1
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
2
|
de la Barca JMC, Huang NT, Jiao H, Tessier L, Gadras C, Simard G, Natoli R, Tcherkez G, Reynier P, Valter K. Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics. Metabolomics 2017; 13:22. [PMID: 28706468 PMCID: PMC5486622 DOI: 10.1007/s11306-016-1156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. OBJECTIVES This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning. METHODS Retinas from 12 rats exposed to mild light stress (1000 lux × for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis. RESULTS Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines. CONCLUSIONS Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Nuan-Ting Huang
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Haihan Jiao
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Lydie Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2248 3363grid.7252.2INSERM U1063, Université d’Angers, 49933 Angers, France
| | - Riccardo Natoli
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| | - Guillaume Tcherkez
- 0000 0001 2180 7477grid.1001.0Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601 Australia
| | - Pascal Reynier
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Krisztina Valter
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
3
|
Geomela PA, Kontos CK, Yiotakis I, Fragoulis EG, Scorilas A. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study. BMC Cancer 2012; 12:484. [PMID: 23083099 PMCID: PMC3495033 DOI: 10.1186/1471-2407-12-484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 12/22/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.
Collapse
Affiliation(s)
- Panagiota-Aikaterini Geomela
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | | | | | | | | |
Collapse
|
4
|
Pajak F, De Gois S, Houhou L, Védrine C, Mallet J, Berrard S. Quantification of transcriptional activities of reporter gene constructs in primary cultures of sympathetic neurons. J Neurosci Res 2003; 71:365-74. [PMID: 12526025 DOI: 10.1002/jnr.10490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary cultures of sympathetic neurons provide an attractive cellular model for investigating the mechanisms of neurotransmitter phenotypic plasticity. However, it has not been possible to transfect these neurons by conventional techniques, and this has been a major impediment to molecular investigations of neuronal gene expression in this system. Here, reporter plasmids were transferred into the nuclei of cultured sympathetic neurons by microinjection. We developed and improved this procedure and were able to measure the transcriptional activities of two coinjected promoters in small groups of neurons, and even from a single neuron. Promoter activities can thus be quantified and normalized relative to that of a constitutively expressed promoter, allowing correction for variability in the injection and assay procedures. High and low promoter activities can be reliably quantified. Importantly, this method can be used not only for reporter plasmids but also for DNA fragments containing only a promoter and reporter gene without any vector sequence that might interfere with promoter. Using this approach, we measured neuronal promoter activities and found that one promoter region of the gene encoding choline acetyltransferase was up-regulated by more than sevenfold by leukemia inhibitory factor. This method thus provides the means to investigate the function of neuronal genes and the mechanisms that regulate their transcription in cultured sympathetic neurons.
Collapse
Affiliation(s)
- Fabrice Pajak
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique UMR 7091, Hôpital de la Pitié-Salpétrière, Paris, France
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
During development, sympathetic neurons innervating rodent sweat glands undergo a target-induced change in neurotransmitter phenotype from noradrenergic to cholinergic. Although the sweat gland innervation in the adult mouse is cholinergic and catecholamines are absent, these neurons continue to express tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. The developmental suppression of noradrenergic function in these mouse sympathetic neurons is not well understood. We investigated whether the downregulation of the enzyme aromatic l-amino acid decarboxylase (AADC) or the TH cofactor tetrahydrobiopterin (BH4) could account for the loss of catecholamines in these neurons. AADC levels did not decrease during development, and adult cholinergic sympathetic neurons were strongly immunoreactive for AADC. In contrast, BH4 levels dropped significantly in murine sweat gland-containing footpads during the time period when the gland innervation was switching from making norepinephrine to acetylcholine. Immunoreactivity for the rate-limiting BH4 synthetic enzyme GTP cyclohydrolase (GCH) became undetectable in the sweat gland neurons during this phenotypic conversion, suggesting that sweat glands reduce BH4 levels by suppressing GCH expression during development. Furthermore, extracts from sweat gland-containing footpads suppressed BH4 in cultured mouse sympathetic neurons, and addition of the BH4 precursor sepiapterin rescued catecholamine production in neurons treated with footpad extracts. Together, these results suggest that the mouse sweat gland-derived cholinergic differentiation factor functionally suppresses the noradrenergic phenotype during development by inhibiting production of the TH cofactor, BH4. These data also indicate that GCH expression, which is often coordinately regulated with TH expression, can be controlled independently of TH during development.
Collapse
|
6
|
Hawi Z, Foley D, Kirley A, McCarron M, Fitzgerald M, Gill M. Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): no evidence for association in the Irish population. Mol Psychiatry 2001; 6:420-4. [PMID: 11443526 DOI: 10.1038/sj.mp.4000903] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Revised: 02/12/2001] [Accepted: 02/15/2001] [Indexed: 11/08/2022]
Abstract
Dopa decarboxylase (DDC) is an enzyme which catalyses the decarboxylation of both dopa to dopamine and L-5 hydroxytryptophan to serotonin. Both catecholamines are major neurotransmitters of the mammalian nervous system. It has been suggested that genes involved in the dopaminergic system play a primary role in predisposing to attention deficit hyperactivity disorder (ADHD). In this study, the 4-bp insertion/deletion variant mapped to the first neuronally expressed exon 1 at the dopa decarboxylase gene and two microsatellite markers flanking the gene were investigated for possible association with ADHD. Using HHRR, we observed an increased transmission (though not significant) of the 4-bp insertion (allele 1) to ADHD cases (chi(2) = 2.72, P = 0.1, RR = 1.25). However marginally significant excess transmission of allele 10 (213 bp) of the 3' microsatellite D7S2422 ( approximately 0.75 cM distal to dopa decarboxylase gene) was found (chi(2) = 4.2, P = 0.04, RR=1.48). Interestingly, a haplotype containing both alleles is transmitted more frequently (chi(2)= 5, P = 0.025). Analysing data by the sex of transmitting parent showed a greater relative risk for paternal transmission of the 4-bp insertion allele and allele 10 of the D7S2422 (RR = 1.48 and 1.63 respectively). This provides preliminary evidence that this locus or a closely mapped DNA variant may be involved in the genetic susceptibility to ADHD. However, further studies are required to either confirm or refute these observations.
Collapse
Affiliation(s)
- Z Hawi
- Department of Genetics, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
7
|
Speight G, Turic D, Austin J, Hoogendoorn B, Cardno AG, Jones L, Murphy KC, Sanders R, McCarthy G, Jones I, McCandless F, McGuffin P, Craddock N, Owen MJ, Buckland P, O'Donovan MC. Comparative sequencing and association studies of aromatic L-amino acid decarboxylase in schizophrenia and bipolar disorder. Mol Psychiatry 2000; 5:327-31. [PMID: 10889538 DOI: 10.1038/sj.mp.4000717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aromatic L-amino acid decarboxylase (AADC) is a relatively non specific enzyme involved in the biosynthesis of several classical neurotransmitters including dopamine and 5-hydroxytryptamine (5HT; serotonin). AADC does not catalyse the rate limiting step in either pathway, but is rate limiting in the synthesis of 2-phenylethylamine (2PE) which is a positive modulator of dopaminergic transmission and a candidate natural psychotogenic compound.1 We and others have proposed that polymorphism in AADC resulting in altered 2PE activity might contribute to the pathogenesis of psychosis. In order to test this hypothesis, we have used denaturing high performance liquid chromatography (DHPLC)3 to screen 3943 bases of the AADC gene and its promoter regions for variants that might affect protein structure or expression in 15 unrelated people with schizophrenia, and 15 unrelated people with bipolar disorder. Three polymorphisms were identified by DHPLC: a insertion/deletion polymorphism in the 5' UTR of the neuronal specific mRNA (g.-33-30delAGAG, bases 586-589 of GenBank M77828), a T>A variant in the non-neuronal exon 1 (g. -67T>A, GenBank M88070), and a G>A polymorphism within intron 8 (g. IVS8 +75G>A, GenBank M84598). Case-control analysis did not suggest that genetic polymorphism in the AADC gene is associated with liability for developing schizophrenia or bipolar disorder.
Collapse
Affiliation(s)
- G Speight
- Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
9
|
Berry MD, Juorio AV, Li XM, Boulton AA. Aromatic L-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochem Res 1996; 21:1075-87. [PMID: 8897471 DOI: 10.1007/bf02532418] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Classically, aromatic L-amino acid decarboxylase (AADC) has been regarded as an unregulated, rather uninteresting enzyme. In this review, we describe advances made during the past 10 years, demonstrating that AADC is regulated both pre- and post-translation. The significance of such regulatory mechanisms is poorly understood at present, but the presence of tissue specific control of expression raises the real possibility of AADC being involved in processes other than neuro-transmitter synthesis. We further discuss clinical and physiological situations in which such regulatory mechanisms may be important, including the intriguing possibility of AADC gene regulation being linked to that of factors thought to have a role in apoptosis and its prevention.
Collapse
Affiliation(s)
- M D Berry
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
10
|
Chireux MA, Le Van Thai A, Weber MJ. Human choline acetyltransferase gene: localization of alternative first exons. J Neurosci Res 1995; 40:427-38. [PMID: 7616604 DOI: 10.1002/jnr.490400402] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two overlapping cosmids containing the 5' end of human choline acetyltransferase (ChAT) gene have been cloned. Using heterologous probes, we localized two alternative first exons homologous to rodent ChAT exons R and M (Misawa et al.: J Biol Chem 267:20392-20399, 1992). The sequence of rodent exon N was not conserved in the human gene. Northern blot analysis of mRNA purified from the human neuroepithelioma cell lines LA-N2 and MC-I-XC revealed that both exons R and M were transcribed in mRNA species of 6.0 and 2.5 kb. Only the 6-kb species was detected with both R- and M-specific probes in the neuroepithelioma cell line CHP126. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that the major mRNA species in MC-I-XC and CHP126 cells contained the proximal part of exon M spliced to exon 1, which contains the alternative ACG initiation codon. RT-PCR also allowed the characterization of a mRNA species containing exon R spliced to exon 1, but no species containing both exon R and the distal part of exon M could be detected. RT-PCR was also used to evidence an alternative exon (tentatively numbered exon 8) in the coding sequence.
Collapse
Affiliation(s)
- M A Chireux
- Laboratoire de Biologie Moléculaire Eucaryote, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|