1
|
Neilson J, Cataldi P, Derby B. Graphene-Based Transparent Flexible Strain Gauges with Tunable Sensitivity and Strain Range. ACS APPLIED NANO MATERIALS 2023; 6:21763-21774. [PMID: 38093805 PMCID: PMC10714313 DOI: 10.1021/acsanm.3c03967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 10/16/2024]
Abstract
Monolayers of graphene oxide, assembled into densely packed sheets at an immiscible hexane/water interface, form transparent conducting films on polydimethylsiloxane membranes after reduction in hydroiodic acid (HI) vapor to reduced graphene oxide (rGO). Prestraining and relaxing the membranes introduces cracks in the rGO film. Subsequent straining opens these cracks and induces piezoresistivity, enabling their application as transparent strain gauges. The sensitivity and strain range of these gauges is controlled by the cracked film structure that is determined by the reducing conditions used in manufacture. Reduction for 30 s in HI vapor leads to an array of parallel cracks that do not individually span the membrane. These cracks do not extend on subsequent straining, leading to a gauge with a usable strain range >0.2 and gauge factor (GF) at low strains ranging from 20 to 100, depending on the prestrain applied. The GF reduces with increasing applied strain and asymptotes to about 3, for all prestrains. Reduction for 60 s leads to cracks spanning the entire membrane and an increased film resistance but a highly sensitive strain gauge, with GF ranging from 800 to 16,000. However, the usable strain range reduces to <0.01. A simple equivalent resistor model is proposed to describe the behavior of both gauge types. The gauges show a repeatable and stable response with loading frequencies >1 kHz and have been used to detect human body strains in a simple e-skin demonstration.
Collapse
Affiliation(s)
- Joseph Neilson
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Pietro Cataldi
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Brian Derby
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Meng Y, Zhang J, Li B, Li L, Wang Q, Guo W. Periodic fracture behaviour of nanomembranes. MATERIALS HORIZONS 2023; 10:3135-3139. [PMID: 37221900 DOI: 10.1039/d3mh00422h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fracture control in membranes is highly desirable in nano-technology, but is a great challenge because of the 'multi-scale' complexity of fracture initiation and propagation. Here, we devise a method that can controllably direct fractures in stiff nanomembranes, realized by 90° peeling of the nanomembrane overlaid on a soft film, i.e., a stiff/soft bilayer, from a substrate underneath. The peeling allows the stiff membrane to be creased into a soft film periodically in the bending region and fractured along the unique bottom line of the crease, i.e, the fracture route is strictly straight and periodic. The facture period is tunable, because the surface perimeter of the creases is determined by the thickness and modulus of the stiff membranes. This is a new kind of fracture behavior of stiff membranes, which is unique to stiff/soft bilayers but universally exists in such systems, promising a new generation of technology for cutting nanomembranes.
Collapse
Affiliation(s)
- Yancheng Meng
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Jianqiang Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Baowen Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Luxian Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Qin Wang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Frontier Science Institute of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
3
|
Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111048. [PMID: 32600683 DOI: 10.1016/j.msec.2020.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Drug release synchronized with tissue motion is attractive to cutaneous or musculoskeletal tissue injury repair. Here, we have developed a method of regulating drug release by mechanical on-off gates for potential treatment of repeated injury in these tissues. The mechanical gates consisted of a multilayer structure: A brittle outmost layer adhered to an elastic middle layer, which wrapped an inmost drug carrier to form the composite multilayer structure. When it was stretched, cracks appeared as mechanical gates due to mechanical performance difference between the outmost layer and the middle layer, leading to the drug release. When the external force disappeared, it recovered to stop the drug release. The controlled drug release would therefore be achieved by changing the status (opening or closure) of mechanical gates through applying this on-off mechanical stretching. A prototype based on the composite multilayer structure of adhesive coating and electrospinning technique realized the controlled release of drug and effectively repaired the incision. More types of composite multilayer structures for mechanical drug release were expected to meet curing requirement in cutaneous or musculoskeletal tissues.
Collapse
|
4
|
Baëtens T, Pallecchi E, Thomy V, Arscott S. Cracking effects in squashable and stretchable thin metal films on PDMS for flexible microsystems and electronics. Sci Rep 2018; 8:9492. [PMID: 29934604 PMCID: PMC6015027 DOI: 10.1038/s41598-018-27798-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we study cracking of nanometre and sub-nanometre-thick metal lines (titanium, nickel, chromium, and gold) evaporated onto commercial polydimethylsiloxane (PDMS) substrates. Mechanical and electromechanical testing reveals potentially technologically useful effects by harnessing cracking. When the thin film metal lines are subjected to uniaxial longitudinal stretching, strain-induced cracks develop in the film. The regularity of the cracking is seen to depend on the applied longitudinal strain and film thickness-the findings suggest ordering and the possibility of creating metal mesas on flexible substrates without the necessity of lithography and etching. When the metal lines are aligned transversally to the direction of the applied strain, a Poisson effect-induced electrical 'self-healing' can be observed in the films. The Poisson effect causes process-induced cracks to short circuit, resulting in the lines being electrically conducting up to very high strains (~40%). Finally, cracking results in the observation of an enhanced transversal gauge factor which is ~50 times larger than the geometric gauge factor for continuous metal films-suggesting the possibility of high-sensitivity thin-film metal strain gauge flexible technology working up to high strains.
Collapse
Affiliation(s)
- Tiffany Baëtens
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, The University of Lille, Cité Scientifique, 59652, Villeneuve d'Ascq, France
| | - Emiliano Pallecchi
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, The University of Lille, Cité Scientifique, 59652, Villeneuve d'Ascq, France
| | - Vincent Thomy
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, The University of Lille, Cité Scientifique, 59652, Villeneuve d'Ascq, France
| | - Steve Arscott
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, The University of Lille, Cité Scientifique, 59652, Villeneuve d'Ascq, France.
| |
Collapse
|
5
|
Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures. Dent Mater 2017; 34:e8-e14. [PMID: 29183670 DOI: 10.1016/j.dental.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/04/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. METHODS Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy GC was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. RESULTS Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. SIGNIFICANCE Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations.
Collapse
|
6
|
Seghir R, Arscott S. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci Rep 2015; 5:14787. [PMID: 26437880 PMCID: PMC4594096 DOI: 10.1038/srep14787] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/09/2015] [Indexed: 11/09/2022] Open
Abstract
Exploiting pattern formation - such as that observed in nature - in the context of micro/nanotechnology could have great benefits if coupled with the traditional top-down lithographic approach. Here, we demonstrate an original and simple method to produce unique, localized and controllable self-organised patterns on elastomeric films. A thin, brittle silica-like crust is formed on the surface of polydimethylsiloxane (PDMS) using oxygen plasma. This crust is subsequently cracked via the deposition of a thin metal film - having residual tensile stress. The density of the mud-crack patterns depends on the plasma dose and on the metal thickness. The mud-crack patterning can be controlled depending on the thickness and shape of the metallization - ultimately leading to regularly spaced cracks and/or metal mesa structures. Such patterning of the cracks indicates a level of self-organization in the structuring and layout of the features - arrived at simply by imposing metallization boundaries in proximity to each other, separated by a distance of the order of the critical dimension of the pattern size apparent in the large surface mud-crack patterns.
Collapse
Affiliation(s)
- Rian Seghir
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR8520, The University of Lille, Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d'Ascq, France
| | - Steve Arscott
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR8520, The University of Lille, Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
7
|
On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures. Acta Biomater 2014; 10:3756-61. [PMID: 24769152 DOI: 10.1016/j.actbio.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
Abstract
Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations.
Collapse
|
8
|
Kim BC, Moraes C, Huang J, Thouless M, Takayama S. Fracture-based micro- and nanofabrication for biological applications. Biomater Sci 2014; 2:288-296. [PMID: 24707353 PMCID: PMC3972810 DOI: 10.1039/c3bm60276a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While fracture is generally considered to be undesirable in various manufacturing processes, delicate control of fracture can be successfully implemented to generate structures at micro/nano length scales. Fracture-based fabrication techniques can serve as a template-free manufacturing method, and enables highly-ordered patterns or fluidic channels to be formed over large areas in a simple and cost-effective manner. Such technologies can be leveraged to address biologically-relevant problems, such as in the analysis of biomolecules or in the design of culture systems that imitate the cellular or molecular environment. This mini review provides an overview of current fracture-guided fabrication techniques and their biological applications. We first survey the mechanical principles of fracture-based approaches. Then we describe biological applications at the cellular and molecular levels. Finally, we discuss unique advantages of the different system for biological studies.
Collapse
Affiliation(s)
- Byoung Choul Kim
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Jiexi Huang
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
| | - M.D. Thouless
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Huang J, Kim BC, Takayama S, Thouless MD. The Control of Crack Arrays in Thin Films. JOURNAL OF MATERIALS SCIENCE 2014; 49:255-268. [PMID: 31507306 PMCID: PMC6734563 DOI: 10.1007/s10853-013-7700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thin-film fracture can be used as a nano-fabrication technique but, generally, it is a stochastic process that results in non-uniform patterns. Crack spacings depend on the interaction between intrinsic flaw populations and the fracture mechanics of crack channeling. Geometrical features can be used to trigger cracks at specific locations to generate controlled crack patterns. However, while this basic idea is intuitive, it is not so obvious how to realize the concept in practice, nor what the limitations are. The control of crack arrays depends on the nature of the intrinsic flaw population. If there is a relatively large density of long flaws, as commonly assumed in fracture-mechanics analyses, reliable crack patterns can be obtained fairly robustly using relatively blunt geometrical features to initiate cracks, provided the applied strain is carefully matched to the properties of the system and the desired crack spacing. This process is analyzed both for cracks confined to the thickness of a film and for cracks growing into a substrate. The latter analysis is complicated by the fact that increases in strain can either drive cracks deeper into the substrate or generate new cracks at shallower depths. If the intrinsic flaws are all very short, the geometrical features need to be very sharp to achieve the desired patterns. While careful control of the applied strain is not required, the strain needs to be relatively large compared to that which would be required to propagate a large flaw across the film. This results in an approach that is not robust against the introduction of accidental damage or a few large flaws.
Collapse
Affiliation(s)
- Jiexi Huang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Byoung Choul Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109
| | - M D Thouless
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Kim BC, Matsuoka T, Moraes C, Huang J, Thouless MD, Takayama S. Guided fracture of films on soft substrates to create micro/nano-feature arrays with controlled periodicity. Sci Rep 2013; 3:3027. [PMID: 24149668 PMCID: PMC3805969 DOI: 10.1038/srep03027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/07/2013] [Indexed: 11/09/2022] Open
Abstract
While the formation of cracks is often stochastic and considered undesirable, controlled fracture would enable rapid and low cost manufacture of micro/nanostructures. Here, we report a propagation-controlled technique to guide fracture of thin films supported on soft substrates to create crack arrays with highly controlled periodicity. Precision crack patterns are obtained by the use of strategically positioned stress-focusing V-notch features under conditions of slow application of strain to a degree where the notch features and intrinsic crack spacing match. This simple but robust approach provides a variety of precisely spaced crack arrays on both flat and curved surfaces. The general principles are applicable to a wide variety of multi-layered materials systems because the method does not require the careful control of defects associated with initiation-controlled approaches. There are also no intrinsic limitations on the area over which such patterning can be performed opening the way for large area micro/nano-manufacturing.
Collapse
Affiliation(s)
- Byoung Choul Kim
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Toshiki Matsuoka
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Jiexi Huang
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
| | - M. D. Thouless
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Thouless MD, Li Z, Douville NJ, Takayama S. Periodic cracking of films supported on compliant substrates. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2011; 59:1927-1937. [PMID: 21927507 PMCID: PMC3172141 DOI: 10.1016/j.jmps.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
When a tensile strain is applied to a film supported on a compliant substrate, a pattern of parallel cracks can channel through both the film and substrate. A linear-elastic fracture-mechanics model for the phenomenon is presented to extend earlier analyses in which cracking was limited to the film. It is shown how failure of the substrate reduces the critical strain required to initiate fracture of the film. This effect is more pronounced for relatively tough films. However, there is a critical ratio of the film to substrate toughness above which stable cracks do not form in response to an applied load. Instead, catastrophic failure of the substrate occurs simultaneously with the propagation of a single channel crack. This critical toughness ratio increases with the modulus mismatch between the film and substrate, so that periodic crack patterns are more likely to be observed with relatively stiff films. With relatively low values of modulus mismatch, even a film that is more brittle than the substrate can cause catastrophic failure of the substrate. Below the critical toughness ratio, there is a regime in which stable crack arrays can be formed in the film and substrate. The depth of these arrays increases, while the spacing decreases, as the strain is increased. Eventually, the crack array can become deep enough to cause substrate failure.
Collapse
Affiliation(s)
- M D Thouless
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | | | | | | |
Collapse
|
12
|
Kim HN, Lee SH, Suh KY. Controlled mechanical fracture for fabricating microchannels with various size gradients. LAB ON A CHIP 2011; 11:717-722. [PMID: 21088797 DOI: 10.1039/c0lc00277a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a simple method to generate cracks with controllable size (depth and width) and space gradients using deep surface oxidation and anisotropic mechanical stretching. To generate a thick oxidation layer (<∼7 µm), a polydimethylsiloxane (PDMS) slab of uniform or varying thickness was exposed to UV/ozone for less than 30 min in the UV-C wavelength including wavelengths of 185 and 254 nm. Subsequently, the PDMS slab was wrapped on a cylindrical support (radius: 11 mm) to apply a uniform bending strain (<21%), resulting in equally separated, anisotropic cracks over a large area. By modulating initial oxidation depth and applied bending stress, cracks of varying sizes and spaces were formed on a single PDMS slab. Furthermore, multiple, sequential cracks were generated by increasing the strain in a step-wise fashion and multi-directional cracks by applying the strain with an orientation angle. Finally, size and space-varying cracks were formed between two adjacent large channels in an interconnected format by selective masking and irreversible bonding.
Collapse
Affiliation(s)
- Hong-Nam Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
13
|
Mills KL, Zhu X, Lee D, Takayama S, Thouless MD. Properties of the surface-modified layer of plasma-oxidized poly(dimethylsiloxane). ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-0924-z07-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTExposure of poly(dimethylsiloxane) (PDMS) to oxygen plasma creates a thin, stiff surface-modified layer that reaches a submicron depth. Due to a significant modulus mismatch between the stiff surface-modified layer and the compliant bulk PDMS the surface-modified layer forms intricate patterns of surface buckles when under compressive stress and nano-cracks when under tensile stress. It is desirable to be able to design patterns of nano-cracks, or at least to have an understanding of them. Among the properties necessary to do this are the thickness and elastic modulus of the surface-modified layer. Due to the very small length scale of the surface-modified layer, it is a significant challenge to measure these properties. In this proceedings paper, a two-step method is described for determining the thickness and elastic modulus of the surface-modified layer using the atomic force microscope (AFM). First, nanoindentation is performed from which the bending stiffness of the surface-modified layer is calculated. Second, the surface-modified layer thickness is determined by using phase imaging on the cross-section of oxidized PDMS to map the region of the relatively stiffer surface-modified layer.
Collapse
|
14
|
Uchida T, Mills K, Kuo CH, Roh W, Tung YC, Garner AL, Koide K, Thouless M, Takayama S. External compression-induced fracture patterning on the surface of poly(dimethylsiloxane) cubes and microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3102-3107. [PMID: 19437776 PMCID: PMC2772125 DOI: 10.1021/la801986k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article describes a method for creating submicrometer surface patterns on cubes and microspheres. In this method, PDMS cubes and microspheres are exposed to oxygen plasma, which creates a very thin, hard, surface-modified layer on a compliant substrate. These are then compressed, causing the layer to crack in patterns dictated by the distribution of tensile stresses in the surface layer. Cracks with submicrometer widths were generated on 1 cm3 cubes and 800-microm-diameter microspheres, and the resulting crack patterns were observed. Finite-element simulations of the tensile stress distributions reveal that the fracture patterns arise from different mechanisms in the cubes and spheres. In particular, pattern formation is associated with frictional contact in the cubes but not in the microspheres, where geometrical effects associated with changes in the cross-sectional area along the axis lead to the generation of tensile stress. These observations and analyses provide a foundation on which to predict and guide crack pattern formation on a wide variety of small 3D objects. In anticipation of future applications in materials science and biology, we demonstrate the selective deposition of compounds into the cracks to make them functionally differentiable from the rest of the surface.
Collapse
Affiliation(s)
- Tomoyuki Uchida
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - K.L. Mills
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chuan-Hsien Kuo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Whijae Roh
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Chung Tung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda L. Garner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - M.D. Thouless
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Mills KL, Zhu X, Takayama S, Thouless MD. The mechanical properties of a surface-modified layer on poly(dimethylsiloxane). JOURNAL OF MATERIALS RESEARCH 2008; 23:37-48. [PMID: 19779588 PMCID: PMC2749279 DOI: 10.1557/jmr.2008.0029] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Surface-modification of the elastomer poly(dimethylsiloxane) by exposure to oxygen plasma for four minutes creates a thin, stiff film. In this study, the thickness and mechanical properties of this surface-modified layer were determined. Using the phase image capabilities of a tapping-mode atomic-force microscope, the surface-modified region was distinguished from the bulk PDMS; specifically, it suggested a graded surface layer to a depth of about 200 nm. Load-displacement data for elastic indentation using a compliant AFM cantilever was analyzed as a plate bending on an elastic foundation to determine the elastic modulus of the surface (37 MPa). An applied uniaxial strain generated a series of parallel nano-cracks with spacing on the order of a few microns. Numerical analyses of this cracking phenomenon showed that the depth of these cracks was in the range of 300-600 nm and that the surface layer was extremely brittle, with its toughness in the range of 0.1-0.3 J/m(2).
Collapse
Affiliation(s)
- K. L. Mills
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoyue Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M. D. Thouless
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Tang CA, Zhang YB, Liang ZZ, Xu T, Tham LG, Lindqvist PA, Kou SQ, Liu HY. Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:056120. [PMID: 16803011 DOI: 10.1103/physreve.73.056120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/13/2005] [Indexed: 05/10/2023]
Abstract
We perform three-dimensional simulations of fracture growth in a three-layered plate model with an embedded heterogeneous layer under horizontal biaxial stretch (representing stretch from directional to isotropic) by the finite element approach. The fractures develop under a quasistatical, slowly increasing biaxial strain. The material inhomogeneities are accounted for by assigning each element a failure threshold that is defined by a given statistical distribution. A universal scale law of fracture spacing to biaxial strain in terms of principal stress ratio is well demonstrated in a three-dimensional fashion. The numerically obtained fracture patterns show a continuous pattern transition from parallel fractures, laddering fracture to polygonal fractures, which depends strongly on the far-field loading conditions in terms of principal stress ratio lambda = sigma(2)/sigma(1), from uniaxial (lambda = 0), anisotropic (0 < lambda < 1) to isotropic stretch (lambda = 1). We find that, except for further opening of existing fractures after they are well-developed (saturation), new fractures may also initiate and propagate along the interface between layers, which may serve as another mechanism to accommodate additional strain for fracture saturated layers.
Collapse
Affiliation(s)
- C A Tang
- Department of Engineering Mechanics, Dalian University of Technology, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu X, Mills KL, Peters PR, Bahng JH, Liu EH, Shim J, Naruse K, Csete ME, Thouless MD, Takayama S. Fabrication of reconfigurable protein matrices by cracking. NATURE MATERIALS 2005; 4:403-6. [PMID: 15834415 DOI: 10.1038/nmat1365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 02/15/2005] [Indexed: 05/12/2023]
Abstract
The interface between extracellular matrices and cells is a dynamic environment that is crucial for regulating important cellular processes such as signal transduction, growth, differentiation, motility and apoptosis. In vitro cellular studies and the development of new biomaterials would benefit from matrices that allow reversible modulation of the cell adhesive signals at a scale that is commensurate with individual adhesion complexes. Here, we describe the fabrication of substrates containing arrays of cracks in which cell-adhesive proteins are selectively adsorbed. The widths of the cracks (120-3,200 nm) are similar in size to individual adhesion complexes (typically 500-3,000 nm) and can be modulated by adjusting the mechanical strain applied to the substrate. Morphology of cells can be reversibly manipulated multiple times through in situ adjustment of crack widths and hence the amount of the cell-adhesive proteins accessible to the cell. These substrates provide a new tool for assessing cellular responses associated with exposure to matrix proteins.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alhooshani K, Kim TY, Kabir A, Malik A. Sol–gel approach to in situ creation of high pH-resistant surface-bonded organic–inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME). J Chromatogr A 2005; 1062:1-14. [PMID: 15679137 DOI: 10.1016/j.chroma.2004.10.103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).
Collapse
Affiliation(s)
- Khalid Alhooshani
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The spacing of opening-mode fractures in layered materials--such as certain sedimentary rocks and laminated engineering materials--is often proportional to the thickness of the fractured layer. Experimental studies of this phenomenon show that the spacing initially decreases as extensional strain increases in the direction perpendicular to the fractures. But at a certain ratio of spacing to layer thickness, no new fractures form and the additional strain is accommodated by further opening of existing fractures: the spacing then simply scales with layer thickness, which is called fracture saturation. This is in marked contrast to existing theories of fracture, such as the stress-transfer theory, which predict that spacing should decrease with increasing strain ad infinitum. Recently, two of us (T.B. and D.D.P.) have used a combination of numerical simulations and laboratory experiments to show that, with increasing applied stress, the normal stress acting between such fractures undergoes a transition from tensile to compressive, suggesting a cause for fracture saturation. Here we investigate the full stress distribution between such fractures, from which we derive an intuitive physical model of the process of fracture saturation. Such a model should find wide applicability, from geosciences to engineering.
Collapse
|
20
|
Nichols ME, Darr CA. Effect of weathering on the stress distribution and mechanical performance of automotive paint systems. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf02730084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Nichols M, Darr C, Smith C, Thouless M, Fischer E. Fracture energy of automotive clearcoats—I. Experimental methods and mechanics. Polym Degrad Stab 1998. [DOI: 10.1016/s0141-3910(97)00081-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|