1
|
Rodríguez-García A, Morales ML, Garrido-García V, García-Baquero I, Leivas A, Carreño-Tarragona G, Sánchez R, Arenas A, Cedena T, Ayala RM, Bautista JM, Martínez-López J, Linares M. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Antioxidants (Basel) 2019; 8:E508. [PMID: 31652983 PMCID: PMC6912333 DOI: 10.3390/antiox8110508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Control of oxidative stress in the bone marrow (BM) is key for maintaining the interplay between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an indicator of oxidative stress in the BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox (DFX). As expected, differences in the pattern of protein carbonylation were observed in BM samples between MDS patients and controls, with an increase in protein carbonylation in the former. Strikingly, patients under DFX treatment had lower levels of protein carbonylation in BM with respect to untreated patients. Proteomic analysis identified four proteins with high carbonylation levels in MDS BM cells. Finally, as oxidative stress-related signaling pathways can modulate the cell cycle through p53, we analyzed the expression of the p53 target gene p21 in BM cells, finding that it was significantly upregulated in patients with MDS and was significantly downregulated after DFX treatment. Overall, our results suggest that the fine-tuning of oxidative stress levels in the BM of patients with MDS might control malignant progression.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - María Luz Morales
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Vanesa Garrido-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Irene García-Baquero
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alejandra Leivas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Ricardo Sánchez
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alicia Arenas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Teresa Cedena
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Rosa María Ayala
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Joaquín Martínez-López
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Medicine, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Linares
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Mohamed LA, Tachikawa H, Gao XD, Nakanishi H. Yeast cell-based analysis of human lactate dehydrogenase isoforms. J Biochem 2015; 158:467-76. [PMID: 26126931 DOI: 10.1093/jb/mvv061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/12/2015] [Indexed: 12/16/2023] Open
Abstract
Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH.
Collapse
Affiliation(s)
- Lulu Ahmed Mohamed
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China and
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China and
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China and
| |
Collapse
|
3
|
Takatani T, Takaoka N, Tatsumi M, Kawamoto H, Okuno Y, Morita K, Masutani T, Murakawa K, Okamoto Y. A novel missense mutation in human lactate dehydrogenase B-subunit gene. Mol Genet Metab 2001; 73:344-8. [PMID: 11509017 DOI: 10.1006/mgme.2001.3203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced activity of serum lactate dehydrogenase (LDH; EC 1.1.1.27) was found in a male medical student during practical examinations of his own blood. Serum LDH isoenzyme pattern showed reductions in activities of the isoenzymes with lower subunit A/B ratios such as LDH1 and LDH2. These findings were indicative of a partial LDH-B subunit deficiency, which was confirmed in erythrocyte hemolysates by Western blotting. Polymerase chain reaction (PCR)-based DNA sequence analysis of the LDH-B subunit gene revealed a heterozygous nucleotide change: a guanine to adenine substitution in codon 69 (GGG --> GAG) at the third exon of the LDH-B subunit gene that resulted in a glycine to glutamic acid substitution (G69E). The mutation was confirmed by PCR-restriction fragment length polymorphism (RFLP) analysis using a mismatched primer to introduce a new NcoI restriction site. The same heterozygous mutation was found in his mother but not in other family members. This mutation involves a residue belonging to alphaC helix in LDH-B subunit protein molecule that functions as an interface for other subunits.
Collapse
Affiliation(s)
- T Takatani
- Central Clinical Laboratory, Nara Medical University Hospital, Shijo-Cho 840, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|