1
|
Yebra MJ, Monedero V, Zúñiga M, Deutscher J, Pérez-Martínez G. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism. Microbiology (Reading) 2006; 152:95-104. [PMID: 16385119 DOI: 10.1099/mic.0.28293-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus caseitransports glucose preferentially by a mannose-class phosphoenolpyruvate : sugar phosphotransferase system (PTS). The genomic analysis ofL. caseiallowed the authors to find a gene cluster (manLMNO) encoding the IIAB (manL), IIC (manM) and IID (manN) proteins of a mannose-class PTS, and a putative 121 aa protein of unknown function (encoded bymanO), homologues of which are also present inmanclusters that encode glucose/mannose transporters in other Gram-positive bacteria. TheL. casei manoperon is constitutively expressed into amanLMNOmessenger, but an additionalmanOtranscript was also detected. Upstream of themanoperon, two genes (upsRandupsA) were found which encode proteins resembling a transcriptional regulator and a membrane protein, respectively. Disruption of eitherupsRorupsAdid not affectmanLMNOtranscription, and had no effect on glucose uptake. Cells carrying amanOdeletion transported glucose at a rate similar to that of the wild-type strain. By contrast, amanMdisruption resulted in cells unable to transport glucose by the PTS, thus confirming the functional role of themangenes. In addition, themanMmutant exhibited neither inducer exclusion of maltose nor glucose repression. This result confirms the need for glucose transport through the PTS to trigger these regulatory processes inL. casei.
Collapse
Affiliation(s)
- María J Yebra
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apdo. Correos 73, 46100 Burjassot, Spain
| | - Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apdo. Correos 73, 46100 Burjassot, Spain
| | - Manuel Zúñiga
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apdo. Correos 73, 46100 Burjassot, Spain
| | - Josef Deutscher
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG, UMR2585, 78850 Thiverval-Grignon, France
| | - Gaspar Pérez-Martínez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apdo. Correos 73, 46100 Burjassot, Spain
| |
Collapse
|
2
|
ASANUMA N, HINO T. Regulation of fermentation in a ruminal bacterium,Streptococcus bovis, with special reference to rumen acidosis. Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00044.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. J Bacteriol 2002; 184:785-93. [PMID: 11790749 PMCID: PMC139519 DOI: 10.1128/jb.184.3.785-793.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is a lactose- and galactose-positive bacterium that is phylogenetically closely related to Streptococcus thermophilus, a bacterium that metabolizes lactose but not galactose. In this paper, we report a comparative characterization of the S. salivarius and S. thermophilus gal-lac gene clusters. The clusters have the same organization with the order galR (codes for a transcriptional regulator and is transcribed in the opposite direction), galK (galactokinase), galT (galactose-1-P uridylyltransferase), galE (UDP-glucose 4-epimerase), galM (galactose mutarotase), lacS (lactose transporter), and lacZ (beta-galactosidase). An analysis of the nucleotide sequence as well as Northern blotting and primer extension experiments revealed the presence of four promoters located upstream from galR, the gal operon, galM, and the lac operon of S. salivarius. Putative promoters with virtually identical nucleotide sequences were found at the same positions in the S. thermophilus gal-lac gene cluster. An additional putative internal promoter at the 3' end of galT was found in S. thermophilus but not in S. salivarius. The results clearly indicated that the gal-lac gene cluster was efficiently transcribed in both species. The Shine-Dalgarno sequences of galT and galE were identical in both species, whereas the ribosome binding site of S. thermophilus galK differed from that of S. salivarius by two nucleotides, suggesting that the S. thermophilus galK gene might be poorly translated. This was confirmed by measurements of enzyme activities.
Collapse
Affiliation(s)
- Katy Vaillancourt
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | | | |
Collapse
|
4
|
Chaillou S, Postma PW, Pouwels PH. Contribution of the phosphoenolpyruvate:mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. MICROBIOLOGY (READING, ENGLAND) 2001; 147:671-679. [PMID: 11238974 DOI: 10.1099/00221287-147-3-671] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of the Lactobacillus pentosus phosphoenolpyruvate:mannose phosphotransferase system (mannose PTS) in sugar transport and control of sugar utilization was investigated. Growth experiments and measurements of PEP-dependent phosphorylation of sugars, of sugar transport and of catabolic enzyme activity were performed, to compare a wild-type strain with an EIIB(Man) mutant, LPE6, and a ccpA mutant, LPE4. Fructose uptake in wild-type bacteria demonstrated the presence of two fructose-specific PTSs: a high-affinity system, EII(Fru) (K:(m)=52 microM) which is inducible by fructose, and a low-affinity system (K:(m)=300 microM). The latter system was lacking in LPE6 and therefore corresponds to EII(Man). LPE6 was unable to phosphorylate glucose, mannose, N:-acetylglucosamine and 2-deoxyglucose in a PEP-dependent reaction, indicating that these sugars are substrates of EII(Man). Transport and phosphorylation of these compounds was the same in LPE4 and in wild-type bacteria, although growth of LPE4 on these sugars was impaired. In wild-type bacteria and in LPE4 the activity of EII(Fru) was lowered by the presence of EII(Man) substrates in the growth medium, but this decrease was not observed in LPE6. These results indicate that EII(Man) but not CcpA regulates the synthesis of EII(Fru). Mutations in EII(Man) or CcpA resulted in a relief of catabolite repression exerted by EII(Man) substrates on the activity of beta-galactosidase and beta-glucosidase, indicating that EII(Man) and CcpA are important components in catabolite repression in L. pentosus. Fructose-mediated repression of these two enzymes appeared to be correlated with the activity of EII(Fru).
Collapse
Affiliation(s)
- Stéphane Chaillou
- TNO Voeding, Department of Applied Microbiology and Gene Technology, PO box 360 3700 AJ Zeist, The Netherlands2
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| | - Pieter W Postma
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| | - Peter H Pouwels
- TNO Voeding, Department of Applied Microbiology and Gene Technology, PO box 360 3700 AJ Zeist, The Netherlands2
- EC Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands1
| |
Collapse
|
5
|
Lortie LA, Pelletier M, Vadeboncoeur C, Frenette M. The gene encoding IIAB(Man)L in Streptococcus salivarius is part of a tetracistronic operon encoding a phosphoenolpyruvate: mannose/glucose phosphotransferase system. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):677-685. [PMID: 10746771 DOI: 10.1099/00221287-146-3-677] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucose and mannose are transported in streptococci by the mannose-PTS (phosphoenolpyruvate:mannose phosphotransferase system), which consists of a cytoplasmic IIAB protein, called IIAB(Man), and an uncharacterized membrane permease. This paper reports the characterization of the man operon encoding the specific components of the mannose-PTS of Streptococcus salivarius. The man operon was composed of four genes, manL, manM, manN and manO. These genes were transcribed from a canonical promoter (Pman) into a 3.6 kb polycistronic mRNA that contained a 5'-UTR (untranslated region). The predicted manL gene product encoded a 35.5 kDa protein and contained the amino acid sequences of the IIA and IIB phosphorylation sites already determined from purified S. salivarius IIAB(Man)L. Expression of manL in Escherichia coli generated a 35 kDa protein that reacted with anti-IIAB(Man)L antibodies. The predicted ManM protein had an estimated size of 27.2 kDa. ManM had similarity with IIC domains of the mannose-EII family, but did not possess the signature proposed for mannose-IIC proteins from Gram-negative bacteria. From multiple alignment analyses of sequences available in current databases, the following modified IIC(Man) signature is proposed: GX3G[DNH]X3G[LIVM]2XG2[STL][LT][EQ]. The deduced product of manN was a hydrophobic protein with a predicted molecular mass of 33.4 kDa. The ManN protein contained an amino acid sequence similar to the signature sequence of the IID domains of the mannose-EII family. manO encoded a 13.7 kDa protein. This gene was also transcribed as a monocistronic mRNA from a promoter located in the manN-manO intergenic region. A search of current databases revealed the presence of IIAB(Man)L, ManM, ManN and ManO orthologues in Streptococcus mutans, Streptococcus pyogenes, Streptococcus pneumoniae and Enterococcus faecalis. This work has elucidated the molecular structure of the mannose PTS in streptococci and enterococci, and demonstrated the presence of a putative regulatory protein (ManO) within the man operon.
Collapse
Affiliation(s)
- Louis-André Lortie
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Michel Pelletier
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Christian Vadeboncoeur
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Michel Frenette
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| |
Collapse
|
6
|
Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 1997; 19:187-207. [PMID: 9050218 DOI: 10.1111/j.1574-6976.1997.tb00297.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oral streptococci are sugar-fermentative bacteria comprising at least 19 distinct species and are a significant proportion of the normal microbial population of the mouth and upper respiratory tract of humans. These streptococci transport several sugars by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) which concomitantly catalyzes the phosphorylation and translocation of mono- and disaccharides via a chain of enzymic reactions that transfer a phosphate group from phosphoenolpyruvate to the incoming sugar. A number of PTS components, including HPr, Enzyme I and some Enzymes II, have been studied at the biochemical and/or genetical level in Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus. Moreover, compelling evidence indicates that the oral streptococcal PTS is involved in the regulation of sugar metabolism. Results are accumulating suggesting that a protein called IIABMan, as well as the phosphocarrier protein HPr, are key regulatory components that allow these bacteria to select rapidly metabolizable sugars, such as glucose or fructose, over less readily utilizable carbohydrates. Circumstantial evidence suggests that the molecular mechanisms by which oral streptococcal PTS exert their regulatory functions differ from mechanisms in other Gram-negative or Gram-positive bacteria.
Collapse
Affiliation(s)
- C Vadeboncoeur
- Département de Biochimie (Sciences), Université Laval, Québec, Canada.
| | | |
Collapse
|
7
|
Pelletier M, Frenette M, Vadeboncoeur C. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria. J Bacteriol 1995; 177:2270-5. [PMID: 7730253 PMCID: PMC176880 DOI: 10.1128/jb.177.9.2270-2275.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Streptococcus salivarius, the phosphoenolpyruvate (PEP):mannose-glucose phosphotransferase system, which concomitantly transports and phosphorylates mannose, glucose, fructose, and 2-deoxyglucose, is composed of the general energy-coupling proteins EI and HPr, the specific membrane-bound IIIMan, and two forms of a protein called IIIMan, with molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), that are found in the cytoplasm as well as associated with the membrane. Several lines of evidence suggest that IIIManH and/or IIIManL are involved in the control of sugar metabolism. To determine whether other bacteria possess these proteins, we tested for their presence in 28 oral streptococcus strains, 3 nonoral streptococcus strains, 2 lactococcus strains, 2 enterococcus strains, 2 bacillus strains, 1 lactobacillus strain, Staphylococcus aureus, and Escherichia coli. Three approaches were used to determine whether the IIIMan proteins were present in these bacteria: (i) Western blot (immunoblot) analysis of cytoplasmic and membrane proteins, using anti-IIIManH and anti-IIIManH rabbit polyclonal antibodies; (ii) analysis of PEP-dependent phosphoproteins by polyacrylamide gel electrophoresis; and (iii) inhibition by anti-IIIMan antibodies of the PEP-dependent phosphorylation of 2-deoxyglucose (a mannose analog) by crude cellular extracts. Only the species S. salivarius and Streptococcus vestibularis possessed the two forms of IIIMan. Fifteen other streptococcal species possessed one protein with a molecular weight between 35,200 and 38,900 that cross-reacted with both antibodies. In the case of 9 species, a protein possessing the same electrophoretic mobility was phosphorylated at the expense of PEP. No such phosphoprotein, however, could be detected in the other six species. A III(Man)-like protein with a molecular weight of 35,500 was also detected in Lactobacillus casei by Western blot experiments as well as by PEP-dependent phosphoprotein analysis, and a protein with a molecular weight of 38,900 that cross-reacted with anti-III(Man) antibodies was detected in Lactococcus lactis. In several cases, the involvement of these putative III(Man) proteins in the PEP-dependent phosphorylation of 2-deoxyglucose was substantiated by the inhibition of phosphorylation activity of anti-III(Man) antibodies. No proteins cross-reacting with anti-III(Man) antibodies were detected in enterococci, bacilli, and E. coli. In S. aureus, a membrane protein with a molecular weight of 50,000 reacted strongly with the antibodies. This protein, however, was not phosphorylated at the expense of PEP.
Collapse
Affiliation(s)
- M Pelletier
- Département de Biochimie, Faculté de Sciences, Université Laval, Québec, Canada
| | | | | |
Collapse
|
8
|
Gauthier L, Thomas S, Gagnon G, Frenette M, Trahan L, Vadeboncoeur C. Positive selection for resistance to 2-deoxyglucose gives rise, in Streptococcus salivarius, to seven classes of pleiotropic mutants, including ptsH and ptsI missense mutants. Mol Microbiol 1994; 13:1101-9. [PMID: 7854124 DOI: 10.1111/j.1365-2958.1994.tb00501.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have used the toxic non-metabolizable glucose/mannose analogue 2-deoxyglucose to isolate a comprehensive collection of mutants of the phosphoenolpyruvate:sugar phosphotransferase system from Streptococcus salivarius. To increase the range of possible mutations, we isolated spontaneous mutants on different media containing 2-deoxyglucose and various metabolizable sugars, either lactose, melibiose, galactose or fructose. We found that the frequency at which 2-deoxyglucose-resistant mutants were isolated varied according to the growth substrate. The highest frequency was obtained with the combination galactose and 2-deoxyglucose and was 15-fold higher than the rate observed with the mixture melibiose and 2-deoxyglucose, the combination that gave the lowest frequency. By combining results from: (i) Western blot analysis of IIIMan, a specific component of the phosphoenolpyruvate:mannose phosphotransferase system in S. salivarius; (ii) rocket immunoelectrophoresis of HPr and EI, the two general energy-coupling proteins of the phosphotransferase system; and (iii) from gene sequencing, mutants could be assigned to seven classes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Gauthier
- Department of Biochemistry (Sciences), Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|