1
|
Wagner P, Bakhshi Sichani S, Khorshid M, Lieberzeit P, Losada-Pérez P, Yongabi D. Bioanalytical sensors using the heat-transfer method HTM and related techniques. TECHNISCHES MESSEN : TM 2023; 90:761-785. [PMID: 38046181 PMCID: PMC10690833 DOI: 10.1515/teme-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 12/05/2023]
Abstract
This review provides an overview on bio- and chemosensors based on a thermal transducer platform that monitors the thermal interface resistance R th between a solid chip and the supernatant liquid. The R th parameter responds in a surprisingly strong way to molecular-scale changes at the solid-liquid interface, which can be measured thermometrically, using for instance thermocouples in combination with a controllable heat source. In 2012, the effect was first observed during on-chip denaturation experiments on complementary and mismatched DNA duplexes that differ in their melting temperature. Since then, the concept is addressed as heat-transfer method, in short HTM, and numerous applications of the basic sensing principle were identified. Functionalizing the chip with bioreceptors such as molecularly imprinted polymers makes it possible to detect neurotransmitters, inflammation markers, viruses, and environmental pollutants. In combination with aptamer-type receptors, it is also possible to detect proteins at low concentrations. Changing the receptors to surface-imprinted polymers has opened up new possibilities for quantitative bacterial detection and identification in complex matrices. In receptor-free variants, HTM was successfully used to characterize lipid vesicles and eukaryotic cells (yeast strains, cancer cell lines), the latter showing spontaneous detachment under influence of the temperature gradient inherent to HTM. We will also address modifications to the original HTM technique such as M-HTM, inverted HTM, thermal wave transport analysis TWTA, and the hot-wire principle. The article concludes with an assessment of the possibilities and current limitations of the method, together with a technological forecast.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Soroush Bakhshi Sichani
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090Wien, Austria
| | - Patricia Losada-Pérez
- Physique Expérimentale Thermique et de la Matière Molle, Université Libre de Bruxelles, Campus de la Plaine – CP 223, Boulevard du Triomphe, ACC.2, B-1050Bruxelles, Belgium
| | - Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| |
Collapse
|
2
|
Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. Photochem Photobiol Sci 2021; 21:13-22. [PMID: 34716892 DOI: 10.1007/s43630-021-00121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Photosynthetic biomaterials have attracted considerable attention at different levels of the biological organisation, from molecules to the biosphere, due to a variety of artificial application possibilities. During photosynthesis, the first steps of the conversion of light energy into chemical energy take place in a pigment-protein complex, called reaction centre (RC). In our experiments photosynthetic reaction centre protein, purified from Rhodobacter sphaeroides R-26 purple bacteria, was bound to porous silicon pillars (PSiP) after the electropolymerisation of aniline onto the surface. This new type of biohybrid material showed remarkable photoactivity in terms of measured photocurrent under light excitation in an electrochemical cell. The photocurrent was found to increase considerably after the addition of ubiquinone (UQ-0), an e--acceptor mediator of the RC. The photoactivity of the complex was found to decrease by the addition of terbutryn, the chemical which inhibits the e--transport on the acceptor side of the RC. In addition to the generation of sizeable light-induced photocurrents, using the PSiP/RC photoactive hybrid nanocomposite material, the system was found to be sensitive towards RC inhibitors and herbicides. This highly ordered patterned 3D structure opens new solution for designing low-power (bio-)optoelectronic, biophotonic and biosensing devices.
Collapse
|
3
|
The hot-wire concept: Towards a one-element thermal biosensor platform. Biosens Bioelectron 2021; 179:113043. [PMID: 33609951 DOI: 10.1016/j.bios.2021.113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
In this work, the 3ω hot-wire concept is explored as a prospective biosensing platform with a single sensing element that can detect analytes based on a change in the thermal interface conductance. A uniform receptor layer such as single-stranded DNA is immobilized on a thin aluminium wire, which serves not only as an immobilization platform but also as a heating element and temperature sensor together. The wire is heated periodically with an alternating current (angular frequency ω) and the third harmonic (frequency 3ω) of the voltage across the wire renders the efficiency of heat transfer from the wire to the surrounding medium. The amplitude of the 3ω voltage depends sensitively on the composition and conformation of the biofunctional interface layer. We illustrate this with a model system that includes blank aluminium wires, wires with silanes bound covalently to the native surface oxide, and with single-, respectively double-stranded DNA tethered to the silanes. The difference in heat-transfer due to these coatings is significant and measurable not only in a liquid but also in air. Based on this proof-of-concept, various applications come in sight such as mutation analysis and analyte detection with aptamers or molecularly-imprinted polymers as receptors. Wire materials other than aluminium are possible as well and the concept is suitable for miniaturization and parallelization.
Collapse
|
4
|
Biosensors for penicillin quantification: a comprehensive review. Biotechnol Lett 2020; 42:1829-1846. [DOI: 10.1007/s10529-020-02970-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
|
5
|
Parylene-Coated Polytetrafluoroethylene-Membrane-Based Portable Urea Sensor for Real-Time Monitoring of Urea in Peritoneal Dialysate. SENSORS 2019; 19:s19204560. [PMID: 31635189 PMCID: PMC6832945 DOI: 10.3390/s19204560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023]
Abstract
A portable urea sensor for use in fast flow conditions was fabricated using porous polytetrafluoroethylene (PTFE) membranes coated with amine-functionalized parylene, parylene-A, by vapor deposition. The urea-hydrolyzing enzyme urease was immobilized on the parylene-A-coated PTFE membranes using glutaraldehyde. The urease-immobilized membranes were assembled in a polydimethylsiloxane (PDMS) fluidic chamber, and a screen-printed carbon three-electrode system was used for electrochemical measurements. The success of urease immobilization was confirmed using scanning electron microscopy, and fourier-transform infrared spectroscopy. The optimum concentration of urease for immobilization on the parylene-A-coated PTFE membranes was determined to be 48 mg/mL, and the optimum number of membranes in the PDMS chamber was found to be eight. Using these optimized conditions, we fabricated the urea biosensor and monitored urea samples under various flow rates ranging from 0.5 to 10 mL/min in the flow condition using chronoamperometry. To test the applicability of the sensor for physiological samples, we used it for monitoring urea concentration in the waste peritoneal dialysate of a patient with chronic renal failure, at a flow rate of 0.5 mL/min. This developed urea biosensor is considered applicable for (portable) applications, such as artificial kidney systems and portable dialysis systems.
Collapse
|
6
|
Shi Y, Zhang Q, Zhai TT, Zhou Y, Yang DR, Wang FB, Xia XH. Localized surface plasmon resonance enhanced label-free photoelectrochemical immunoassay by Au-MoS2 nanohybrid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Heat Transfer as a New Sensing Technique for the Label-Free Detection of Biomolecules. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/5346_2017_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Natesan H, Bischof JC. Multiscale Thermal Property Measurements for Biomedical Applications. ACS Biomater Sci Eng 2017; 3:2669-2691. [PMID: 33418696 DOI: 10.1021/acsbiomaterials.6b00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioheat transfer-based innovations in health care include applications such as focal treatments for cancer and cardiovascular disease and the preservation of tissues and organs for transplantation. In these applications, the ability to preserve or destroy a biomaterial is directly dependent on its temperature history. Thus, thermal measurement and modeling are necessary to either avoid or induce the injury required. In this review paper, we will first define and discuss thermal conductivity and calorimetric measurements of biomaterials in the cryogenic (<-40 °C), subzero (<0 °C), hypothermic (<37 °C), and hyperthermic (>37 °C) regimes. For thermal conductivity measurements, we review the use of 3ω and laser flash techniques for measurement of thermal conductivity in thin (1 μm-2 mm thick), anisotropic, and/or multilayered tissues. At the nanoscale, we review the use of pump-probe and scanning probe methods to measure thermal conductivity at short temporal scales (10 ps-100 ns) and spatial scales (1 nm-1 μm), particularly in the coating and surrounding medium around metallic nanoparticles (1 nm-20 nm). For calorimetric techniques, we review differential scanning calorimetry (DSC), which is intrinsically at the microscale (e.g., tissue pieces or millions of cells in media). DSC is used with large sample mass (∼3-100 mg) over wide temperature ranges (-180 to 750 °C) with low-temperature scanning rates (<750 °C/min). The need to assess smaller samples at higher rates has led to the development of nanocalorimetry on a silicon based membrane. Here the sample weight is as low as 10 ng, thereby allowing ultra-rapid heating rates (∼1 × 107 C/min). Finally, we discuss various opportunities that are driving the need for new micro- and nanoscale thermal measurements.
Collapse
Affiliation(s)
- Harishankar Natesan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Gaddes DE, Demirel MC, Reeves WB, Tadigadapa S. Remote calorimetric detection of urea via flow injection analysis. Analyst 2016; 140:8033-40. [PMID: 26479269 DOI: 10.1039/c5an01306b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.
Collapse
Affiliation(s)
- David E Gaddes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Melik C Demirel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA and Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - W Brian Reeves
- Department of Nephrology, Milton S. Hershey College of Medicine, The Pennsylvania State University, University Park, PA, USA
| | - Srinivas Tadigadapa
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA and Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
10
|
Maskow T, Paufler S. What does calorimetry and thermodynamics of living cells tell us? Methods 2014; 76:3-10. [PMID: 25461814 DOI: 10.1016/j.ymeth.2014.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 02/08/2023] Open
Abstract
This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line. The detection limit of commercially available calorimetric instruments can be low enough to measure the heat of 100,000 aerobically growing bacteria or of 100 myocardial cells. Heat can be monitored in reaction vessels ranging from a few nanoliters up to many cubic meters. Most important the heat flux measurement does not interfere with the biological process under investigation. The practical advantages of calorimetry include the waiver of labeling and reactants. It is further possible to assemble the thermal transducer in a protected way that reduces aging and thereby signal drifts. Calorimetry works with optically opaque solutions. All of these advantages make calorimetry an interesting method for many applications in medicine, environmental sciences, ecology, biochemistry and biotechnology, just to mention a few. However, in many cases the heat signal is merely used to monitor biological processes but only rarely to quantitatively interpret the data. Therefore, a significant proportion of the information potential of calorimetry remains unutilized. To fill this information gap and to motivate the reader using the full information potential of calorimetry, various methods for quantitative data interpretations are presented, evaluated and compared with each other. Possible errors of interpretation and limitations of quantitative data analysis are also discussed.
Collapse
Affiliation(s)
- Thomas Maskow
- UFZ, Helmholtz Centre for Environmental Research, Dept. Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Sven Paufler
- UFZ, Helmholtz Centre for Environmental Research, Dept. Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany.
| |
Collapse
|
11
|
Askim JR, Mahmoudi M, Suslick KS. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 2014; 42:8649-82. [PMID: 24091381 DOI: 10.1039/c3cs60179j] [Citation(s) in RCA: 466] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties. This provides a high dimensionality to chemical sensing that permits high sensitivity (often down to ppb levels), impressive discrimination among very similar analytes and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, both in the gas and liquid phases.
Collapse
Affiliation(s)
- Jon R Askim
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Av., Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
12
|
Fan Y, Ding Y, Zhang Y, Ma H, He Y, Sun S. A SiO2-coated nanoporous alumina membrane for stable label-free waveguide biosensing. RSC Adv 2014. [DOI: 10.1039/c4ra08839e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single and multimode optical waveguide detection for label-free biosensing using a PAA membrane attached to a gold layer.
Collapse
Affiliation(s)
- Yong Fan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Yu Ding
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Yafei Zhang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
- Department of Physics
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
| | - Shuqing Sun
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055, China
| |
Collapse
|
13
|
Yakovleva M, Bhand S, Danielsson B. The enzyme thermistor—A realistic biosensor concept. A critical review. Anal Chim Acta 2013; 766:1-12. [DOI: 10.1016/j.aca.2012.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/29/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022]
|
14
|
Potentials and limitations of miniaturized calorimeters for bioprocess monitoring. Appl Microbiol Biotechnol 2011; 92:55-66. [PMID: 21808971 DOI: 10.1007/s00253-011-3497-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
In theory, heat production rates are very well suited for analysing and controlling bioprocesses on different scales from a few nanolitres up to many cubic metres. Any bioconversion is accompanied by a production (exothermic) or consumption (endothermic) of heat. The heat is tightly connected with the stoichiometry of the bioprocess via the law of Hess, and its rate is connected to the kinetics of the process. Heat signals provide real-time information of bioprocesses. The combination of heat measurements with respirometry is theoretically suited for the quantification of the coupling between catabolic and anabolic reactions. Heat measurements have also practical advantages. Unlike most other biochemical sensors, thermal transducers can be mounted in a protected way that prevents fouling, thereby minimizing response drifts. Finally, calorimetry works in optically opaque solutions and does not require labelling or reactants. It is surprising to see that despite all these advantages, calorimetry has rarely been applied to monitor and control bioprocesses with intact cells in the laboratory, industrial bioreactors or ecosystems. This review article analyses the reasons for this omission, discusses the additional information calorimetry can provide in comparison with respirometry and presents miniaturization as a potential way to overcome some inherent weaknesses of conventional calorimetry. It will be discussed for which sample types and scientific question miniaturized calorimeter can be advantageously applied. A few examples from different fields of microbiological and biotechnological research will illustrate the potentials and limitations of chip calorimetry. Finally, the future of chip calorimetry is addressed in an outlook.
Collapse
|
15
|
Lai SVH, Kao P, Tadigadapa S. Thermal biosensors from micromachined bulk acoustic wave resonators. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.12.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Mun KS, Alvarez SD, Choi WY, Sailor MJ. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS NANO 2010; 4:2070-6. [PMID: 20356100 DOI: 10.1021/nn901312f] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical interferometry of a thin film array of titanium dioxide (TiO2) nanotubes allows the label-free sensing of rabbit immunoglobulin G (IgG). A protein A capture probe is used, which is immobilized on the inner pore walls of the nanotubes by electrostatic adsorption. Control experiments using IgG from chicken (which does not bind to protein A) confirms the specificity of the protein A-modified TiO2 nanotube array sensor. The aqueous stability of the TiO2 nanotube array was examined and compared with porous silica (SiO2), a more extensively studied thin film optical biosensor. The TiO2 nanotube array is stable in the pH range 2 to 12, whereas the porous SiO2 sensor displays significant degradation at pH > 8.
Collapse
Affiliation(s)
- Kyu-Shik Mun
- Department of Metal and Materials Engineering, Kangnung National University 120, Kangnung Daehangno, Kangnung 210-702, Korea
| | | | | | | |
Collapse
|
17
|
Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 2010; 303:1-8. [DOI: 10.1111/j.1574-6968.2009.01819.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Braissant O, Wirz D, Göpfert B, Daniels A. “The heat is on”: Rapid microcalorimetric detection of mycobacteria in culture. Tuberculosis (Edinb) 2010; 90:57-9. [DOI: 10.1016/j.tube.2009.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
19
|
Kurzawski P, Schurig V, Hierlemann A. Chiral Sensing Using a Complementary Metal−Oxide Semiconductor-Integrated Three-Transducer Microsensor System. Anal Chem 2009; 81:9353-64. [DOI: 10.1021/ac9017007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petra Kurzawski
- ETH Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland, and Institute of Organic Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Volker Schurig
- ETH Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland, and Institute of Organic Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland, and Institute of Organic Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Jane A, Dronov R, Hodges A, Voelcker NH. Porous silicon biosensors on the advance. Trends Biotechnol 2009; 27:230-9. [DOI: 10.1016/j.tibtech.2008.12.004] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 02/07/2023]
|
21
|
|
22
|
Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 2008; 78:927-38. [DOI: 10.1007/s00253-008-1407-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 11/25/2022]
|
23
|
Vermeir S, Nicolaï BM, Verboven P, Van Gerwen P, Baeten B, Hoflack L, Vulsteke V, Lammertyn J. Microplate Differential Calorimetric Biosensor for Ascorbic Acid Analysis in Food and Pharmaceuticals. Anal Chem 2007; 79:6119-27. [PMID: 17616167 DOI: 10.1021/ac070325z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report on the development of a label-free low-volume (12.5 microL), high-throughput microplate calorimetric biosensor for fast ascorbic acid quantification in food and pharmaceutical products. The sensor is based on microplate differential calorimetry (MiDiCal) technology in which the heat generation, due to the exothermic reaction between ascorbic acid and ascorbate oxidase, is differentially monitored between two neighboring wells of an IC-built wafer. A severe discrepancy is found between expected and observed sensor readings. To investigate the underlying mechanisms of these findings a mathematical model, taking into account the biochemical reactions and diffusion properties of oxygen, ascorbic acid, and ascorbate oxidase, is developed. This model shows that oxygen depletion in the microliter reaction volumes, immediately after injection of sample (ascorbic acid) into the well, causes the enzymatic reaction to slow down. Calibration experiments show that the sensor's signal is linearly correlated to the area under the output versus time profile for the ascorbic acid concentration range from 2.4 to 350 mM with a limit of detection of 0.8 mM. Validation experiments on fruit juice samples, food supplements, and a pain reliever supplemented with ascorbic acid reveal that the designed method correlates well with HPLC reference measurements. The main advantages of the presented biosensor are the low analysis cost due to the low amounts of enzyme and reagents required and the possibility to integrate the device in fully automated laboratory analysis systems for high-throughput screening and analysis.
Collapse
Affiliation(s)
- S Vermeir
- BIOSYST-MeBioS, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Kurzawski P, Hagleitner C, Hierlemann A. Detection and Discrimination Capabilities of a Multitransducer Single-Chip Gas Sensor System. Anal Chem 2006; 78:6910-20. [PMID: 17007514 DOI: 10.1021/ac0610107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance of a single-chip, three-transducer, complementary metal oxide semiconductor gas sensor microsystem has been thoroughly evaluated. The monolithic gas sensor system includes three polymer-coated transducers, a mass-sensitive cantilever, a thermoelectric calorimetric sensor, and an interdigitated capacitive sensor that are integrated along with all electronic circuits needed to operate these sensors. The system additionally includes a temperature sensor and a serial interface unit so that it can be directly connected to, for example, a microcontroller. Several multitransducer chips have been coated with various partially selective polymers and then have been exposed to different volatile organic compounds. The sensitivities of the three different polymer-coated transducers to defined sets of gaseous analytes have been determined. The obtained sensitivity values have then been normalized with regard to the partition coefficients of the respective analyte/polymer combination to reveal the transducer-specific effects. The results of this investigation show that the three different transducers respond to fundamentally different molecular properties, such as the analyte molecular mass (mass-sensitive), its dielectric coefficient (capacitive), and its sorption heat (calorimetric) so that correlations between the determined sensitivity values and the different molecular properties of the absorbed analytes could be established. The information as provided by the system, hence, represents a body of orthogonal data that can serve as input to appropriate signal processing and pattern recognition techniques to address issues such as the quantification of analytes in mixtures.
Collapse
Affiliation(s)
- Petra Kurzawski
- Physical Electronics Laboratory, ETH Zurich, HPT-H8, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
26
|
Zhang Y, Tadigadapa S. Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 2004; 19:1733-43. [PMID: 15142608 DOI: 10.1016/j.bios.2004.01.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/24/2003] [Accepted: 01/14/2004] [Indexed: 11/25/2022]
Abstract
A microfluidic device capable of measuring real-time enthalpy changes of biochemical reactions and thermal properties of biological fluids is presented in this paper. The device consists of a freestanding microthermopile integrated with a glass microfluidic reaction chamber. The p-type polysilicon/gold microthermopiles fabricated on a 2 microm thick thermally isolated membrane showed a sensitivity of 0.94 V/W and a thermal time constant of less than 100 ms. Although the device is not restricted to enzymatic reactions, in this paper measurements of the heat of reaction from the catalytic action of glucose oxidase, catalase, and urease on glucose, hydrogen peroxide, and urea, respectively, are reported. Reactions were performed in open air using liquid batch testing and in enclosed fluidic reaction chamber by continuous flow experiments. A sensitivity of 53.5 microV/M for glucose, 26.5 microV/M for hydrogen peroxide and 17 microV/M for urea was obtained. Detection limit for glucose in the continuous flow mode is approximately 2mM (30 pmol). The aim of this work is to demonstrate the potential of the integrated calorimetric microfluidic device for fundamental thermodynamic studies in biochemical reactions. Using arrays of such devices with immobilized enzymes multi-analyte detection can be accomplished and the effects of interferents from competing substrates can be compensated. This paper presents the design, fabrication and initial testing results from such a microthermopile-based thermal biosensor.
Collapse
Affiliation(s)
- Yuyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
27
|
Abstract
Significant advances have been made in the development of micro-scale technologies for biomedical and drug discovery applications. The first generation of microfluidics-based analytical devices have been designed and are already functional. Microfluidic devices offer unique advantages in sample handling, reagent mixing, separation, and detection. We introduce and review microfluidic concepts, microconstruction techniques, and methods such as flow-injection analysis, electrokinesis, and cell manipulation. Advances in micro-device technology for proteomics, sample preconditioning, immunoassays, electrospray ionization mass spectrometry, and polymerase chain reaction are also reviewed.
Collapse
|
28
|
Tudos AJ, Besselink GJ, Schasfoort RB. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. LAB ON A CHIP 2001; 1:83-95. [PMID: 15100865 DOI: 10.1039/b106958f] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A currently emerging approach enables more widespread monitoring of health parameters in disease prevention and biomarker monitoring. Miniaturisation provides the means for the production of small, fast and easy-to-operate devices for reduced-cost healthcare testing at the point-of-care (POC) or even for household use. A critical overview is given on the present state and requirements of POC testing, on microTAS elements suited for implementation in future microTAS devices for POC testing and microTAS systems for the determination of clinical parameters.
Collapse
Affiliation(s)
- A J Tudos
- NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands
| | | | | |
Collapse
|
29
|
Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H. Smart single-chip gas sensor microsystem. Nature 2001; 414:293-6. [PMID: 11713525 DOI: 10.1038/35104535] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.
Collapse
Affiliation(s)
- C Hagleitner
- Physical Electronics Laboratory, ETH Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Neykov A, Rangelova V, Katzarova P. Application of Biosensors in Biotechnology and Ecology. BIOTECHNOL BIOTEC EQ 2001. [DOI: 10.1080/13102818.2001.10819099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Sonnleitner B. Instrumentation of biotechnological processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 66:1-64. [PMID: 10592525 DOI: 10.1007/3-540-48773-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Modern bioprocesses are monitored by on-line sensing devices mounted either in situ or externally. In addition to sensor probes, more and more analytical subsystems are being exploited to monitor the state of a bioprocess on-line and in real time. Some of these subsystems deliver signals that are useful for documentation only, other, less delayed systems generate signals useful for closed loop process control. Various conventional and non-conventional monitoring instruments are evaluated; their usefulness, benefits and associated pitfalls are discussed.
Collapse
Affiliation(s)
- B Sonnleitner
- University of Applied Sciences, Winterthur, Switzerland.
| |
Collapse
|
32
|
Lammers F, Scheper T. Thermal biosensors in biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:35-67. [PMID: 9933975 DOI: 10.1007/3-540-49811-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The application of enzyme thermistor devices for the continuous monitoring of enzymatic processes is described. Different hardware concepts are presented and discussed, practical results are also given. These devices were used to analyze the enantiomeric excess in biotransformation processes and for thermal immunoanalysis. In addition, the biosensors were applied for the monitoring and control of an L-ornithine producing process and for the application in hemodialysis monitoring. A review section discusses the use of thermal biosensors for monitoring biotechnological processes in general.
Collapse
Affiliation(s)
- F Lammers
- Institute for Technical Chemistry, Hannover, Germany.
| | | |
Collapse
|
33
|
|
34
|
|
35
|
Pizziconi VB, Page DL. A cell-based immunobiosensor with engineered molecular recognition--Part I: Design feasibility. Biosens Bioelectron 1997; 12:287-99. [PMID: 9178514 DOI: 10.1016/s0956-5663(96)00068-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel bioelectronic sensor is described in which living immune cells are transformed into unique biotransducer couples by engineering their molecular recognition for preselected antigens of clinical interest. This 'hybrid' biosensor, constructed with mast cells interfaced to a microfabricated thermoelectric device with the use of biomolecular linkages, is capable of detecting antigens in real time by transducing minute heat changes arising from antigen-induced mast cell activation processes. The thermoelectric approach was selected based upon preliminary bioenergetic calculations which indicated that metabolic changes arising from mast cell antigen recognition result in a significant increase in exothermic heat relative to basal metabolic conditions. Experimental studies confirmed that mast cell activation and degranulation can be discriminated theramally from basal metabolic activity. Results obtained from microcalorimetry experiments using cultured mast cells (MC/9) mucosal-like mast cell line), and harvested mast cells (rat peritoneal mast cells) indicated that detectable increases in heat output (-3 +/- 0.5 pW/cell, mean peak output) immediately followed cell activation. The construction of a miniature hybrid immunobiosensor device was made possible by bioelectronic coupling achieved with the use of cellular adhesive proteins that immobilized non-adherent (MC/9) cells as well as adherent (RBL-2H3 rat basophilic leukemia) cells to the thermopile. Results from preliminary tests conducted on a hybrid biosensor prototype validated the design feasibility of a miniature, living cell immunodiagnostic biosensor. Such cell-based hybrid biosensor approaches may greatly extend the capability for selective, rapid, on-site, antigen detection for a wide range of clinically relevant antigens and offer new approaches to in vitro diagnostics.
Collapse
Affiliation(s)
- V B Pizziconi
- Department of Chemical, Bio & Materials Engineering, Arizona State University, Tempe 85287-6006, USA
| | | |
Collapse
|
36
|
|
37
|
Mulchandani A, Bassi AS. Principles and applications of biosensors for bioprocess monitoring and control. Crit Rev Biotechnol 1995; 15:105-24. [PMID: 7641291 DOI: 10.3109/07388559509147402] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biosensors are useful analytical devices that can be integrated with on-line process monitoring schemes. In this article, the principles and applications of these devices for bioprocess monitoring are considered. Several different types of biosensors are described, and the applications and limitations of flow injection analysis (FIA) for these applications are discussed. It is hoped that the background provided here can be useful to researchers in this area.
Collapse
Affiliation(s)
- A Mulchandani
- Chemical Engineering Department, University of California, Riverside 92507, USA
| | | |
Collapse
|
38
|
Xie B, Mecklenburg M, Danielsson B, Öhman O, Winquist F. Microbiosensor based on an integrated thermopile. Anal Chim Acta 1994. [DOI: 10.1016/0003-2670(94)00346-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
|