jbc.m003081200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formyl peptide receptor (FPR) is a chemotactic G protein-coupled receptor found on the surface of phagocytes. We have previously shown that the formyl peptide binding site maps to the membrane-spanning region (Miettinen, H. M., Mills, J. S., Gripentrog, J. M., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) J. Immunol. 159, 4045-4054). Recent reports have indicated that non-formylated peptides, such as MMWLL can also activate this receptor (Chen, J., Bernstein, H. S., Chen, M., Wang, L., Ishi, M., Turck, C. W., and Coughlin, S. R. (1995) J. Biol. Chem. 270, 23398-23401.) Here we show that the selectivity for the binding of different NH(2)-terminal analogs of MMWLL or MLF can be markedly altered by mutating Asp-106 to asparagine or Arg-201 to alanine. Both D106N and R201A produced a similar change in ligand specificity, including an enhanced ability to bind the HIV-1 peptide DP178. In contrast, the mutation R205A exhibited altered specificity at the COOH terminus of fMLF, with R205A binding fMLF-O-butyl > fMLF-O-methyl > fMLF, whereas wt FPR bound fMLF > fMLF-O-methyl approximately fMLF-O-butyl. These data, taken together with our previous finding that the leucine side chain of fMLF is probably bound to FPR near FPR (93)VRK(95) (Mills, J. S., Miettinen, H. M., Barnidge, D., Vlases, M. J., Wimer-Mackin, S., Dratz, E. A., and Jesaitis, A. J. (1998) J. Biol. Chem. 273, 10428-10435.), indicate that the most likely positioning of fMLF in the binding pocket of FPR is approximately parallel to the fifth transmembrane helix with the formamide group of fMLF hydrogen-bonded to both Asp-106 and Arg-201, the leucine side chain pointing toward the second transmembrane region, and the COOH-terminal carboxyl group of fMLF ion-paired with Arg-205.
Collapse
Affiliation(s)
- J S Mills
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | |
Collapse
|
14
|
de Ligt RAF, Kourounakis AP, IJzerman AP. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol 2000; 130:1-12. [PMID: 10780991 PMCID: PMC1572052 DOI: 10.1038/sj.bjp.0703311] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rianne A F de Ligt
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Angeliki P Kourounakis
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Ad P IJzerman
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300RA Leiden, The Netherlands
- Author for correspondence:
| |
Collapse
|
15
|
Rodríguez-Puertas R, González-Maeso J, Meana JJ, Pazos A. Autoradiography of receptor-activated G-proteins in post mortem human brain. Neuroscience 2000; 96:169-80. [PMID: 10683421 DOI: 10.1016/s0306-4522(99)00527-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The agonist-stimulated guanosine 5'-(gamma-[(35)S]thio)triphosphate binding assay was used to anatomically localize receptor-activated G-proteins by autoradiography in post mortem human brain. The optimal conditions for guanosine 5'-(gamma-[(35)S]thio)triphosphate binding to human brain sections were established in post mortem samples of the prefrontal cortex, hippocampus, basal ganglia, brainstem and cerebellar cortex. An excess of GDP (2mM) was required to decrease basal activity and obtain effective stimulation by specific agonists. guanosine 5'-(gamma-[(35)S]Thio)triphosphate binding was increased after stimulation with specific agonists of different G-protein-coupled receptors. They include cannabinoid (WIN55212-2), mu-opioid ([D-Ala(2),N-Me-Phe(4), Gly(5)-ol]enkephalin), serotonin-1A [(+/-)-8-hydroxy-2-(di-n-propylamino)tetralin] and serotonin-1B/1D (sumatriptan), cholinergic muscarinic receptors (carbachol) and alpha(2)-adrenoceptors (UK14304). Such stimulation reached 1458%, 440%, 188%, 219%, 61% and 339%, respectively, over the basal levels. In tissue sections, the use of the above-mentioned agonists (10(-4)M) showed patterns of anatomical distribution similar to those already described by receptor autoradiography, with high densities over the hippocampus (serotonin-1A receptors), cortex (alpha(2)-adrenoceptors) and striatum (mu-opioid receptors). The highest binding levels were reached with the cannabinoid receptor agonist in most of the analysed brain regions. Carbachol produced only moderate stimulation of those same regions. The blockage of agonist-stimulated guanosine 5'-(gamma-[(35)S]thio)triphosphate binding by selective antagonists verified that the effect was receptor mediated. This technique provides a method to identify modifications of the receptor-mediated activation of G-proteins in post mortem human brain with anatomical resolution. It also provides valuable information on the level of drug efficacy in the human species.
Collapse
Affiliation(s)
- R Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain.
| | | | | | | |
Collapse
|
16
|
González-Maeso J, Rodríguez-Puertas R, Gabilondo AM, Meana JJ. Characterization of receptor-mediated [35S]GTPgammaS binding to cortical membranes from postmortem human brain. Eur J Pharmacol 2000; 390:25-36. [PMID: 10708703 DOI: 10.1016/s0014-2999(99)00827-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The [35S]GTPgammaS binding assay represents a functional approach to assess the coupling between receptors and G-proteins. The optimal conditions for [35S]GTPgammaS binding to human brain homogenates were established in postmortem samples of prefrontal cortex. The influence of protein content, incubation time, GDP, Mg(2+), and NaCl concentrations on the [35S]GTPgammaS binding were assessed in the absence and presence of the alpha(2)-adrenoceptor agonist UK14304 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine). In conditions of 50 microM GDP and 100 mM NaCl, UK14304 increased the apparent affinity of the specific [35S]GTPgammaS binding without changing the apparent density. Concentration-response curves to agonists of alpha(2)-adrenoceptors, mu-opioid, 5-HT(1A), cholinergic muscarinic, and GABA(B) receptors displayed, in the presence of NaCl, maximal stimulations between 24% and 61% with EC(50) values in the micromolar range. Selective antagonists shifted to the right the agonist-induced stimulation curves. The G(i)/G(o)-protein alkylating agent N-ethylmaleimide decreased basal [35S]GTPgammaS binding in a concentration-dependent manner and inhibited the stimulation induced by the different agonists. In cortical sections, [35S]GTPgammaS binding to gray matter was stimulated by the agonist UK14304. The present study demonstrates that functional studies of the receptor coupling to G(i)/G(o)-proteins can be performed in postmortem human brain samples.
Collapse
Affiliation(s)
- J González-Maeso
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, E-48940 Leioa, Bizkaia, Spain
| | | | | | | |
Collapse
|
17
|
Mitra SP, Carraway RE, Blute R, Luber-Narod J. Agonist induced conformation alteration of neurotensin receptor and the mechanism behind Na+ inhibition of 125I-NT binding. J Recept Signal Transduct Res 1999; 19:995-1021. [PMID: 10533985 DOI: 10.3109/10799899909038436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the absence of Na+, 125I-Neurotensin (125I-NT) binding to the Neurotensin receptor (NTR) produces a stable noncovalent 125I-NT-NTR complex whose dissociation rate is extremely low even after the addition of 1 microM NT, 100 microM SR48692 (antagonist), 100 microM GPPNHP or 100 mM NaCl. Lowering the medium pH to 4.5 enhances the process (approximately 70% in 10 minutes). Labeling by photoactivatable 125I-Tyr3-Azo4-NT identifies a approximately 50 KD Mr band along with several other minor components. Interestingly, the labeling intensity is drastically reduced when binding is performed in the presence of Na+ or GPPNHP. However, a minor reduction is noticed when Na+ or GPPNHP is added to the medium after binding. The binding kinetics indicates that Na+ lowers the rate of 125I-NT association by acting as a noncompetitive inhibitor. On the contrary, Na+ favors the interaction of antagonist, SR48692 by lowering the value of Ki. GTPgamma35S binding to membranes in the presence of 30 mM NaCl suggests that Na+ inhibition of 125I-NT binding is due to the uncoupling of NTR associated G protein(s). In order to explain the entire phenomenon, a two-step, binding model has been proposed. In Step-1, interaction between NT and NTR produces a transient complex, which attains a stable state in the absence of NaCl via step-2, thereby altering the native NTR conformation. The presence of Na+ prevents step-2 by dissociating the transition complex.
Collapse
Affiliation(s)
- S P Mitra
- Division of Urology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
18
|
Pihlavisto M, Sjöholm B, Scheinin M, Wurster S. Modulation of agonist binding to recombinant human alpha2-adrenoceptors by sodium ions. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:135-46. [PMID: 9824686 DOI: 10.1016/s0167-4889(98)00118-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Agonist binding to alpha2-adrenoceptors is modulated by a number of factors such as Mg2+ and Na+ ions and by experimental manipulations which interfere with receptor-G-protein-coupling such as pertussis toxin pre-treatment or the presence of guanine nucleotides. Agonist binding assays may therefore offer an opportunity to make inferences, albeit indirect, about receptor states or conformations and about the molecular nature of the processes involved in receptor activation. We have investigated possible differences in the effects of Na+ ions on the binding of agonists to the three human alpha2-adrenoceptor subtypes, alpha2A, alpha2B and alpha2C, recombinantly expressed in S115 mouse mammary tumour cells. NaCl (40 mM) influenced the apparent affinity of a panel of alpha2-adrenoceptor ligands in a complex compound- and subtype-dependent manner. Sodium ions affected both high- and low-affinity conformations of the receptors, as defined by co-incubation with 10 microM 5'-guanylylimidodiphosphate (Gpp(NH)p). The effects of NaCl and Gpp(NH)p on agonist binding were additive indicating different modes of action for the two allosteric modulators. Thus, quite marked differences between closely related receptor subtypes were noted in the molecular details of agonist-receptor interactions and in the integration of allosteric modulation by Na+ ions. Possible explanations for the experimental findings are discussed within the theoretical framework of multi-state models, and a proposal is presented for a potential physiological role of the modulatory effect of Na+ ions, where intracellular Na+ concentrations would direct the activating influence of receptors to different G-proteins.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/metabolism
- Allosteric Regulation
- Animals
- Binding, Competitive
- Cations, Monovalent/pharmacology
- Guanylyl Imidodiphosphate/pharmacology
- Humans
- Idazoxan/analogs & derivatives
- Idazoxan/metabolism
- Mammary Neoplasms, Animal
- Mice
- Norepinephrine/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
- Sodium/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Pihlavisto
- Department of Pharmacology and Clinical Pharmacology, University of Turku, MediCity, Tykistökatu 6 A, FIN-20520 Turku, Finland
| | | | | | | |
Collapse
|
19
|
Wenzel-Seifert K, Hurt CM, Seifert R. High constitutive activity of the human formyl peptide receptor. J Biol Chem 1998; 273:24181-9. [PMID: 9727041 DOI: 10.1074/jbc.273.37.24181] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formyl peptide receptor (FPR) couples to pertussis toxin (PTX)-sensitive Gi-proteins to activate chemotaxis and exocytosis in neutrophils. PTX reduces not only formyl peptide-stimulated but also agonist-independent ("basal") Gi-protein activity, suggesting that the FPR is constitutively active. We aimed at identifying an inverse FPR agonist, i.e. a compound that suppresses constitutive FPR activity. In Sf9 insect cell membranes, the G-protein heterotrimer Gialpha2beta1gamma2 reconstituted N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-stimulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTPgammaS-sensitive high affinity [3H]FMLP binding. The FPR "antagonist" cyclosporin H (CsH) potently and efficiently reduced basal GTPgammaS binding in Sf9 membranes. Another FPR antagonist, N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L-leucyl-L- phenylalanine did not inhibit basal GTPgammaS binding but blocked the inhibitory effect of CsH on GTPgammaS binding. Na+ reduced basal GTPgammaS binding and eliminated the inhibitory effect of CsH. Similar effects of FMLP, CsH, and Na+ as in Sf9 membranes were observed with FPR expressed in the mammalian cell line HEK293. Our data show that the human FPR possesses high constitutive activity. CsH is an inverse FPR agonist and stabilizes the FPR in an inactive state. Na+ also stabilizes the FPR in an inactive state and, thereby, diminishes inverse agonist efficacy.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/physiology
- Cyclosporine/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/isolation & purification
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Humans
- Kinetics
- Models, Chemical
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Receptors, Formyl Peptide
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/metabolism
- Recombinant Proteins/metabolism
- Sodium/pharmacology
- Spodoptera
- Transfection
Collapse
Affiliation(s)
- K Wenzel-Seifert
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5428, USA
| | | | | |
Collapse
|
20
|
Rane MJ, Arthur JM, Prossnitz ER, McLeish KR. Activation of mitogen-activated protein kinases by formyl peptide receptors is regulated by the cytoplasmic tail. J Biol Chem 1998; 273:20916-23. [PMID: 9694839 DOI: 10.1074/jbc.273.33.20916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wild type formyl peptide receptors (FPRwt) and receptors deleted of the carboxyl-terminal 45 amino acids (FPRdel) were stably expressed in undifferentiated HL-60 promyelocytes. Expression of FPRwt reconstituted N-formylmethionyl-leucyl-phenylalanine (FMLP)-stimulated extracellular signal-regulated kinase (ERK) and p38 kinase activity. Expression of FPRdel resulted in a 2-5-fold increase in basal ERK and p38 kinase activity, whereas FMLP failed to stimulate either mitogen-activated protein kinase (MAPK). Pertussis toxin abolished FMLP stimulation of both MAPKs in FPRwt cells but had no effect on either basal or FMLP-stimulated MAPK activity in FPRdel cells. FMLP stimulated a concentration-dependent increase in guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding in membranes from FPRwt but not FPRdel cells. GTPgammaS inhibited FMLP binding to FPRwt but not FPRdel membranes. Photoaffinity labeling with azidoanilide-[gamma-32P]GTP in the presence or absence of FMLP showed increased labeling only in FPRwt membranes. Immunoprecipitation of alphai2 and alphaq/11 from solubilized, photolabeled membranes showed that FPRwt were coupled to alphai2 but not to alphaq/11. FPRwt cells demonstrated calcium mobilization following stimulation with FMLP, whereas FPRdel cells showed no increase in intracellular calcium. We conclude that the carboxyl-terminal tail of FPRs is necessary for ligand-mediated activation of Gi proteins and MAPK cascades. Deletion of the carboxyl-terminal tail results in constitutive activation of ERK and p38 kinase through a Gi2-independent pathway.
Collapse
Affiliation(s)
- M J Rane
- Department of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
21
|
Klinker JF, Seifert R. Functionally nonequivalent interactions of guanosine 5'-triphosphate, inosine 5'-triphosphate, and xanthosine 5'-triphosphate with the retinal G-protein, transducin, and with Gi-proteins in HL-60 leukemia cell membranes. Biochem Pharmacol 1997; 54:551-62. [PMID: 9337071 DOI: 10.1016/s0006-2952(97)00205-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
G-proteins mediate signal transfer from receptors to effector systems. In their guanosine 5'-triphosphate (GTP)-bound form, G-protein alpha-subunits activate effector systems. Termination of G-protein activation is achieved by the high-affinity GTPase [E.C. 3.6.1.-] of their alpha-subunits. Like GTP, inosine 5'-triphosphate (ITP) and xanthosine 5'-triphosphate (XTP) can support effector system activation. We studied the interactions of GTP, ITP, and XTP with the retinal G-protein, transducin (TD), and with G-proteins in HL-60 leukemia cell membranes. TD hydrolyzed nucleoside 5'-triphosphates (NTPs) in the order of efficacy GTP > ITP > XTP. NTPs eluted TD from rod outer segment disk membranes in the same order of efficacy. ITP and XTP competitively inhibited TD-catalyzed GTP hydrolysis. In HL-60 membranes, the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and leukotriene B4 (LTB4) effectively activated GTP and ITP hydrolysis by Gi-proteins. fMLP and LTB4 were at least 10-fold more potent activators of ITPase than of GTPase. Complement C5a effectively activated the GTPase of Gi-proteins but was only a weak stimulator of ITPase. The potency of C5a to activate GTP and ITP hydrolysis was similar. The fMLP-stimulated GTPase had a lower Km value than the fMLP-stimulated ITPase, whereas the opposite was true for the Vmax values. fMLP, C5a, and LTB4 did not stimulate XTP hydrolysis. Collectively, our data show that GTP, ITP, and XTP bind to G-proteins with different affinities, that G-proteins hydrolyze NTPs with different efficacies, and that chemoattractants stimulate GTP and ITP hydrolysis by Gi-proteins in a receptor-specific manner. On the basis of our results and the data in the literature, we put forward the hypothesis that GTP, ITP, and XTP act as differential signal amplifiers and signal sorters at the G-protein level.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Neuropsychopharmakologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
22
|
Meyer zu Heringdorf D, Liedel K, Kaldenberg-Stasch S, Michel MC, Jakobs KH, Wieland T. Translocation of microfilament-associated inhibitory guanine-nucleotide-binding proteins to the plasma membrane in myeloid differentiated human leukemia (HL-60) cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:670-6. [PMID: 8654416 DOI: 10.1111/j.1432-1033.1996.00670.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cytoskeletal localization of inhibitory guanine-nucleotide-binding (Gi) proteins and the coupling of these proteins to formyl peptide receptors were studied in myeloid differentiated human leukemia (HL-60) cells. Treatment of HL-60 cells with cytochalasin B or botulinum C2 toxin, which leads to the disruption of microfilaments, increased the binding of the stable GTP analogue guanosine 5'[gamma-thio]triphosphate (GTPS[S]) to permeabilized cells by about 30%. In contrast, the microtubule-disrupting agents colchicine and vinblastine, and cytochalasin B treatment of isolated HL-60 membranes did not affect GTP[S] binding. The stimulatory effect of cytochalasin B treatment was concentration and time dependent, with maximal increases observed at 5 micrograms/ml cytochalasin B and an incubation time of 10 min, and was counteracted by the F-actin-stabilizing toxin phalloidin. Cytochalasin B treatment increased the amount of G proteins activated by chemoattractant receptors by about 25%. Furthermore, the number of Gi-protein-coupled receptors for the chemoattractant, N-formyl-Met-Leu-Phe, was increased by about 25% upon cytochalasin B treatment. Based on these functional data, which suggest an association of G proteins with actin filaments, the Triton X-100 (1%)-insoluble cytoskeleton was analyzed for the presence of G proteins. Gia subunits were detected in the cytoskeleton preparations, both by specific antisera and by pertussis-toxin -catalyzed ADP-ribosylation. Cytochalasin B pretreatment depleted the cytoskeleton in Gialpha, with an approximately 20% concomitant increase in membrane Gialpha content. In conclusion, evidence is presented that part of the cellular Gia is localized at actin filaments in HL-60 cells. After filament disruption, these Gia subunits seem to be translocated to the plasma membrance, where they can productively interact with chemoattractant receptors.
Collapse
|
23
|
Burford NT, Tobin AB, Nahorski SR. Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive/insensitive guanine nucleotide-binding proteins. Eur J Pharmacol 1995; 289:343-51. [PMID: 7621908 DOI: 10.1016/0922-4106(95)90112-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chinese hamster ovary (CHO) cells expressing recombinant human m1 (CHO-m1 cells), m2 (CHO-m2 cells), or m3 (CHO-m3 cells) muscarinic receptors were characterised pharmacologically with [3H]N-methylscopolamine. Agonist-stimulated coupling of these receptors with guanine nucleotide-binding proteins (G proteins) was measured by guanine nucleotide- and pertussis toxin-modification of carbachol competition-binding curves, and pertussis toxin-sensitivity of agonist-stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) binding, in membrane preparations of the CHO cell clones. High affinity agonist binding and agonist-stimulated [35S]GTP gamma S binding was abolished in CHO-m2 cell membranes (expressing 99 +/- 25 fmol of [3H]N-methylscopolamine binding sites/mg protein) after pertussis toxin pretreatment of cells, suggesting that muscarinic m2 receptors expressed in these cell membranes couple predominantly with pertussis toxin-sensitive G proteins. CHO-m1 (713 +/- 102 fmol/mg protein) and CHO-m3 (1212 +/- 279 fmol/mg protein) cell membranes produced smaller elevations in agonist-stimulated [35S]GTP gamma S binding considering the higher receptor levels, compared with CHO-m2 cell membranes. Pertussis toxin pretreatment of these clones also resulted in a significant attenuation of agonist-stimulated [35S]GTP gamma S binding suggesting that, under these experimental conditions, muscarinic m1 and m3 receptors can couple with both pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. Guanine nucleotide-modification of agonist binding in CHO-m1 and CHO-m3 cell membranes was comparatively smaller than in CHO-m2 cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N T Burford
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | |
Collapse
|
24
|
Wieland T, Liedel K, Kaldenberg-Stasch S, Meyer zu Heringdorf D, Schmidt M, Jakobs KH. Analysis of receptor-G protein interactions in permeabilized cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1995; 351:329-36. [PMID: 7630424 DOI: 10.1007/bf00169072] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Receptor-induced binding of the stable GTP analogue, guanosine 5'-[gamma-thio]triphosphate (GTP [gamma S]), to guanine nucleotide-binding regulatory proteins (G proteins) was measured in various permeabilized cells. In myeloid differentiated human leukemia (HL-60) cells, permeabilized with either digitonin, streptolysin O or Staphylococcus aureus alpha-toxin, binding of GTP[gamma S] induced by three distinct chemoattractant receptors was observed. The extent of receptor-stimulated GTP[gamma S] binding (maximally about 2-fold) was independent of the type of permeabilizing agent used. In human erythroleukemia cells permeabilized with digitonin, agonist activation of thrombin and neuropeptide Y receptors increased GTP[gamma S] binding by 1.8- and 1.5-fold, respectively. Finally, in adherently grown human embryonic kidney cells permeabilized with digitonin, activation of the stably expressed human muscarinic m3 receptor increased GTP[gamma S] binding by about 1.6-fold. In digitonin-permeabilized HL-60 cells, a quantitative analysis of formyl peptide receptors and interacting G proteins was performed. About 50,000 formyl peptide receptors per cell were detected. Agonist binding to these receptors was fully sensitive to regulation by guanine nucleotides and pertussis toxin. The number of high-affinity GTP[gamma S] binding sites, most likely representing heterotrimeric G proteins, was calculated to be about 670,000 per cell. Stimulation of formyl peptide receptors led to the activation of about 130,000 of high-affinity GTP[gamma S] binding sites, indicating a ratio of about three activated G proteins per one agonist-activated receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Wieland
- Institut für Pharmakologie, Universität, GH Essen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Klinker JF, Schwaner I, Offermanns S, Hagelüken A, Seifert R. Differential activation of dibutyryl cAMP-differentiated HL-60 human leukemia cells by chemoattractants. Biochem Pharmacol 1994; 48:1857-64. [PMID: 7986196 DOI: 10.1016/0006-2952(94)90583-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dibutyryl cAMP-differentiated HL-60 human leukemia cells possess receptors for the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), C5a and leukotriene B4 (LTB4). We compared the effects of these chemoattractants in HL-60 membranes and in intact HL-60 cells. fMLP, C5a and LTB4 stimulated GTP hydrolysis and guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) binding in HL-60 membranes with similar effectiveness and in a pertussis toxin (PTX)-sensitive manner. They also stimulated photolabeling of the alpha-subunits of the guanine nucleotide-binding proteins (G-proteins), Gi2 and Gi3 with similar effectiveness. Chloride salts of monovalent cations differentially enhanced and inhibited chemoattractant-induced GTP hydrolyses. C5a was less effective than fMLP in enhancing cholera toxin-catalysed ADP-ribosylation of Gi alpha 2 and Gi alpha 3, and LTB4 was ineffective. fMLP was more effective than C5a and LTB4 in stimulating Ca2+ influx in HL-60 cells. C5a- and LTB4-induced rises in cytosolic Ca2+ concentration ([Ca2+]i) were PTX-sensitive, whereas the effect of fMLP was partially PTX-insensitive. LTB4-induced rises in [Ca2+]i were more sensitive towards homologous desensitization than those induced by C5a, and the effect of fMLP was resistant in this regard. C5a was considerably less effective than fMLP in activating superoxide anion formation and azurophilic granule release, and LTB4 was ineffective. Our data suggest that fMLP, C5a and LTB4 effectively activate the G-proteins, Gi2 and Gi3, in HL-60 cells and that fMLP may additionally activate PTX-insensitive G-proteins. fMLP, C5a and LTB4 are full, partial and incomplete secretagogues, respectively, and these differences may be due to differences in homologous receptor desensitization and qualitative Gi-protein activation.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Götze K, Jakobs KH. Unoccupied beta-adrenoceptor-induced adenylyl cyclase stimulation in turkey erythrocyte membranes. Eur J Pharmacol 1994; 268:151-8. [PMID: 7957637 DOI: 10.1016/0922-4106(94)90184-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The influence of beta-adrenoceptor ligands and a beta-adrenoceptor-derived peptide was studied on stimulation of adenylyl cyclase in membrane preparations of turkey erythrocytes. In the absence of receptor ligands, the hydrolysis-resistant GTP analogs, guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta,gamma-imino]triphosphate, caused a slow, time-dependent increase in adenylyl cyclase activity, which was accelerated and potentiated by the additional presence of the agonist, isoproterenol. In contrast, the beta-adrenoceptor antagonists, propranolol and pindolol, almost completely prevented stimulation of adenylyl cyclase by the GTP analogs alone, i.e. in the absence of an agonist, in a concentration-dependent and stereo-selective manner. This antagonist action was mimicked by a peptide corresponding to the second cytoplasmic loop of the turkey erythrocyte beta-adrenoceptor. On the other hand, GTP analog-preactivated cyclase activity and enzyme stimulation by fluoride and forskolin were not or only slightly reduced by beta-adrenoceptor antagonists. The data presented suggest that in turkey erythrocyte membranes agonist-free beta-adrenoceptors can cause significant Gs protein and subsequent adenylyl cyclase activation, and that this unoccupied receptor action can be blocked by beta-adrenoceptor antagonists, thus exhibiting by themselves a negative intrinsic activity.
Collapse
Affiliation(s)
- K Götze
- Institut für Pharmakologie, Universität GH Essen, Germany
| | | |
Collapse
|
27
|
Wieland C, Jakobs KH, Wieland T. Altered guanine nucleoside triphosphate binding to transducin by cholera toxin-catalysed ADP-ribosylation. Cell Signal 1994; 6:487-92. [PMID: 7818984 DOI: 10.1016/0898-6568(94)90002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of cholera toxin (CTX)-catalysed ADP-ribosylation on binding of guanine nucleoside triphosphates to transducin was studied by measuring the binding of the GTP analogue, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), to illuminated bovine rod outer segment (ROS) membranes treated with or without CTX. Besides the well-documented inhibition of the transducin GTPase activity, CTX treatment inhibited binding of GTP[gamma S] to illuminated ROS membranes. This inhibition was due to an approximately two-fold lower apparent affinity for the nucleotide, while the density of binding sites was not altered. CTX decreased the association rate of GTP[gamma S] by a factor of about two. Competition experiments with GTP, guanosine 5'-[beta, gamma]iminotriphosphate or GDP showed that the apparent affinities for both guanine nucleoside triphosphates, but not for GDP, were lowered by about two-fold upon CTX treatment. In contrast to CTX, pertussis toxin treatment of ROS membranes reduced the density of binding sites available to GTP[gamma S], while the apparent affinity of the remaining sites was unchanged. It is concluded that ADP-ribosylation of transducin by CTX not only inhibits its GTPase activity but also decreases the affinity for guanine nucleoside triphosphates, data which suggest that the arginine moiety modified by CTX is involved in both binding and hydrolysis of GTP.
Collapse
Affiliation(s)
- C Wieland
- Institut für Pharmakologie, Universität GH Essen, F.R.G
| | | | | |
Collapse
|
28
|
Gierschik P, Bouillon T, Jakobs KH. Receptor-stimulated hydrolysis of guanosine 5'-triphosphate in membrane preparations. Methods Enzymol 1994; 237:13-26. [PMID: 7934990 DOI: 10.1016/s0076-6879(94)37049-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Gierschik
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | |
Collapse
|
29
|
Weiland T, Jakobs KH. Measurement of receptor-stimulated guanosine 5'-O-(gamma-thio)triphosphate binding by G proteins. Methods Enzymol 1994; 237:3-13. [PMID: 7935006 DOI: 10.1016/s0076-6879(94)37048-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Weiland
- Institut für Pharmakologie, Universitätsklinikum Essen, Germany
| | | |
Collapse
|
30
|
Klett C, Nobiling R, Gierschik P, Hackenthal E. Angiotensin II stimulates the synthesis of angiotensinogen in hepatocytes by inhibiting adenylylcyclase activity and stabilizing angiotensinogen mRNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74575-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Kupprion C, Wieland T, Jakobs KH. Receptor-stimulated dissociation of GTP[S] from Gi-proteins in membranes of HL-60 cells. Cell Signal 1993; 5:425-33. [PMID: 8373724 DOI: 10.1016/0898-6568(93)90082-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Formyl peptides stimulate binding of the stable GTP analogue, guanosine 5'-O-[gamma-thio]triphosphate (GTP[S]), to G-proteins in membranes of myeloid differentiated human leukaemia (HL-60) cells. On the other hand, agonist-activated formyl peptide receptors can also cause rapid and substantial release of GTP[S] bound to HL-60 membrane G-proteins. For fMet-Leu-Phe-stimulated dissociation of labelled GTP[S], an additional guanine nucleotide, in the potency order, unlabelled GTP[S] >> GTP >> guanosine 5'-[beta,gamma-imino]triphosphate > or = guanosine 5'-O-[beta-thio]diphosphate > or = GDP > GMP = ATP (no effects at 1 mM), was absolutely necessary. While with unlabelled GTP[S] and GTP similar concentrations were required for control and fMet-Leu-Phe-stimulated release, about 50-100-fold higher concentrations of the other nucleotides were necessary for agonist-stimulated than for basal release of bound GTP[S]. The receptor action appeared to be catalytic, required Mg2+ and was pertussis toxin sensitive. The data indicate that binding of GTP[S] to HL-60 membrane G-proteins is reversible and that agonist-activated formyl peptide receptors can interact, either directly or indirectly, with GTP[S]-liganded Gi-proteins, resulting in release of bound GTP[S].
Collapse
Affiliation(s)
- C Kupprion
- Institut für Pharmakologie, Universität GH Essen, F.R.G
| | | | | |
Collapse
|
32
|
Krautwurst D, Seifert R, Hescheler J, Schultz G. Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production. Biochem J 1992; 288 ( Pt 3):1025-35. [PMID: 1281979 PMCID: PMC1131990 DOI: 10.1042/bj2881025] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In human neutrophils, the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) induces increases in the intracellular free Ca2+ concentration ([Ca2+]i) with subsequent activation of beta-glucuronidase release and superoxide (O2-) production. Results from several laboratories suggest that the increase in [Ca2+]i is due to activation of non-selective cation (NSC) channels. We studied the biophysical characteristics, pharmacological modulation and functional role of NSC channels in dibutyryl cyclic AMP (Bt2cAMP)-differentiated HL-60 cells. fMLP increased [Ca2+]i by release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. fMLP also induced Mn2+ influx. Ca2+ and Mn2+ influxes were inhibited by 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365). Under whole-cell voltage-clamp conditions, fMLP and ATP (a purinoceptor agonist) activated inward currents characterized by a linear current-voltage relationship and a reversal potential near 0 mV. NSC channels were substantially more permeable to Na+ than to Ca2+. SK&F 96365 inhibited fMLP- and ATP-stimulated currents with a half-maximal effect at about 3 microM. Pertussis toxin prevented stimulation by fMLP of NSC currents and reduced ATP-stimulated currents by about 80%. Intracellular application of the stable GDP analogue, guanosine 5'-O-[2-thio]diphosphate, completely blocked stimulation by agonists of NSC currents. In excised inside-out patches, single channel openings with an amplitude of 0.24 pA were observed in the presence of fMLP and the GTP analogue, guanosine 5'-O-[3-thio]triphosphate. The bath solution contained neither Ca2+ nor ATP. The current/voltage relationship was linear with a conductance of 4-5 pS and reversed at about 0 mV. fMLP-induced beta-glucuronidase release and O2- production were substantially reduced by replacement of extracellular CaCl2 or NaCl by ethylenebis(oxyethylenenitrilo)tetra-acetic acid and choline chloride respectively. In the absence of Ca2+ and Na+, fMLP was ineffective. SK&F 96365 inhibited fMLP-induced beta-glucuronidase release and O2- production in the presence of both Ca2+ and Na+, and in the presence of Ca2+ or Na+ alone. NaCl (25-50 mM) enhanced the basal and absolute extent of fMLP-stimulated GTP hydrolysis of heterotrimeric regulatory G-proteins in HL-60 membranes. The order of effectiveness of salts in enhancing GTP hydrolysis was LiCl > KCl > NaCl > choline chloride.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Krautwurst
- Institut für Pharmakologie, Freie Universität Berlin, Federal Republic of Germany
| | | | | | | |
Collapse
|
33
|
Wieland T, Gierschik P, Jakobs KH. G protein-mediated receptor-receptor interaction: studies with chemotactic receptors in membranes of human leukemia (HL 60) cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1992; 346:475-81. [PMID: 1470218 DOI: 10.1007/bf00168999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differentiated human leukemia (HL 60) cells contain high numbers of receptors for the chemotactic factors, N-formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe) and complement component 5a (C5a), both coupled to pertussis toxin-sensitive guanine nucleotide-binding regulatory proteins (G proteins). Agonist activation of either receptor stimulated binding of the GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins and by a similar extent in a non-additive manner. The possible interaction of the two receptors was studied by measuring agonist binding to one receptor in the presence of the other receptor agonist. fMet-Leu-Phe and C5a had no effects on [125I]C5a and fMet-Leu-[3H]Phe receptor binding, respectively, when studied in the absence of regulatory ligands. Similarly, the inhibitory effects of NaCl and GDP on agonist receptor binding were not altered in the presence of the other receptor agonist. In contrast, in the presence of the GTP analogs, GTP[S] and guanosine 5'-[beta,gamma-imino] triphosphate, fMet-Leu-Phe and C5a reduced the binding of [125I]C5a and fMet-Leu-[3H]Phe, respectively, in a concentration-dependent manner. The potencies of the GTP analogs to inhibit binding of [125I]C5a and fMet-Leu-[3H]Phe was increased about 3-fold by fMet-Leu-Phe and C5a, respectively. The data presented suggest that fMet-Leu-Phe and C5a receptors share the same G protein pool in membranes of HL 60 cells and that activation of these G proteins by one of the two receptors decreases the availability of G proteins for the other receptor.
Collapse
Affiliation(s)
- T Wieland
- Institut für Pharmakologie, Universität GH Essen, Federal Republic of Germany
| | | | | |
Collapse
|
34
|
Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P. Stimulation of phospholipase C by guanine-nucleotide-binding protein beta gamma subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:821-31. [PMID: 1606965 DOI: 10.1111/j.1432-1033.1992.tb16990.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously shown that soluble fractions obtained from human HL-60 granulocytes contain a phospholipase C which is markedly stimulated by the stable GTP analogue guanosine 5'-[3-O-thio]triphosphate (Camps, M., Hou, C., Jakobs, K. H. and Gierschik, P. (1990) Biochem. J. 271, 743-748]. To investigate whether this stimulation was due to a soluble alpha subunit of a heterotrimeric guanine-nucleotide-binding protein or a soluble low-molecular-mass GTP-binding protein, we have examined the effect of purified guanine-nucleotide-binding protein beta gamma dimers on the phospholipase-C-mediated formation of inositol phosphates by HL-60 cytosol. We found that beta gamma subunits, purified from bovine retinal transducin (beta gamma t), markedly stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate by this phospholipase C preparation. The stimulation of phospholipase C by beta gamma t was not secondary to a phospholipase-A2-mediated generation of arachidonic acid, was prevented by the GDP-liganded transducin alpha subunit and was additive to activation of phospholipase C by guanosine 5'-[3-O-thio]triphosphate. Beta gamma t also stimulated soluble phospholipase C from human and bovine peripheral neutrophils, as well as membrane-bound, detergent-solubilized phospholipase C from HL-60 cells. Stimulation of soluble HL-60 phospholipase C was not restricted to beta gamma t, but was also observed with highly purified beta gamma subunits from bovine brain. Fractionation of HL-60 cytosol by anion-exchange chromatography revealed the existence of at least two distinct forms of phospholipase C in HL-60 granulocytes. Only one of these forms was sensitive to stimulation by beta gamma t, demonstrating that stimulation of phospholipase C by beta gamma subunits is isozyme specific. Taken together, our results suggest that guanine-nucleotide-binding protein beta gamma subunits may play an important and active role in mediating the stimulation of phospholipase C by heterotrimeric guanine-nucleotide-binding proteins.
Collapse
Affiliation(s)
- M Camps
- Pharmakologisches Institut, Universität Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
35
|
Hilf G, Jakobs KH. Agonist-independent inhibition of G protein activation by muscarinic acetylcholine receptor antagonists in cardiac membranes. Eur J Pharmacol 1992; 225:245-52. [PMID: 1516656 DOI: 10.1016/0922-4106(92)90026-r] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agonist activation of muscarinic acetylcholine (mACh) receptors in porcine atrial membranes stimulates binding of the GTP analog, guanosine 5'-O-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins. In contrast, atropine as well as several other mACh receptor antagonists reduced the binding of GTP[S] below basal values, both in the absence and presence of the agonist carbachol, by a similar maximal extent (about 25%). Evidence is presented that this inhibitory action of atropine was not due to an antagonism of endogenous acetylcholine. Similar to agonist-induced stimulation, antagonist-induced inhibition of GTP[S] binding required the presence of GDP and Mg2+. On the other hand, addition of salts, e.g. NaCl, amplified agonist but reduced antagonist effects on GTP[S] binding. The data presented suggest that agonist-unliganded mACh receptors interact with and activate G proteins in native cardiac membranes and that antagonist binding induces a conformational change of the receptor, which then either does not interact with G proteins or which prevents GDP release from and subsequent GTP[S] binding to G proteins.
Collapse
Affiliation(s)
- G Hilf
- Pharmakologisches Institut der Universität Heidelberg, Germany
| | | |
Collapse
|
36
|
Kupper RW, Dewald B, Jakobs KH, Baggiolini M, Gierschik P. G-protein activation by interleukin 8 and related cytokines in human neutrophil plasma membranes. Biochem J 1992; 282 ( Pt 2):429-34. [PMID: 1546956 PMCID: PMC1130796 DOI: 10.1042/bj2820429] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin 8 (IL-8) is a member of the rapidly growing superfamily of those cytokines which are thought to be involved in the regulation of inflammatory processes and cell proliferation. In neutrophils, IL-8 triggers a variety of cellular responses by interacting with specific cell-surface receptors. To examine whether IL-8 receptors are coupled to activation of guanine-nucleotide-binding proteins (G-proteins), we have investigated the influence of IL-8 on GTP hydrolysis by and guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to purified human neutrophil plasma membranes. IL-8 stimulated high-affinity GTPase about 2-fold at 100 nM, and half-maximal stimulation was observed at 1 nM. The peptide-stimulated GTPase was confined to plasma membranes upon subcellular fractionation, and was due to an increase in Vmax. rather than a decrease in Km. High-affinity binding of GTP[35S] to neutrophil plasma membranes was stimulated half-maximally and maximally (up to 5-fold) by IL-8 at about 10 nM and 100 nM respectively. GTP[35S] binding to the membranes was also stimulated by two IL-8-related cytokines, neutrophil-activating peptide 2 (NAP-2) and melanoma growth-stimulatory activity (gro/MGSA). Taken together, these results demonstrate that receptors for IL-8 and related cytokines are coupled to and activate G-proteins in neutrophil plasma membranes, indicating that G-protein activation is an important intermediate step in the induction of neutrophil functions by IL-8 and its congeners.
Collapse
Affiliation(s)
- R W Kupper
- Pharmakologisches Institut, Universität Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
37
|
Schepers TM, Brier ME, McLeish KR. Quantitative and qualitative differences in guanine nucleotide binding protein activation by formyl peptide and leukotriene B4 receptors. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48473-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Gierschik P. ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by pertussis toxin. Curr Top Microbiol Immunol 1992; 175:69-96. [PMID: 1628499 DOI: 10.1007/978-3-642-76966-5_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Gierschik
- Pharmakologisches Institut, Universität Heidelberg, FRG
| |
Collapse
|
39
|
Liebmann C, Schnittler M, Nawrath S, Jakobs KH. High-affinity bradykinin receptor-catalyzed G protein activation in rat myometrium. Eur J Pharmacol 1991; 207:67-71. [PMID: 1655496 DOI: 10.1016/s0922-4106(05)80039-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binding of the labelled GTP analog, guanosine-5'-O-(3-thiotriphosphate ([35S]GTP[S] to G proteins was studied in rat myometrial membranes in the presence of GDP (1 microM). Binding was stimulated by bradykinin at subnanomolar concentrations. while oxotremorine increased binding of [35S]GTP[S] to myometrial membranes at micromolar concentrations. The bradykinin-induced stimulation was antagonized by the receptor antagonist, [D-Arg-(Hyp3, Thi5,8, D-Phe7)]bradykinin. Addition of NaCl (150 nM) decreased control binding and abolished the stimulatory effect of bradykinin. On the other hand, addition of CaCl2 (5 mM) had no effect on control binding but also prevented the bradykinin-induced increased in [35S]GTP[S] binding. Saturation experiments revealed that activation of the bradykinin receptor leads to about a three-fold increase in the apparent GTP[S] binding affinity of about 30% of the total GTP[S] binding sites measured in these membranes. The results provide evidence for a high-affinity bradykinin receptor in rat myometrial membranes which interacts with and activates G proteins. This receptor action, which appears to be under the control of both sodium and calcium ions, is catalytic and leads to a large signal amplification, in that one agonist-liganded bradykinin receptor can apparently activate up to 100 G proteins.
Collapse
Affiliation(s)
- C Liebmann
- Institut für Biochemie und Biophysik, Universität Jena, F.R.G
| | | | | | | |
Collapse
|
40
|
Gierschik P, Moghtader R, Straub C, Dieterich K, Jakobs KH. Signal amplification in HL-60 granulocytes. Evidence that the chemotactic peptide receptor catalytically activates guanine-nucleotide-binding regulatory proteins in native plasma membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:725-32. [PMID: 1903107 DOI: 10.1111/j.1432-1033.1991.tb15964.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Receptors for the chemotactic peptide fMet-Leu-Phe (fMet, N-formylmethionine) are present in membranes of myeloid differentiated human leukemia (HL-60) cells and stimulate phospholipase C via a pertussis-toxin-sensitive guanine-nucleotide-binding regulatory protein(s) [G-protein(s)]. We have developed methods for the assessment of formyl-peptide-receptor-stimulated binding of radiolabeled guanosine 5'-[gamma-thio]triphosphate ([35S]GTP[S]) to native HL-60 membranes. Agonist stimulation of [35S]GTP[S] association with the membrane was minimal (less than or equal to 20%) when GTP[S] was the sole nucleotide present in the incubation medium. In contrast, receptor activation led to a marked (up to sixfold) stimulation of [35S]GTP[S] binding when GDP or GTP were present in high (greater than 100-fold) excess of [35S]GTP[S]. The increase in [35S]GTP[S] binding caused by the chemotactic agonist was strictly dependent on the presence of Mg2+ and was significantly increased by Na+. Agonist-independent binding of [35S]GTP[S] and the increase due to the chemotactic agonist were markedly attenuated by both pertussis and cholera toxin. Comparison of the number of chemotactic-peptide-sensitive [35S]GTP[S]-binding sites to the number of chemotactic peptide receptors present in HL-60 membranes provided direct evidence that a single formyl-peptide receptor is capable of catalyzing the binding of [35S]GTP[S] to, and thus the activation of, multiple (up to 20) G-proteins in native plasma membranes.
Collapse
Affiliation(s)
- P Gierschik
- Pharmakologisches Institut, Universität Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
41
|
Tohkin M, Morishima N, Iiri T, Takahashi K, Ui M, Katada T. Interaction of guanine-nucleotide-binding regulatory proteins with chemotactic peptide receptors in differentiated human leukemic HL-60 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:527-33. [PMID: 1847687 DOI: 10.1111/j.1432-1033.1991.tb15733.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human leukemic HL-60 cells were differentiated into neutrophil-like cells by treatment with dimethylsulfoxide (Me2SO) or N6,O2'-dibutyryladenosine 3',5'-phosphate (Bt2cAMP), and membrane fractions were prepared from the differentiated cells. Receptors for fMLF (fM,N-formylmethionine) and guanine-nucleotide-binding regulatory proteins (G proteins) serving as the substrate for pertussis toxin (islet-activating protein; IAP) were extracted from cell membranes then reconstituted into phospholipid vesicles. The binding of fMLF to the reconstituted vesicles (or the membranes) was determined with 10 nM [3H] fMLF. In both cases, high-affinity binding to vesicle preparations from the Me2SO- and Bt2cAMP-induced cells was abolished following treatment with IAP, suggesting that fMLF receptors were functionally coupled to IAP-sensitive G proteins in each of the two vesicle types. However, the high-affinity fMLF binding was much higher in vesicle preparations originating from Bt2cAMP-induced cells than in those from Me2SO-induced cells, although the amount of IAP-substrate G protein reconstituted into the each phospholipid vesicles preparation was not significantly different from the other. The G proteins of the two differentiated cells were both identified as inhibitory forms (Gi-2) based on their electrophoretic mobilities and immunoblot analyses. When purified Gi-2 from rat brain was reconstituted into the two IAP-treated vesicles, high-affinity fMLF binding was restored in a similar manner in both. IAP-substrate G proteins partially purified from the two differentiated HL-60 cells were also effective in restoring high-affinity fMLF binding to the IAP-treated vesicles. However, a significant difference was observed that the reconstituted binding was higher with the G-protein-rich fraction from Bt2cAMP-induced cells than with that from Me2SO-induced cells, with each of the two IAP-treated vesicle types. These results suggest that the different high-affinity binding of fMLF observed in the two differentiated HL-60 cells are due to a difference in the property of endogenous G proteins rather than fMLF receptors, though the two G proteins are indistinguishable from each other in terms of the subtype of G protein, Gi-2.
Collapse
Affiliation(s)
- M Tohkin
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Reithmann C, Gierschik P, Werdan K, Jakobs KH. Tumor necrosis factor alpha up-regulates Gi alpha and G beta proteins and adenylyl cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol 1991; 206:53-60. [PMID: 1648497 DOI: 10.1016/0922-4106(91)90146-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of cultured rat cardiomyocytes in serum-free medium for 48 h with recombinant human tumor necrosis factor alpha (TNF alpha) led to a concentration-dependent increase in the level of membrane-inhibitory guanine nucleotide-binding protein (Gi) alpha-subunits and in pertussis toxin-catalyzed [32P]ADP ribosylation of 40 kDa proteins. Both Gi alpha protein subtypes present in rat cardiac myocyte membranes, Gi alpha 40 and Gi alpha 41, were up-regulated by the cytokine, with the maximal increase occurring at 10 U/ml TNF alpha. In contrast to noradrenaline exposure, which causes a similar, but apparently exclusive, increase in alpha i-subunits, treatment with TNF alpha in addition increased the level of membrane G protein beta 36-subunits. Furthermore, while noradrenaline exposure led to a decrease in receptor-dependent and -independent adenylyl cyclase activity, treatment of cardiomyocytes with TNF alpha caused a concentration-dependent increase in cyclase responsiveness to either forskolin, guanosine 5'-O-(3-thiotriphosphate) or isoproterenol, even though beta-adrenoceptor density was decreased by TNF alpha. The increase in adenylyl cyclase activity induced by TNF alpha was completely suppressed when the cells were cocultured with noradrenaline, a condition leading to an additive increase in Gi alpha level. The data indicate that the cytokine TNF alpha can potently modulate G protein-mediated signal transduction in rat cardiac myocytes. Although TNF alpha, like noradrenaline, exposure of the cells increased the level of membrane Gi alpha proteins, it did not decrease but rather caused an increase in adenylyl cyclase responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Reithmann
- Pharmakologisches Institut der Universität Heidelberg, F.R.G
| | | | | | | |
Collapse
|
43
|
Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E. Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 1990; 82:1249-65. [PMID: 2169357 DOI: 10.1161/01.cir.82.4.1249] [Citation(s) in RCA: 236] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In myocardial membranes from hearts with dilated cardiomyopathy (DCM), there was a 37% increase of the Gi alpha-protein as measured by 32P-ADP-ribosylation of a approximately 40 kDa pertussis toxin substrate. Immunoblotting techniques also showed increased amounts of Gi alpha in DCM. In hearts with ischemic cardiomyopathy (ICM), Gi alpha was not altered compared with nonfailing myocardium (NF). Basal and Gpp(NH)p-stimulated adenylate cyclase activity was reduced in DCM but not in ICM. The number of beta-adrenoceptors was similarly reduced both in DCM and ICM compared with NF. Alterations of m-cholinoceptors or A1-adenosine receptors did not occur. Consistently, "indirect" negative inotropic effects of the m-cholinoceptor agonist carbachol and the A1-adenosine receptor agonist R-PIA were not different in ICM, DCM, and nonfailing myocardium. In ICM and DCM, there was a marked reduction of the positive inotropic responses to isoprenaline and milrinone. However, there was a further reduction in DCM compared with ICM. It is concluded that the increase of Gi alpha is accompanied by a reduction of basal and guanine-nucleotide-stimulated adenylate cyclase activity. Alterations of m-cholinoceptors and A1-adenosine receptors do not appear to be involved. The further decrease of the positive inotropic effects of isoprenaline and milrinone in DCM provides evidence that the increase of Gi alpha is functionally relevant in DCM but not ICM and hence might contribute to the reduced effects of endogenous catecholamines and exogenous cAMP-dependent positive inotropic agents in the former but not the latter condition.
Collapse
Affiliation(s)
- M Böhm
- Medizinische Klinik I, Universität München, FRG
| | | | | | | | | | | | | |
Collapse
|
44
|
Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH. Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett 1990; 263:195-8. [PMID: 2110532 DOI: 10.1016/0014-5793(90)81372-u] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.
Collapse
Affiliation(s)
- T Wieland
- Pharmakologisches Institut der Universität Heidelberg, FRG
| | | | | | | | | |
Collapse
|