1
|
Rüdiger D, Piasecka J, Küchler J, Pontes C, Laske T, Kupke SY, Reichl U. Mathematical model calibrated to in vitro data predicts mechanisms of antiviral action of the influenza defective interfering particle "OP7". iScience 2024; 27:109421. [PMID: 38523782 PMCID: PMC10959662 DOI: 10.1016/j.isci.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Defective interfering particles (DIPs) are regarded as potent broad-spectrum antivirals. We developed a mathematical model that describes intracellular co-infection dynamics of influenza standard virus (STV) and "OP7", a new type of influenza DIP discovered recently. Based on experimental data from in vitro studies to calibrate the model and confirm its predictions, we deduce OP7's mechanisms of interference, which were yet unknown. Simulations suggest that the "superpromoter" on OP7 genomic viral RNA enhances its replication and results in a depletion of viral proteins. This reduces STV genomic RNA replication, which appears to constitute an antiviral effect. Further, a defective viral protein (M1-OP7) likely causes the deficiency of OP7's replication. It appears unable to bind to genomic viral RNAs to facilitate their nuclear export, a critical step in the viral life cycle. An improved understanding of OP7's antiviral mechanism is crucial toward application in humans as a prospective antiviral treatment strategy.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Julita Piasecka
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Jan Küchler
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Carolina Pontes
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Tanja Laske
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Sascha Y. Kupke
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Saxony-Anhalt, Germany
| |
Collapse
|
2
|
Zhang L, Shao Y, Wang Y, Yang Q, Guo J, Gao GF, Deng T. Twenty natural amino acid substitution screening at the last residue 121 of influenza A virus NS2 protein reveals the critical role of NS2 in promoting virus genome replication by coordinating with viral polymerase. J Virol 2024; 98:e0116623. [PMID: 38054704 PMCID: PMC10804943 DOI: 10.1128/jvi.01166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- />Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuekun Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiuxian Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiamei Guo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Deng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Timm C, Gupta A, Yin J. Robust kinetics of an RNA virus: Transcription rates are set by genome levels. Biotechnol Bioeng 2015; 112:1655-62. [PMID: 25726926 DOI: 10.1002/bit.25578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
In order to persist in nature, RNA viruses have evolved strategies to grow in diverse host environments. To better understand how such strategies might work, we used qRT-PCR to measure viral RNA species during cellular infections by a model RNA virus, vesicular stomatitis virus (VSV). Absolute levels of the VSV major transcript and genome were measured for infections in BHK and PC3 cells, across different multiplicities of infection (MOI 1, 10, 100), in the absence or presence of protein synthesis, as well as in cells in an interferon-activated anti-viral state. While viral genome replication was delayed in more resistant host cells, kinetic modeling of these data revealed a simple linear relationship between the mRNA production rate and genome levels under all tested conditions. These results indicate that while viral transcription and genome replication both depend on the availability of the viral RNA-dependent RNA polymerase and host cellular resources, transcription proceeds without apparent limits on these resources.
Collapse
Affiliation(s)
- Collin Timm
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin
| | - John Yin
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin.
| |
Collapse
|
4
|
Heldt FS, Frensing T, Pflugmacher A, Gröpler R, Peschel B, Reichl U. Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals. PLoS Comput Biol 2013; 9:e1003372. [PMID: 24278009 PMCID: PMC3836700 DOI: 10.1371/journal.pcbi.1003372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022] Open
Abstract
Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases. Influenza A viruses are contagious pathogens that cause an infection of the respiratory tract in humans, commonly referred to as flu. Each year seasonal epidemics occur with three to five million cases of severe illness and occasionally new strains can create pandemics like the 1918 Spanish Flu with a high mortality among infected individuals. Currently, there are only two classes of antivirals licensed for influenza treatment. Moreover, these compounds start to lose their effectiveness as drug-resistant strains emerge frequently. Here, we use a computational model of infection to reveal the steps of virus replication that are most susceptible to interference by drugs. Our analysis suggests that the enzyme which replicates the viral genetic code, and the processes involved in virus assembly and release are promising targets for new antivirals. We also highlight that some drugs can change the dynamics of virus replication toward a later but more sustained production. Thus, we demonstrate that modeling studies can be a tremendous asset to the development of antiviral drugs and treatment strategies.
Collapse
Affiliation(s)
- Frank S. Heldt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| | - Timo Frensing
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Antje Pflugmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robin Gröpler
- Institute for Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany
| | - Britta Peschel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Modeling the intracellular dynamics of influenza virus replication to understand the control of viral RNA synthesis. J Virol 2012; 86:7806-17. [PMID: 22593159 DOI: 10.1128/jvi.00080-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation.
Collapse
|
6
|
Huang S, Chen J, Wang H, Sun B, Wang H, Zhang Z, Zhang X, Chen Z. Influenza A virus matrix protein 1 interacts with hTFIIIC102-s, a short isoform of the polypeptide 3 subunit of human general transcription factor IIIC. Arch Virol 2009; 154:1101-10. [PMID: 19521658 DOI: 10.1007/s00705-009-0416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Influenza A virus matrix protein 1 (M1) is a multifunctional protein that plays important roles during replication, assembly and budding of the virus. To search for intracellular protein components that interact with M1 protein and explore the potential roles of these interactions in the pathogenesis of influenza virus infection, 11 independent proteins, including hTFIIIC102-s protein, encoding a short isoform of the TFIIIC102 subunit of the human TFIIIC transcription factor, were screened from a human cell cDNA library using a yeast two-hybrid technique. The interaction between M1 protein and hTFIIIC102-s was studied in more detail. Mapping assays showed that the N-terminal globular region (amino acids 1-164) of the M1 protein and the five tandem tetratricopeptide repeats (TPR1-5, amino acids 149-362) in hTFIIIC102-s were necessary for the interaction. The interaction was confirmed by both glutathione-S-transferase (GST) pull-down assays and coimmunoprecipitation assays. In addition, coexpression of hTFIIIC102-s with M1 in HeLa cells inhibited the translocation of M1 into the nucleus. Taken together, the present data indicate that hTFIIIC102-s can interact with the structural M1 protein of the influenza virus, which provides a novel clue toward further understanding of the roles of M1 protein in the interactions between influenza virus and host cells.
Collapse
|
7
|
Shibata T, Tanaka T, Shimizu K, Hayakawa S, Kuroda K. Immunofluorescence imaging of the influenza virus M1 protein is dependent on the fixation method. J Virol Methods 2008; 156:162-5. [PMID: 19027795 DOI: 10.1016/j.jviromet.2008.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
Abstract
The distribution of the matrix (M1) protein of influenza virus in infected cells was examined using immunostaining. The fixation method influenced strongly the immunofluorescence pattern of the M1 protein. The M1 protein was distributed uniformly in both the cytoplasm and in nuclei when cells that had been infected with virus were fixed with paraformaldehyde. In cells that had been fixed with methanol, however, nuclear dots of the M1 protein were clearly visible. The dots were evident at 8h post-inoculation. Up to 6h post-inoculation, only a diffuse distribution of the M1 protein was observed. The dots were co-localized with promyelocytic leukemia (PML) protein, a major component of nuclear domain 10 (ND10), also called PML oncogenic domains (PODs) or PML-nuclear bodies (NBs). These results indicate that the nuclear dots of the M1 protein in cells that had been fixed with methanol are not artifacts of the fixation method. Furthermore, methanol fixation is preferred for localization of the influenza M1 protein in nuclei using immunostaining.
Collapse
Affiliation(s)
- Toshikatsu Shibata
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | | | | | | | | |
Collapse
|
8
|
Chan W, Zhou H, Kemble G, Jin H. The cold adapted and temperature sensitive influenza A/Ann Arbor/6/60 virus, the master donor virus for live attenuated influenza vaccines, has multiple defects in replication at the restrictive temperature. Virology 2008; 380:304-11. [PMID: 18768193 DOI: 10.1016/j.virol.2008.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/01/2008] [Accepted: 07/25/2008] [Indexed: 11/26/2022]
Abstract
We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 degrees C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 degrees C during a single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 degrees C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle.
Collapse
Affiliation(s)
- Winnie Chan
- MedImmune, 297 North Bernardo Avenue, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Influenza viruses are causative agents of an acute febrile respiratory disease called influenza (commonly known as "flu") and belong to the Orthomyxoviridae family. These viruses possess segmented, negative stranded RNA genomes (vRNA) and are enveloped, usually spherical and bud from the plasma membrane (more specifically, the apical plasma membrane of polarized epithelial cells). Complete virus particles, therefore, are not found inside infected cells. Virus particles consist of three major subviral components, namely the viral envelope, matrix protein (M1), and core (viral ribonucleocapsid [vRNP]). The viral envelope surrounding the vRNP consists of a lipid bilayer containing spikes composed of viral glycoproteins (HA, NA, and M2) on the outer side and M1 on the inner side. Viral lipids, derived from the host plasma membrane, are selectively enriched in cholesterol and glycosphingolipids. M1 forms the bridge between the viral envelope and the core. The viral core consists of helical vRNP containing vRNA (minus strand) and NP along with minor amounts of NEP and polymerase complex (PA, PB1, and PB2). For viral morphogenesis to occur, all three viral components, namely the viral envelope (containing lipids and transmembrane proteins), M1, and the vRNP must be brought to the assembly site, i.e. the apical plasma membrane in polarized epithelial cells. Finally, buds must be formed at the assembly site and virus particles released with the closure of buds. Transmembrane viral proteins are transported to the assembly site on the plasma membrane via the exocytic pathway. Both HA and NA possess apical sorting signals and use lipid rafts for cell surface transport and apical sorting. These lipid rafts are enriched in cholesterol, glycosphingolipids and are relatively resistant to neutral detergent extraction at low temperature. M1 is synthesized on free cytosolic polyribosomes. vRNPs are made inside the host nucleus and are exported into the cytoplasm through the nuclear pore with the help of M1 and NEP. How M1 and vRNPs are directed to the assembly site on the plasma membrane remains unclear. The likely possibilities are that they use a piggy-back mechanism on viral glycoproteins or cytoskeletal elements. Alternatively, they may possess apical determinants or diffuse to the assembly site, or a combination of these pathways. Interactions of M1 with M1, M1 with vRNP, and M1 with HA and NA facilitate concentration of viral components and exclusion of host proteins from the budding site. M1 interacts with the cytoplasmic tail (CT) and transmembrane domain (TMD) of glycoproteins, and thereby functions as a bridge between the viral envelope and vRNP. Lipid rafts function as microdomains for concentrating viral glycoproteins and may serve as a platform for virus budding. Virus bud formation requires membrane bending at the budding site. A combination of factors including concentration of and interaction among viral components, increased viscosity and asymmetry of the lipid bilayer of the lipid raft as well as pulling and pushing forces of viral and host components are likely to cause outward curvature of the plasma membrane at the assembly site leading to bud formation. Eventually, virus release requires completion of the bud due to fusion of the apposing membranes, leading to the closure of the bud, separation of the virus particle from the host plasma membrane and release of the virus particle into the extracellular environment. Among the viral components, M1 contains an L domain motif and plays a critical role in budding. Bud completion requires not only viral components but also host components. However, how host components facilitate bud completion remains unclear. In addition to bud completion, influenza virus requires NA to release virus particles from sialic acid residues on the cell surface and spread from cell to cell. Elucidation of both viral and host factors involved in viral morphogenesis and budding may lead to the development of drugs interfering with the steps of viral morphogenesis and in disease progression.
Collapse
Affiliation(s)
- Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
10
|
Sato Y, Yoshioka K, Suzuki C, Awashima S, Hosaka Y, Yewdell J, Kuroda K. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 2003; 310:29-40. [PMID: 12788628 DOI: 10.1016/s0042-6822(03)00104-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses.
Collapse
Affiliation(s)
- Yoshiko Sato
- Department of Virology and Immunology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Reinhardt J, Wolff T. The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 2000; 74:87-100. [PMID: 10799781 DOI: 10.1016/s0378-1135(00)00169-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The M1 protein of influenza A virus has multiple regulatory functions during the infectious cycle, which include mediation of nuclear export of viral ribonucleoproteins, inhibition of viral transcription and a crucial role in virus assembly and budding. The only known modification of the M1 protein is by phosphorylation through yet-to-be-identified kinases. We postulated that at least some of the M1 functions are exerted or regulated through interactions with cellular components. In a screen for such cellular mediators, the protein receptor of the activated C-kinase (RACK 1) was identified by its interaction with the viral M1 protein in the yeast two hybrid system. The physical M1-RACK 1 interaction was confirmed in glutathione-S-transferase-based coprecipitation assays for the diverged M1 proteins of avian, swine and human influenza A virus strains. This conservation suggests that the M1-RACK 1 interaction is of general importance during influenza A virus infections. RACK 1 has previously been identified to specifically bind the activated form of protein kinase C (PKC) and is assumed to anchor the kinase at membranes in the vicinity of its substrates. Since the M1 protein becomes phosphorylated during influenza virus infection, we examined if PKC could catalyze the phosphate transfer. We demonstrate that virion-derived and recombinant M1 protein can indeed be efficiently phosphorylated by purified PKC. Moreover, in cell extracts, we detected M1 phosphorylation activity that was strongly reduced in the presence of the PKC-specific inhibitor compound GF109203X. These data suggest that PKC is the main M1-phosphorylating activity in the cell. Since both, the M1 protein and PKC have been shown to interact with RACK 1, we suggest that the M1-RACK 1 interaction is involved in M1 phosphorylation.
Collapse
Affiliation(s)
- J Reinhardt
- Institut für Virologie, Philipps-Universität Marburg, Robert-Koch-Str. 17, 35037, Marburg, Germany
| | | |
Collapse
|
12
|
Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells 1999; 4:475-85. [PMID: 10526235 DOI: 10.1046/j.1365-2443.1999.00275.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza virus RNA polymerase with the subunit composition of PB1-PB2-PA is a unique multifunctional enzyme with the activities of both synthesis and cleavage of RNA, and is involved in both transcription and replication of the RNA genome. Transcription is initiated by using capped RNA fragments, which are generated after cleavage of host cell mRNA by the RNA polymerase-associated capped RNA endonuclease. To identify the RNA cap 1-binding site on the RNA polymerase, viral ribonucleoprotein (RNP) cores were subjected to UV-crosslinking with RNA which was labelled with 32P only at the cap-1 structure. RESULTS After SDS-PAGE of UV-crosslinked cores, 32P was found to be associated only with the PB2 subunit (759 amino acid residues). The labelled PB2 was subjected, together with PB2 expressed in E. coli, to limited digestion with V8 protease. Analysis of the amino terminal sequences of some isolated fragments with the crosslinked cap-1 indicated that two separate sequences within the PB2 were involved in RNA cap-1 binding, one (N-site) at the N-terminal proximal region approximately between amino acid residues 242-282 downstream from the PB1 subunit-binding site and the other (C-site) between residues 538-577 including the cap-binding motifs. Two lines of evidence support the prediction of the involvement of two separate PB2 sequences on the RNA cap-binding: (i) cross-linking of the capped RNA on to expressed and isolated PB2 fragments, each containing either the N-site or the C-site; and (ii) competition of capped RNA-binding to PB2 by both of the N- and C-terminal PB2 fragments. Taking together, we propose that two separate sequences within PB2 constitute the capped RNA-binding site of the RNA polymerase. CONCLUSION Two separate sequences, one N-(242-282) and the other C-terminal (538-577) proximal segments of PB2 subunit, constitute the RNA cap-binding site of the influenza virus RNA polymerase.
Collapse
Affiliation(s)
- A Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
13
|
Perez DR, Donis RO. The matrix 1 protein of influenza A virus inhibits the transcriptase activity of a model influenza reporter genome in vivo. Virology 1998; 249:52-61. [PMID: 9740776 DOI: 10.1006/viro.1998.9318] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The M1 protein of influenza virus inhibits the in vitro transcriptase activity of ribonucleoprotein cores from virions. This inhibitory activity is thought to be relevant in vivo because accumulation of M1 at the late stages of viral replication may be the cue to halt viral mRNA production. A model influenza reporter genome was used to explore the effect of M1 on the activity of the influenza virus transcriptase complex within cultured cells. Expression of M1 in cells bearing the model influenza virus reporter genome was accompanied by a reduction of CAT gene expression to 12% of control levels. Quantification of RNA by ribonuclease protection assay revealed that the influenza reporter genome mRNA levels in M1-expressing cells were reduced by approximately 74% compared with those of cells expressing a control protein. These findings are consistent with the proposed model in which M1 is responsible for limiting viral transcription during late stages of infection. By expressing truncated forms of M1, the inhibitory activity was found to reside within the amino-terminal half of the M1 protein. Two independent inhibitory domains were identified in this region: one between amino acid residues 1-90 and the other spanning residues 91-127.
Collapse
Affiliation(s)
- D R Perez
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583-0905, USA
| | | |
Collapse
|
14
|
Abstract
Coronavirus, with a 31-kb RNA genome, replicates its own RNA and transcribes subgenomic mRNAs by complex mechanisms. Viral RNA synthesis is regulated by multiple RNA regions, which appear to interact either directly or indirectly. Multiple cellular proteins bind to these regions and may undergo additional protein-protein interactions. These findings suggest that coronavirus RNA synthesis is carried out on a ribonucleoprotein via a mechanism that involves both viral and cellular proteins associated with viral RNA, similar to DNA-dependent RNA transcription. This mode of RNA synthesis may be applicable to most RNA viruses.
Collapse
Affiliation(s)
- M M Lai
- Howard Hughes Medical Institute, Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| |
Collapse
|
15
|
Meanwell NA, Krystal M. Taking aim at a moving target — inhibitors of influenza virus Part 2: viral replication, packaging and release. Drug Discov Today 1996. [DOI: 10.1016/1359-6446(96)10035-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ito Y, Nishizono A, Mannen K, Hiramatsu K, Mifune K. Rabies virus M protein expressed in Escherichia coli and its regulatory role in virion-associated transcriptase activity. Arch Virol 1996; 141:671-83. [PMID: 8645103 DOI: 10.1007/bf01718325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rabies virus M protein was expressed in Escherichia coli in the form of a fusion protein with maltose binding protein (MBP) and purified by amylose affinity column chromatography after extraction. In order to investigate the possible regulatory role of M protein in viral transcription, an assay system for rabies virion-associated transcriptase activity was established by using the ribonucleoprotein (RNP) cores prepared from purified virions. Analysis of the products of the transcription assay system showed that the products are sensitive to RNase and are positive-strand RNA. Addition of the fusion protein to the system after cleavage with a proteinase Factor Xa (FXa), which cleaves the fusion protein into the M protein and MBP, resulted in an efficient and dose-dependent inhibition of the transcription. Furthermore, addition to the system of anti-M protein monoclonal antibody significantly restored the transcription. Control experiments with the same transcription assaying system using rabies virus nucleoprotein expressed as a fusion protein with MBP and cleaved with FXa did not result in an inhibition of the transcription. These results suggest that the M protein of rabies virus has the property to down-regulate virion-associated transcription.
Collapse
Affiliation(s)
- Y Ito
- Department of Microbiology, Oita Medical University, Japan
| | | | | | | | | |
Collapse
|
17
|
Tomassini JE. Expression, purification, and characterization of orthomyxovirus: influenza transcriptase. Methods Enzymol 1996; 275:90-9. [PMID: 9026662 DOI: 10.1016/s0076-6879(96)75008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Tomassini
- Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| |
Collapse
|
18
|
Whittaker G, Kemler I, Helenius A. Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus. J Virol 1995; 69:439-45. [PMID: 7983740 PMCID: PMC188592 DOI: 10.1128/jvi.69.1.439-445.1995] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The matrix (M1) protein of influenza virus is a major structural component, involved in regulation of viral ribonucleoprotein transport into and out of the nucleus. Early in infection, M1 is distributed in the nucleus, whereas later, it is localized predominantly in the cytoplasm. Using immunofluorescence microscopy and the influenza virus mutant ts51, we found that at the nonpermissive temperature M1 was retained in the nucleus, even at late times after infection. In contrast, the viral nucleoprotein (NP), after a temporary retention in the nucleus, was distributed in the cytoplasm. Therefore, mutant M1 supported the release of the viral ribonucleoproteins from the nucleus, but not the formation of infectious virions. The point mutation in the ts51 M1 gene was predicted to encode an additional phosphorylation site. We observed a substantial increase in the incorporation of 32Pi into M1 at the nonpermissive temperature. The critical role of this phosphorylation site was demonstrated by using H89, a protein kinase inhibitor; it inhibited the expression of the mutant phenotype, as judged by M1 distribution in the cell. Immunofluorescence analysis of ts51-infected cells after treatment with H89 showed a wild-type phenotype. In summary, the data indicated that the ts51 M1 protein was hyperphosphorylated at the nonpermissive temperature and that this phosphorylation was responsible for its aberrant nuclear retention.
Collapse
Affiliation(s)
- G Whittaker
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
19
|
Kobayashi M, Toyoda T, Adyshev DM, Azuma Y, Ishihama A. Molecular dissection of influenza virus nucleoprotein: deletion mapping of the RNA binding domain. J Virol 1994; 68:8433-6. [PMID: 7966640 PMCID: PMC237318 DOI: 10.1128/jvi.68.12.8433-8436.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus nucleoprotein (NP) is associated with the genome RNA, forming ribonucleoprotein cores. To identify the amino acid sequence involved in RNA binding, we performed Northwestern blot analysis with a set of N- and C-terminal deletion mutants of NP produced in Escherichia coli. The RNA binding region has been mapped between amino acid residues 91 and 188, a stretch of residues that contains a sequence that is not only highly conserved among NPs from A-, B-, and C-type influenza viruses but also similar to the RNA binding domain of a plant virus movement protein.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
20
|
Yasuda J, Bucher DJ, Ishihama A. Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimeric M gene. J Virol 1994; 68:8141-6. [PMID: 7966605 PMCID: PMC237279 DOI: 10.1128/jvi.68.12.8141-8146.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of fast-growing reassortants (AWM viruses) of influenza A virus produced by mixed infection with a fast-growing WSN strain and a slowly growing Aichi strain indicated that the M gene plays a role in the regulation of virus growth rate at an early step of infection (J. Yasuda, T. Toyoda, M. Nakayama, and A. Ishihama, Arch. Virol. 133:283-294, 1993). To determine which of the two M gene products, M1 or M2, is responsible for the growth rate control, one recombinant WSN virus (CWA) clone possessing a chimeric M gene (WSN M1-Aichi M2) was generated by using an improved reverse genetics and transfection system. The recombinant CWA virus retained the phenotype of both large plaque formation and early onset of virus growth. This indicates that the WSN M1 protein is responsible for rapid virus growth.
Collapse
Affiliation(s)
- J Yasuda
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
21
|
Yasuda J, Toyoda T, Nakayama M, Ishihama A. Regulatory effects of matrix protein variations on influenza virus growth. Arch Virol 1993; 133:283-94. [PMID: 8257290 DOI: 10.1007/bf01313769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Influenza virus A/WSN/33 forms large plaques (> 3 mm diameter) on MDCK cells whereas A/Aichi/2/68 forms only small plaques (< 1 mm diameter). Fast growing reassortants (AWM), isolated by mixed infection of MDCK cells with these two virus strains in the presence of anti-WSN antibodies, all carried the M gene from WSN. On MDCK cells, these reassortants produced progeny viruses as rapidly as did WSN, and the virus yield was as high as Aichi. The fast-growing reassortants overcame the growth inhibitory effect of lignins. Pulse-labeling experiments at various times after virus infection showed that the reassortant AWM started to synthesize viral proteins earlier than Aichi. Taken together, we conclude that upon infecting MDCK cells, the reassortant viruses advance rapidly into the growth cycle, thereby leading to an elevated level of progeny viruses in the early period of infection. Possible mechanisms of the M gene involvement in the determination of virus growth rate are discussed, in connection with multiple functions of the M proteins.
Collapse
Affiliation(s)
- J Yasuda
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|
22
|
Rey O, Nayak DP. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol 1992; 66:5815-24. [PMID: 1527844 PMCID: PMC241457 DOI: 10.1128/jvi.66.10.5815-5824.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigated the properties of ts51, an influenza virus (A/WSN/33) temperature-sensitive RNA segment 7 mutant. Nucleotide sequence analysis revealed that ts51 possesses a single nucleotide mutation, T-261----C, in RNA segment 7, resulting in a single amino acid change. Phenylalanine (position 79) in the wild-type M1 protein was substituted by serine in ts51. This mutation was phenotypically characterized by dramatic nuclear accumulation of the M1 protein and interfered with some steps at the late stage of virus replication, possibly affecting the assembly and/or budding of viral particles. However, although M1 protein was retained within the nucleus, export of the newly synthesized viral ribonucleoprotein containing the minus-strand RNA into the cytoplasm was essentially the same at both permissive and nonpermissive temperatures. The roles of M1 in the export of viral ribonucleoproteins from the nucleus into the cytoplasm and in the virus particle assembly process are discussed.
Collapse
Affiliation(s)
- O Rey
- Department of Microbiology and Immunology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles School of Medicine 90024-1747
| | | |
Collapse
|
23
|
Abstract
Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands.
Collapse
Affiliation(s)
- M W Shaw
- Department of Epidemiology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|