Chen S, Dong H, Yang J. Surface Potential/Charge Sensing Techniques and Applications.
SENSORS (BASEL, SWITZERLAND) 2020;
20:E1690. [PMID:
32197397 PMCID:
PMC7146636 DOI:
10.3390/s20061690]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Surface potential and surface charge sensing techniques have attracted a wide range of research interest in recent decades. With the development and optimization of detection technologies, especially nanosensors, new mechanisms and techniques are emerging. This review discusses various surface potential sensing techniques, including Kelvin probe force microscopy and chemical field-effect transistor sensors for surface potential sensing, nanopore sensors for surface charge sensing, zeta potentiometer and optical detection technologies for zeta potential detection, for applications in material property, metal ion and molecule studies. The mechanisms and optimization methods for each method are discussed and summarized, with the aim of providing a comprehensive overview of different techniques and experimental guidance for applications in surface potential-based detection.
Collapse