1
|
Gericke GS. A Unifying Hypothesis for the Genome Dynamics Proposed to Underlie Neuropsychiatric Phenotypes. Genes (Basel) 2024; 15:471. [PMID: 38674405 PMCID: PMC11049865 DOI: 10.3390/genes15040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.
Collapse
|
2
|
Bhowmick R, Hickson ID, Liu Y. Completing genome replication outside of S phase. Mol Cell 2023; 83:3596-3607. [PMID: 37716351 DOI: 10.1016/j.molcel.2023.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
3
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Alternative paths to telomere elongation. Semin Cell Dev Biol 2020; 113:88-96. [PMID: 33293233 DOI: 10.1016/j.semcdb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Overcoming cellular senescence that is induced by telomere shortening is critical in tumorigenesis. A majority of cancers achieve telomere maintenance through telomerase expression. However, a subset of cancers takes an alternate route for elongating telomeres: recombination-based alternative lengthening of telomeres (ALT). Current evidence suggests that break-induced replication (BIR), independent of RAD51, underlies ALT telomere synthesis. However, RAD51-dependent homologous recombination is required for homology search and inter-chromosomal telomere recombination in human ALT cancer cell maintenance. Accumulating evidence suggests that the breakdown of stalled replication forks, the replication stress, induces BIR at telomeres. Nevertheless, ALT research is still in its early stage and a comprehensive view is still unclear. Here, we review the current findings regarding the genesis of ALT, how this recombinant pathway is chosen, the epigenetic regulation of telomeres in ALT, and perspectives for clinical applications with the hope that this overview will generate new questions.
Collapse
|
5
|
Pladevall-Morera D, Munk S, Ingham A, Garribba L, Albers E, Liu Y, Olsen JV, Lopez-Contreras AJ. Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability. Nucleic Acids Res 2019; 47:8004-8018. [PMID: 31180492 PMCID: PMC6735892 DOI: 10.1093/nar/gkz510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/31/2023] Open
Abstract
Common fragile sites (CFSs) are conserved genomic regions prone to break under conditions of replication stress (RS). Thus, CFSs are hotspots for rearrangements in cancer and contribute to its chromosomal instability. Here, we have performed a global analysis of proteins that recruit to CFSs upon mild RS to identify novel players in CFS stability. To this end, we performed Chromatin Immunoprecipitation (ChIP) of FANCD2, a protein that localizes specifically to CFSs in G2/M, coupled to mass spectrometry to acquire a CFS interactome. Our strategy was validated by the enrichment of many known regulators of CFS maintenance, including Fanconi Anemia, DNA repair and replication proteins. Among the proteins identified with unknown functions at CFSs was the chromatin remodeler ATRX. Here we demonstrate that ATRX forms foci at a fraction of CFSs upon RS, and that ATRX depletion increases the occurrence of chromosomal breaks, a phenotype further exacerbated under mild RS conditions. Accordingly, ATRX depletion increases the number of 53BP1 bodies and micronuclei, overall indicating that ATRX is required for CFS stability. Overall, our study provides the first proteomic characterization of CFSs as a valuable resource for the identification of novel regulators of CFS stability.
Collapse
Affiliation(s)
- David Pladevall-Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Munk
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark.,Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Ingham
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lorenza Garribba
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Eliene Albers
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ying Liu
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andres J Lopez-Contreras
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Xiao S, Tang YS, Kusumanchi P, Stabler SP, Zhang Y, Antony AC. Folate Deficiency Facilitates Genomic Integration of Human Papillomavirus Type 16 DNA In Vivo in a Novel Mouse Model for Rapid Oncogenic Transformation of Human Keratinocytes. J Nutr 2018; 148:389-400. [PMID: 29546304 DOI: 10.1093/jn/nxx060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Background Epidemiologic and in vitro studies suggest independent linkages between poor folate and/or vitamin B-12 nutrition, genomic human papillomavirus (HPV) type 16 viral integration, and cancer. However, there is no direct evidence in vivo to support the causative role of poor folate nutrition in HPV16 integration into the cellular genome. Objective We tested the hypothesis that folate deficiency enables the integration of HPV16 into the genome of HPV16-harboring keratinocytes, and could thereby influence earlier transformation of these cells to cancer in an animal model. Methods HPV16-harboring human keratinocytes [(HPV16)BC-1-Ep/SL] were differentiated into 3-dimensional HPV16-organotypic rafts under either folate-replete or folate-deficient conditions in vitro. These were then subcutaneously implanted in severely immunocompromised female Beige Nude XID (Hsd: NIHS-LystbgFoxn1nuBtkxid) mice (4-6 wk old, 16-18 g) fed either a folate-replete diet (1200 nmol folate/kg diet) or a progressively folate-deficient diet (600 or 400 nmol folate/kg diet) for 2 mo prior to raft-implantation surgery, and indefinitely thereafter. The tumors that subsequently developed were characterized for onset, pattern of growth, morphology, HPV16 oncogene expression, and HPV16-genomic integration. Results All HPV16-organotypic rafts developed in either folate-replete or physiologic low-folate media in vitro and subsequently implanted in folate-replete mice eventually transformed into aggressive malignancies within weeks. When compared to HPV16-high folate-organotypic raft-derived tumors from mice fed either a 1200 or 600 nmol folate/kg diet, those raft-derived cancers that developed in mice fed a 400 nmol folate/kg diet expressed significantly more HPV16 E6 (1.8-fold more) and E7 (2.8-fold more) oncogenic proteins (P = 0.001), and revealed significantly more HPV16-integration sites in genomic DNA (2-fold more), either directly into, or in the vicinity of, cellular genes (P < 0.05). Conclusions This unprecedented animal model for the consistent rapid transformation of differentiated (HPV16)BC-1-Ep/SL-derived organotypic raft-keratinocytes to cancer in Beige Nude XID mice confirms that dietary folate deficiency can profoundly influence and modulate events leading to HPV16-induced carcinogenesis, and facilitates genomic integration of HPV16 DNA in vivo.
Collapse
Affiliation(s)
- Suhong Xiao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ying-Sheng Tang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Sally P Stabler
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ying Zhang
- Department of Biostatistics, Indiana University Fairbanks School of Public Health, Indianapolis, IN
| | - Asok C Antony
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.,Richard L Roudebush Veterans Affairs Medical Center, Indianapolis, IN
| |
Collapse
|
7
|
Madireddy A, Kosiyatrakul ST, Boisvert RA, Herrera-Moyano E, García-Rubio ML, Gerhardt J, Vuono EA, Owen N, Yan Z, Olson S, Aguilera A, Howlett NG, Schildkraut CL. FANCD2 Facilitates Replication through Common Fragile Sites. Mol Cell 2017; 64:388-404. [PMID: 27768874 DOI: 10.1016/j.molcel.2016.09.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Common fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative stress. Although the characteristics of CFSs that render them vulnerable to stress are associated mainly with replication, the cellular pathways that protect CFSs during replication remain unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS replication, in the absence of exogenous replicative stress. In the absence of FANCD2, replication forks stall within the AT-rich fragility core of CFS, leading to dormant origin activation. Furthermore, FANCD2 deficiency is associated with DNA:RNA hybrid formation at CFS-FRA16D, and inhibition of DNA:RNA hybrid formation suppresses replication perturbation. In addition, we also found that FANCD2 reduces the number of potential sites of replication initiation. Our data demonstrate that FANCD2 protein is required to ensure efficient CFS replication and provide mechanistic insight into how FANCD2 regulates CFS stability.
Collapse
Affiliation(s)
- Advaitha Madireddy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | - Rebecca A Boisvert
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - Jeannine Gerhardt
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elizabeth A Vuono
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Nichole Owen
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan Olson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Handa H, Sasaki Y, Hattori H, Alkebsi L, Kasamatsu T, Saitoh T, Mitsui T, Yokohama A, Tsukamoto N, Matsumoto M, Murakami H. Recurrent alterations of the WW domain containing oxidoreductase gene spanning the common fragile site FRA16D in multiple myeloma and monoclonal gammopathy of undetermined significance. Oncol Lett 2017; 14:4372-4378. [PMID: 28943951 DOI: 10.3892/ol.2017.6672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The putative tumor suppressor gene WW domain containing oxidoreductase (WWOX) spans a common fragile site (CFS) on chromosome 16q23.3. CFSs are regions of profound genomic instability and sites for genomic deletions in cancer cells. Therefore, WWOX is structurally altered in diverse nonhematological cancer types. However, the function of WWOX in hematological tumor types, including multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) remains unclear. WWOX expression and methylation in patients with MM, MGUS, or noninvasive lymphoma (control) were analyzed using reverse transcription- and methylation specific-polymerase chain reaction analysis. Variant WWOX transcripts were detected in 65 and 50% of patients with MM and MGUS, respectively, compared with 10% of controls. WWOX expression was higher in patients with MM, and WWOX promoter methylation was detected in 35% of patients with MM compared with 5% of patients with MGUS and 4% of controls. WWOX promoter methylation was significantly associated with shorter overall survival time of patients, in particular those with MM who were never treated with novel agents. Genomic alterations, including deletions and promoter methylation that affect WWOX expression occur early and may be involved in the pathogenesis, progression, and prognosis of MM.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yoshiko Sasaki
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hikaru Hattori
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lobna Alkebsi
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takeki Mitsui
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma 377-0280, Japan
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
9
|
Zhang C, Liu Z, Bunker E, Ramirez A, Lee S, Peng Y, Tan AC, Eckhardt SG, Chapnick DA, Liu X. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem 2017; 292:15105-15120. [PMID: 28673964 DOI: 10.1074/jbc.m117.783175] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m-chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Zeyu Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Adrian Ramirez
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Yinghua Peng
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Aik-Choon Tan
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - S Gail Eckhardt
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Douglas A Chapnick
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| |
Collapse
|
10
|
Abstract
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Gao G, Smith DI. Very large common fragile site genes and their potential role in cancer development. Cell Mol Life Sci 2014; 71:4601-15. [PMID: 25300511 PMCID: PMC11113612 DOI: 10.1007/s00018-014-1753-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Common fragile sites (CFSs) are large chromosomal regions that are hot-spots for alterations especially within cancer cells. The three most frequently expressed CFS regions (FRA3B, FRA16D and FRA6E) contain genes that span extremely large genomic regions (FHIT, WWOX and PARK2, respectively), and these genes were found to function as important tumor suppressors. Many other CFS regions contain extremely large genes that are also targets of alterations in multiple cancers, but none have yet been demonstrated to function as tumor suppressors. The loss of expression of just FHIT or WWOX has been found to be associated with a worse overall clinical outcome. Studies in different cancers have revealed that some cancers have decreased expression of multiple large CFS genes. This loss of expression could have a profound phenotypic effect on these cells. In this review, we will summarize the known large common fragile site genes and discuss their potential relationship to cancer development.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - David I. Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
12
|
Liu N, Yan J, Chen X, Song J, Wang B, Yao Y. Prenatal diagnosis of a de novo interstitial deletion of 11q (11q22.3 → q23.3) associated with abnormal ultrasound findings by array comparative genomic hybridization. Mol Cytogenet 2014; 7:62. [PMID: 25298785 PMCID: PMC4189608 DOI: 10.1186/s13039-014-0062-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/26/2014] [Indexed: 11/29/2022] Open
Abstract
Background Conventional G-band karyotyping offers low-resolution detection of chromosome abnormalities and cannot provide information about the involved genomic content. On the other hand, array comparative genomic hybridization can offer a rapid and comprehensive detection of genomewide gains and losses with higher resolution, thus providing the genetic basis for prenatal diagnosis of fetal abnormalities. Case presentation A 35-year-old primigravid underwent cordocentesis at 28 weeks gestation due to the presence of polyhydramnios, intrauterine growth retardation, persistent right umbilical vein and mild stenosis of aortic arch at the ultrasound scan. Conventional G-band chromosome analysis revealed an apparently normal karyotype whereas the array CGH detected a de novo 8.97 Mb deletion at chromosome 11q22.3 → q23.3 and offered a precise characterization of the genetic defect. Conclusions The array CGH detected a de novo interstitial 11q deletion with its precise location and size which could be missed or confused by G-band chromosome analysis. The breakpoint was close to the folate sensitive rare fragile site FRA11B and the aphidicolin inducible common fragile site FRA11G, the co-localization fragile site could have caused instability and constitutional chromosomal breakage. This case study indicates that array CGH is a useful technique for detecting small unbalanced chromosomal abnormalities and should be an integral part of prenatal diagnosis for fetal malformations.
Collapse
Affiliation(s)
- Nian Liu
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| | - Jiong Yan
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| | - Xinlin Chen
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| | - Jieping Song
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| | - Bo Wang
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| | - Yanyi Yao
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070 China
| |
Collapse
|
13
|
Tan MH, Gécz J, Shoubridge C. PCR amplification and sequence analysis of GC-rich sequences: Aristaless-related homeobox example. Methods Mol Biol 2014; 1017:105-20. [PMID: 23719911 DOI: 10.1007/978-1-62703-438-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
PCR amplification (followed by mutation scanning or direct sequencing) is a technique widely used in mutation detection and molecular studies of disease-causing genes, such as ARX. PCR amplification of high GC-rich regions encounters difficulties using conventional PCR procedures. Here, we present the strategies to amplify and sequence these GC-rich regions for the purposes of mutation screening and other molecular analyses.
Collapse
Affiliation(s)
- May H Tan
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
14
|
Le PN, Maranon DG, Altina NH, Battaglia CLR, Bailey SM. TERRA, hnRNP A1, and DNA-PKcs Interactions at Human Telomeres. Front Oncol 2013; 3:91. [PMID: 23616949 PMCID: PMC3628365 DOI: 10.3389/fonc.2013.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/04/2013] [Indexed: 01/29/2023] Open
Abstract
Maintenance of telomeres, repetitive elements at eukaryotic chromosomal termini, and the end-capping structure and function they provide, are imperative for preserving genome integrity and stability. The discovery that telomeres are transcribed into telomere repeat containing RNA (TERRA) has revolutionized our view of this repetitive, rather unappreciated region of the genome. We have previously shown that the non-homologous end-joining, shelterin associated DNA dependent protein kinase catalytic subunit (DNA-PKcs) participates in mammalian telomeric end-capping, exclusively at telomeres created by leading-strand synthesis. Here, we explore potential roles of DNA-PKcs and its phosphorylation target heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in the localization of TERRA at human telomeres. Evaluation of co-localized foci utilizing RNA-FISH and three-dimensional (3D) reconstruction strategies provided evidence that both inhibition of DNA-PKcs kinase activity and siRNA depletion of hnRNP A1 result in accumulation of TERRA at individual telomeres; depletion of hnRNP A1 also resulted in increased frequencies of fragile telomeres. These observations are consistent with previous demonstrations that decreased levels of the nonsense RNA-mediated decay factors SMG1 and UPF1 increase TERRA at telomeres and interfere with replication of leading-strand telomeres. We propose that hTR mediated stimulation of DNA-PKcs and subsequent phosphorylation of hnRNP A1 influences the cell cycle dependent distribution of TERRA at telomeres by contributing to the removal of TERRA from telomeres, an action important for progression of S-phase, and thereby facilitating efficient telomere replication and end-capping.
Collapse
Affiliation(s)
- Phuong N Le
- Department of Environmental and Radiological Health Sciences, Colorado State University Fort Collins, CO, USA
| | | | | | | | | |
Collapse
|
15
|
Tchurikov NA, Kretova OV, Fedoseeva DM, Sosin DV, Grachev SA, Serebraykova MV, Romanenko SA, Vorobieva NV, Kravatsky YV. DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes. PLoS Genet 2013; 9:e1003429. [PMID: 23593027 PMCID: PMC3616924 DOI: 10.1371/journal.pgen.1003429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/18/2013] [Indexed: 12/05/2022] Open
Abstract
Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50-250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xiao S, Tang YS, Khan RA, Zhang Y, Kusumanchi P, Stabler SP, Jayaram HN, Antony AC. Influence of physiologic folate deficiency on human papillomavirus type 16 (HPV16)-harboring human keratinocytes in vitro and in vivo. J Biol Chem 2012; 287:12559-77. [PMID: 22351779 DOI: 10.1074/jbc.m111.317040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B(12) deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer.
Collapse
Affiliation(s)
- Suhong Xiao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Letessier A, Millot GA, Koundrioukoff S, Lachagès AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011; 470:120-3. [DOI: 10.1038/nature09745] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/08/2010] [Indexed: 12/17/2022]
|
18
|
PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 2010; 107:15145-50. [PMID: 20696900 DOI: 10.1073/pnas.1009941107] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In 100 primary colorectal carcinomas, we demonstrate by array comparative genomic hybridization (aCGH) that 33% show DNA copy number (DCN) loss involving PARK2, the gene encoding PARKIN, the E3 ubiquitin ligase whose deficiency is responsible for a form of autosomal recessive juvenile parkinsonism. PARK2 is located on chromosome 6 (at 6q25-27), a chromosome with one of the lowest overall frequencies of DNA copy number alterations recorded in colorectal cancers. The PARK2 deletions are mostly focal (31% approximately 0.5 Mb on average), heterozygous, and show maximum incidence in exons 3 and 4. As PARK2 lies within FRA6E, a large common fragile site, it has been argued that the observed DCN losses in PARK2 in cancer may represent merely the result of enforced replication of locally vulnerable DNA. However, we show that deficiency in expression of PARK2 is significantly associated with adenomatous polyposis coli (APC) deficiency in human colorectal cancer. Evidence of some PARK2 mutations and promoter hypermethylation is described. PARK2 overexpression inhibits cell proliferation in vitro. Moreover, interbreeding of Park2 heterozygous knockout mice with Apc(Min) mice resulted in a dramatic acceleration of intestinal adenoma development and increased polyp multiplicity. We conclude that PARK2 is a tumor suppressor gene whose haploinsufficiency cooperates with mutant APC in colorectal carcinogenesis.
Collapse
|
19
|
Lai LA, Kostadinov R, Barrett MT, Peiffer DA, Pokholok D, Odze R, Sanchez CA, Maley CC, Reid BJ, Gunderson KL, Rabinovitch PS. Deletion at fragile sites is a common and early event in Barrett's esophagus. Mol Cancer Res 2010; 8:1084-94. [PMID: 20647332 DOI: 10.1158/1541-7786.mcr-09-0529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barrett's esophagus (BE) is a premalignant intermediate to esophageal adenocarcinoma, which develops in the context of chronic inflammation and exposure to bile and acid. We asked whether there might be common genomic alterations that could be identified as potential clinical biomarker(s) for BE by whole genome profiling. We detected copy number alterations and/or loss of heterozygosity at 56 fragile sites in 20 patients with premalignant BE. Chromosomal fragile sites are particularly sensitive to DNA breaks and are frequent sites of rearrangement or loss in many human cancers. Seventy-eight percent of all genomic alterations detected by array-CGH were associated with fragile sites. Copy number losses in early BE were observed at particularly high frequency at FRA3B (81%), FRA9A/C (71.4%), FRA5E (52.4%), and FRA 4D (52.4%), and at lower frequencies in other fragile sites, including FRA1K (42.9%), FRAXC (42.9%), FRA 12B (33.3%), and FRA16D (33.3%). Due to the consistency of the region of copy number loss, we were able to verify these results by quantitative PCR, which detected the loss of FRA3B and FRA16D, in 83% and 40% of early molecular stage BE patients, respectively. Loss of heterozygosity in these cases was confirmed through pyrosequencing at FRA3B and FRA16D (75% and 70%, respectively). Deletion and genomic instability at FRA3B and other fragile sites could thus be a biomarker of genetic damage in BE patients and a potential biomarker of cancer risk.
Collapse
Affiliation(s)
- Lisa A Lai
- Department of Pathology,University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS One 2010; 5:e11166. [PMID: 20567512 PMCID: PMC2887363 DOI: 10.1371/journal.pone.0011166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/26/2010] [Indexed: 12/13/2022] Open
Abstract
Background Chromosomal fragile sites are heritable specific loci especially prone to breakage. Some of them are associated with human genetic disorders and several studies have demonstrated their importance in genome instability in cancer. MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional gene regulation and their involvement in several diseases such as cancer has been widely demonstrated. The altered expression of miRNAs is sometimes due to chromosomal rearrangements and epigenetic events, thus it is essential to study miRNAs in the context of their genomic locations, in order to find significant correlations between their aberrant expression and the phenotype. Principal Findings Here we use statistical models to study the incidence of human miRNA genes on fragile sites and their association with cancer-specific translocation breakpoints, repetitive elements, and CpG islands. Our results show that, on average, fragile sites are denser in miRNAs and also in protein coding genes. However, the distribution of miRNAs and protein coding genes in fragile versus non-fragile sites depends on chromosome. We find also a positive correlation between fragility and repeats, and between miRNAs and CpG islands. Conclusion Our results show that the relationship between site fragility and miRNA density is far more complex than previously thought. For example, we find that protein coding genes seem to be following similar patterns as miRNAs, if considered their overall distribution. However, once we allow for differences at the chromosome level in our statistical analysis, we find that distribution of miRNA and protein coding genes in fragile sites is very different from that of miRNA. This is a novel result that we believe may help discover new potential correlations between the localization of miRNAs and their crucial role in biological processes and in the development of diseases.
Collapse
|
21
|
Matuszek G, Talebizadeh Z. Autism Genetic Database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites. BMC MEDICAL GENETICS 2009; 10:102. [PMID: 19778453 PMCID: PMC2761880 DOI: 10.1186/1471-2350-10-102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 09/24/2009] [Indexed: 01/27/2023]
Abstract
Background Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD) was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs) associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors. Description AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided. Conclusion AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research community to evaluate genetic findings for this complex multifactorial disorder in an integrated format. AGD provides a genome browser and a web based query client for conveniently selecting features of interest. Access to AGD is freely available at .
Collapse
Affiliation(s)
- Gregory Matuszek
- K-INBRE Bioinformatics Core Facility, University of Kansas, Lawrence, KS, USA.
| | | |
Collapse
|
22
|
Enlightened protein: Fhit tumor suppressor protein structure and function and its role in the toxicity of protoporphyrin IX-mediated photodynamic reaction. Toxicol Appl Pharmacol 2009; 241:246-52. [PMID: 19716840 DOI: 10.1016/j.taap.2009.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/12/2022]
Abstract
The Fhit tumor suppressor protein possesses Ap(3)A (diadenosine triphosphate - ApppA) hydrolytic activity in vitro and its gene is found inactive in many pre-malignant states due to gene inactivation. For several years Fhit has been a widely investigated protein as its cellular function still remains largely unsolved. Fhit was shown to act as a molecular 'switch' of cell death via cascade operating on the influence of ATR-Chk1 pathway but also through the mitochondrial apoptotic pathway. Notably, Fhit was reported by our group to enhance the overall eradication effect of porphyrin-mediated photodynamic treatment (PDT). In this review the up-to-date findings on Fhit protein as a tumor suppressor and its role in PDT are presented.
Collapse
|
23
|
McAvoy S, Zhu Y, Perez DS, James CD, Smith DI. Disabled-1 is a large common fragile site gene, inactivated in multiple cancers. Genes Chromosomes Cancer 2008; 47:165-74. [PMID: 18008369 DOI: 10.1002/gcc.20519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Common fragile sites (CFS) are large, genomically unstable regions, which are hot-spots for deletions and other alterations, especially in cancer cells. Several have been shown to contain genes that span large genomic regions, such as FHIT (1.5 Mb), WWOX (1.0 Mb), GRID2 (1.36 Mb), PARK2 (1.3 Mb), and RORA (730 kb). These genes are frequently inactivated in multiple different cancers, and FHIT and WWOX are shown to function as tumor suppressors. The disabled-1 gene (DAB1) is one of the human homologs of the Drosophila disabled locus, which in mammals is involved in neuronal migration and lamination in the developing cerebral cortex. Mice DAB1 inactivation results in the neurological mutant Scrambler, having similarities to mice with the inactivation of PARK2 (Quaker), GRID2 (Lurcher), and RORA (Staggerer). We were interested in whether DAB1 was another large CFS gene that could have cancer development importance. We demonstrated here that the human DAB1 gene (spanning 1.25 Mb) mapped within FRA1B CFS region on chromosomal band 1p32.2. Real-time RT-PCR analysis revealed that the expression level of DAB1 was decreased in many human cancer samples, including primary tumor tissues and cancer-derived cell lines, from several different cancers, especially in brain and endometrial cancer. Additionally, the introduction of an over-expression DAB1 plasmid into two different cell lines, having insignificant endogenous DAB1 expression, resulted in decreased cell growth. In summary, DAB1 is another gene that resides within an unstable CFS region and might play a role in human tumorigenesis. These data may provide further linkage between neurological development and cancer.
Collapse
Affiliation(s)
- Sarah McAvoy
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | | | | | | | | |
Collapse
|
24
|
Nicodemo D, Coppola G, Pauciullo A, Cosenza G, Ramunno L, Ciotola F, Peretti V, Di Meo GP, Iannuzzi L, Rubes J, Di Berardino D. Chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis). Cytogenet Genome Res 2008; 120:178-82. [PMID: 18467845 DOI: 10.1159/000118760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2007] [Indexed: 11/19/2022] Open
Abstract
The present study reports on the chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis, 2n = 50) with the aim of establishing a 'fragile site map' of the species. Totally, 400 aphidicolin-induced breakages were analyzed from eight young and clinically healthy animals, four males and four females; these breakages were localized in 106 RBG-negative chromosome bands or at the band-interband regions. The number of breakages per chromosome did not vary statistically 'among' the animals investigated but the differences among individual chromosomes were highly significant thus indicating that the chromosomal distribution of the breakages is not random and appears only partially related to chromosome length. Fragile sites were statistically determined as those chromosomal bands showing three or more breakages. In the river buffalo karyotype, 51 fragile sites were detected and localized on the standardized ideogram of the species. The most fragile bands were as follows: 9q213 with 24 breakages out of 400; 19q21 with 16, 17q21 and inacXq24 with 15, 15q23 with 13 and 13q23 with 12 breaks, respectively. Previous gene mapping analysis in this species has revealed that the closest loci to these fragile sites contain genes such as RASA1 and CAST (9q214), NPR3 and C9 (19q19), PLP and BTK (Xq24-q25), OarCP09 (15q24), and EDNRB (13q22) whose mutations are responsible for severe phenotypic malformations and immunodeficiency in humans as well as in mice and meat quality in pigs. Further cytogenetic and molecular studies are needed to fully exploit the biological significance of the fragile sites in karyotype evolution of domestic animals and their relationships with productive and reproductive efficiency of livestock.
Collapse
Affiliation(s)
- D Nicodemo
- Department of Soil, Plant, Environment and Animal Production Sciences, University of Naples Federico II, Portici, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McAvoy S, Ganapathiraju S, Perez DS, James CD, Smith DI. DMD and IL1RAPL1: two large adjacent genes localized within a common fragile site (FRAXC) have reduced expression in cultured brain tumors. Cytogenet Genome Res 2008; 119:196-203. [PMID: 18253029 DOI: 10.1159/000112061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2007] [Indexed: 12/21/2022] Open
Abstract
Common fragile sites (CFSs) are large regions of profound genomic instability found in all individuals. Spanning the center of the two most frequently expressed CFS regions, FRA3B (3p14.3) and FRA16D (16q23.2), are the 1.5 Mb FHIT gene and the 1.0 Mb WWOX gene. These genes are frequently deleted and/or altered in many different cancers. Both FHIT and WWOX have been demonstrated to function as tumor suppressors, both in vitro and in vivo. A number of other large CFS genes have been identified and are also frequently inactivated in multiple cancers. Based on these data, several additional very large genes were tested to determine if they were derived from within CFS regions, but DCC and RAD51L1 were not. However, the 2.0 Mb DMD gene and its immediately distal neighbor, the 1.8 Mb IL1RAPL1 gene are CFS genes contained within the FRAXC CFS region (Xp21.2-->p21.1). They are abundantly expressed in normal brain but were dramatically underexpressed in every brain tumor cell line and xenograft (derived from an intracranial model of glioblastoma multiforme) examined. We studied the expression of eleven other large CFS genes in the same panel of brain tumor cell lines and xenografts and found reduced expression of multiple large CFS genes in these samples. In this report we show that there is selective loss of specific large CFS genes in different cancers that does not appear to be mediated by the relative instability within different CFS regions. Further, the inactivation of multiple large CFS genes in xenografts and brain tumor cell lines may help to explain why this type of cancer is highly aggressive and associated with a poor clinical outcome.
Collapse
Affiliation(s)
- S McAvoy
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. The average survival time of less than 1 year did not improve notably over the last three decades. The dismal prognosis of glioblastoma patients is largely due to the striking radioresistance of this tumor. Here, we attempt a combined view on the genetics, the repair mechanisms and the radioresistance of glioblastoma. Specifically, we address the role of DNA-PKcs and the novel potential end-joining factor KUB3 in maintaining the radioresistant phenotype, the interrelationship between genetic lesions and repair mechanisms, and new perspectives that emerge from the identification of glioblastoma stem cells.
Collapse
|
27
|
Human chromosome fragility. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:3-16. [DOI: 10.1016/j.bbagrm.2007.10.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 11/21/2022]
|
28
|
Smith DI, McAvoy S, Zhu Y, Perez DS. Large common fragile site genes and cancer. Semin Cancer Biol 2006; 17:31-41. [PMID: 17140807 DOI: 10.1016/j.semcancer.2006.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/07/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
Abstract
The common fragile sites are large regions of genomic instability that are found in all individuals and are hot spots for chromosomal rearrangements and deletions. A number of the common fragile sites have been found to span genes that are encoded by very large genomic regions. Two of these genes, FHIT and WWOX, have already been demonstrated to function as tumor suppressors. In this review we will discuss the large common fragile site genes that have been identified to date, and the role that these genes appear to play both in cellular responses to stress and in the development of cancer.
Collapse
Affiliation(s)
- David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street, S.W., Rochester, MN 55905, United States.
| | | | | | | |
Collapse
|
29
|
|
30
|
Berger R. [Human cytogenetics. From 1956 to 2006]. ACTA ACUST UNITED AC 2006; 55:1-12. [PMID: 16697121 DOI: 10.1016/j.patbio.2006.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/05/2006] [Indexed: 01/24/2023]
Abstract
The correct enumeration of human chromosomes, only established in 1956, has marked the starting point of the modern cytogenetics. The introduction of banding techniques, then of in situ hybridization techniques, and now of genomic microarray technology allowed a dramatic development of cytogenetics of which the main applications to basic and medical research are evoked in this review.
Collapse
Affiliation(s)
- R Berger
- Hôpital Necker-Enfants-Malades, EMI 0210 Inserm, 149, rue de Sèvres, 75743 Paris cedex 15, France.
| |
Collapse
|
31
|
Zhu Y, McAvoy S, Kuhn R, Smith DI. RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 2006; 25:2901-8. [PMID: 16462772 DOI: 10.1038/sj.onc.1209314] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Common fragile sites (CFSs) are large genomic regions present in all individuals that are highly unstable and prone to breakage and rearrangement, especially in cancer cells with genomic instability. Eight of the 90 known CFSs have been precisely defined and five of these span genes that extend from 700 kb to over 1.5 Mb of genomic sequence. Although these genes reside within some of the most unstable chromosomal regions in the human genome, they are highly conserved evolutionarily. These genes are targets for large chromosomal deletions and rearrangements in cancer and are frequently inactivated in multiple tumor types. There is also an association between these genes and cellular responses to stress. Based upon the association between large genes and CFSs, we began to systematically test other large genes derived from chromosomal regions that were known to contain a CFS. In this study, we demonstrate that the 730 kb retinoic acid receptor-related orphan receptor alpha (RORA) gene is derived from the middle of the FRA15A (15q22.2) CFS. Although this gene is expressed in normal breast, prostate and ovarian epithelium, it is frequently inactivated in cancers that arise from these organs. RORA was previously shown to be involved in the cellular response to hypoxia and here we demonstrate changes in the amount of RORA message produced in cells exposed to a variety of different cellular stresses. Our results demonstrate that RORA is another very large CFS gene that is inactivated in multiple tumors. In addition, RORA appears to play a critical role in responses to cellular stress, lending further support to the idea that the large CFS genes function as part of a highly conserved stress response network that is uniquely susceptible to genomic instability in cancer cells.
Collapse
Affiliation(s)
- Y Zhu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MI, USA
| | | | | | | |
Collapse
|
32
|
Schwartz M, Zlotorynski E, Kerem B. The molecular basis of common and rare fragile sites. Cancer Lett 2006; 232:13-26. [PMID: 16236432 DOI: 10.1016/j.canlet.2005.07.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 11/30/2022]
Abstract
Fragile sites are specific loci that form gaps and constrictions on chromosomes exposed to partial replication stress. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. These loci are known to be involved in chromosomal rearrangements in tumors and are associated with human diseases. Therefore, the understanding of the molecular basis of fragile sites is of high significance. Here we discuss the works performed in recent years that investigated the characteristics of fragile sites which underlie their inherent instability.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
33
|
Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. Low-frequency common fragile sites: Link to neuropsychiatric disorders? Cancer Lett 2006; 232:58-69. [PMID: 16298041 DOI: 10.1016/j.canlet.2005.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Common fragile sites are unstable chromosomal regions that predispose chromosomes to breakage and rearrangements. Recombinogenic DNA sequences encompassing these sites may contribute to both germinal and somatic genomic mutations, and the genomic instability at these regions might cause severe inherited disorders or predispose to cancer. In this review, we discuss the characterization of common fragile site FRA13A within the neurobeachin gene, which is involved in development and function of the central nervous system. We raise the possibility of an implication of common fragile sites in neuropsychiatric disorders and overview previous and recent reports concerning individual variability of expression of common fragile sites in human populations.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Division of Tumor Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
34
|
Gericke GS. Chromosomal fragility, structural rearrangements and mobile element activity may reflect dynamic epigenetic mechanisms of importance in neurobehavioural genetics. Med Hypotheses 2006; 66:276-85. [PMID: 16183210 DOI: 10.1016/j.mehy.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Advances in human genome analyses have not yet allowed identification of specific genetic mechanisms underlying the expression of human neurobehavioural disorders. There is an increasing awareness that several genes may contribute to behavioural phenotypes and these genes appear to interact in as yet undetermined ways. It has been suggested that the problem needs elucidation from an epigenetic, gene expression perspective. Cytogenetic instability manifesting as chromosomal fragile sites, translocations, duplications, deletions and inversions, when co-occurring with neurobehavioural disorders, may offer a doorway to the investigation of such chromatin level, regulatory region, epigenetic processes. Due to earlier indications of non-specificity of chromosomal aberrations, poor phenotype:genotype correlations and a shift to analysing candidate coding regions on high resolution map level, the only utility of chromosomal breakpoints came to be seen as harbouring possible candidate genes of interest when segregating together with particular neurobehavioural disorders. More recent findings of the expression of highly specific subsets of fragile sites in association with Tourette and Rett syndromes need to be extended to other neurobehavioural disorders to ascertain whether observed patterns can be considered representative of 'chromatin endophenotypes' correlating with discrete sets of neurobehavioural symptoms. Environmental/epigenetic factors could affect the chromatin characteristics of the genome arising through DNA strand breakage, mobile element activity and retroinsertion, establishing new architectural features of regulatory control networks very rapidly in comparison to coding region evolution rates. Microarray-based techniques for the genome-wide mapping of in vivo protein-DNA interactions offer increasingly comprehensive views of genetic and epigenetic regulatory networks. It may be informative to include functionally significant chromatin structural variation analyses when considering candidate genes for neurobehavioural disorders.
Collapse
Affiliation(s)
- G S Gericke
- Genetics Division, Ampath National Pathology Laboratories, P.O. Box 2040, Brooklyn Square, 0075 Pretoria, Gauteng, South Africa.
| |
Collapse
|
35
|
Rattray AJ, Shafer BK, Neelam B, Strathern JN. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 2005; 19:1390-9. [PMID: 15937224 PMCID: PMC1142561 DOI: 10.1101/gad.1315805] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | |
Collapse
|
36
|
Depledge DP, Dalby AR. COPASAAR--a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics 2005; 6:196. [PMID: 16078990 PMCID: PMC1199582 DOI: 10.1186/1471-2105-6-196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 08/03/2005] [Indexed: 11/10/2022] Open
Abstract
Background Single amino acid repeats make up a significant proportion in all of the proteomes that have currently been determined. They have been shown to be functionally and medically significant, and are associated with cancers and neuro-degenerative diseases such as Huntington's Chorea, where a poly-glutamine repeat is responsible for causing the disease. The COPASAAR database is a new tool to facilitate the rapid analysis of single amino acid repeats at a proteome level. The database aims to simplify the comparison of repeat distributions between proteomes in order to provide a better understanding of their function and evolution. Results A comparative analysis of all proteomes in the database (currently 244) shows that single amino acid repeats account for about 12–14% of the proteome of any given species. They are more common in eukaryotes (14%) than in either archaea or bacteria (both 13%). Individual analyses of proteomes show that long single amino acid repeats (6+ residues) are much more common in the Eukaryotes and that longer repeats are usually made up of hydrophilic amino acids such as glutamine, glutamic acid, asparagine, aspartic acid and serine. Conclusion COPASAAR is a useful tool for comparative proteomics that provides rapid access to amino acid repeat data that can be readily data-mined. The COPASAAR database can be queried at the kingdom, proteome or individual protein level. As the amount of available proteome data increases this will be increasingly important in order to automate proteome comparison. The insights gained from these studies will give a better insight into the evolution of protein sequence and function.
Collapse
Affiliation(s)
- Daniel P Depledge
- Schools of Biological and Chemical Sciences and Engineering, Computer Science and Mathematics, Washington Singer Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS UK
| | - Andrew R Dalby
- Schools of Biological and Chemical Sciences and Engineering, Computer Science and Mathematics, Washington Singer Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS UK
| |
Collapse
|
37
|
Desai D, Zhang K, Barik S, Srivastava A, Bolander MEME, Sarkar G. Intragenic codon bias in a set of mouse and human genes. J Theor Biol 2004; 230:215-25. [PMID: 15302553 DOI: 10.1016/j.jtbi.2004.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/20/2022]
Abstract
To better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.
Collapse
Affiliation(s)
- Dinakar Desai
- Department of Orthopedics, Mayo Clinic and Foundation, Medical Science Building 3-69, 200 1st Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
38
|
Toledo G, Sola JJ, Lozano MD, Soria E, Pardo J. Loss of FHIT protein expression is related to high proliferation, low apoptosis and worse prognosis in non-small-cell lung cancer. Mod Pathol 2004; 17:440-8. [PMID: 14976524 DOI: 10.1038/modpathol.3800081] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The fragile histidine triad (FHIT) gene, located at chromosome 3p14.2, is deleted in many solid tumors, including lung cancer. Its protein product is presumed to have tumor suppressor function. We investigated the incidence of loss of heterozygosity and loss of FHIT expression in a series of non-small-cell lung carcinomas and its correlation to apoptosis, proliferation index and prognosis. FHIT expression was determined by immunohistochemistry in formalin-fixed paraffin-embedded tissues from 54 squamous cell carcinomas (SCC) and 44 adenocarcinomas (AC) of the lung. DNA from frozen tumor and corresponding normal tissues were analyzed for allelic losses at two loci located internal (D3S1300, D3S1234) and three loci in flanking regions centromeric and telomeric (D3S1210, D3S1312, D3S1313) to the FHIT gene. Apoptosis was detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL). Proliferation index was determined with ki-67 and flow cytometric analysis. We correlated the results with tumor histology, prognosis and some immunohistochemical markers (p53, bcl-2, bax, c-myc, p21(waf1), cyclin-D1). FHIT expression was related to tumor histology: 52 of 54 (96.3%) SCC and 20 of 44 (45.5%) AC were negative for FHIT (P<0.0001). We found LOH at 3p14.2 in 67.8% of the 98 cases: 72.3% of SCC and 61.4% of AC. Loss of FHIT expression was associated with a higher proliferation index (ki-67, P=0.007; flow cytometry, P<0.004) and lower apoptotic index (P=0.018). LOH at FHIT gene were associated to a high proliferation (flow cytometry, P<0.001) and lower apoptotic level (P=0.043). The log-rank test demonstrated a significant inverse correlation (P=0.039) between loss of FHIT expression and patient survival. FHIT plays an important role in the development of non-small-cell lung cancer, particularly in SCC. Loss of FHIT protein is correlated with a high proliferation and low apoptotic index in tumor cells, and is an independent prognostic indicator for the clinical outcome in patients with these tumors.
Collapse
Affiliation(s)
- Gemma Toledo
- Department of Pathology, University of Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
39
|
Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B. Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 2003; 23:7143-51. [PMID: 14517285 PMCID: PMC230307 DOI: 10.1128/mcb.23.20.7143-7151.2003] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.
Collapse
Affiliation(s)
- Eitan Zlotorynski
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel 91904
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Snijders AM, Fridlyand J, Mans DA, Segraves R, Jain AN, Pinkel D, Albertson DG. Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 2003; 22:4370-9. [PMID: 12853973 DOI: 10.1038/sj.onc.1206482] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors with defects in mismatch repair (MMR) show fewer chromosomal changes by cytogenetic analyses than most solid tumors, suggesting that a greater proportion of the alterations required for malignancy occur in genes with nucleotide sequences susceptible to errors normally corrected by MMR. Here, we used genome-wide microarray comparative genomic hybridization to carry out a higher resolution evaluation of the effect of MMR competence on genomic alterations occurring in 20 cell lines and to determine if characteristic aberrations arise in MMR-proficient and -deficient HCT116 cells undergoing selection for methotrexate resistance. We observed different spectra of aberrations in MMR-proficient compared to -deficient cell lines, as well as among cell lines with different types of MMR-deficiency. We also observed different genetic routes to drug resistance. Resistant MMR-deficient cells most frequently displayed no copy number alterations (16/29 cell pools), whereas all MMR-proficient cells had unique abnormalities involving chromosome 5, including amplicons centered on the target gene, DHFR and/or a neighboring novel locus (7/13 pools). These observations support the concept that tumor genomes are shaped by selection for alterations that promote survival and growth advantage, as well as by the particular dysfunctions in genes responsible for maintenance of genetic integrity.
Collapse
Affiliation(s)
- Antoine M Snijders
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Beghini A, Magnani I, Roversi G, Piepoli T, Di Terlizzi S, Moroni RF, Pollo B, Fuhrman Conti AM, Cowell JK, Finocchiaro G, Larizza L. The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene 2003; 22:2581-91. [PMID: 12735302 DOI: 10.1038/sj.onc.1206336] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alterations of 19q13 are frequently observed in glial neoplasms, suggesting that this region harbors at least one gene involved in gliomagenesis. Following our previous studies on structural 19q chromosome rearrangements in gliomas, we have undertaken a detailed FISH analysis of the breakpoints and identified a 19q13.2 intrachromosomal amplification of the MAP/microtubule affinity-regulating kinase 4 (MARK4) gene in three primary glioblastoma cell lines. Recent data suggest that this gene is involved in the Wnt-signaling pathway. We observed that the expression of the alternatively spliced MARK4L isoform is upregulated in both fresh and cultured gliomas and overexpressed in all of the above three glioblastoma cell lines. Interestingly, we also found that MARK4L expression is restricted to undifferentiated neural progenitor cells or proliferating glial precursor cells, whereas its expression is downregulated during glial differentiation. Perturbation of expression using antisense oligonucleotides against MARK4 in glioblastoma cell lines, consistently induced a decreased proliferation of tumor cells. Taken together, these data show that MARK4, which is normally expressed in neural progenitors, is re-expressed in gliomas and may become a key target of intrachromosomal amplification upon 19q rearrangements.
Collapse
Affiliation(s)
- Alessandro Beghini
- Department of Biology and Genetics, University of Milan, via Viotti 3/5, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Matzner I, Savelyeva L, Schwab M. Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line. Cancer Lett 2003; 189:207-19. [PMID: 12490314 DOI: 10.1016/s0304-3835(02)00504-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Common fragile sites are non-randomly distributed unstable chromosomal regions thought to be hot spots for recombination. They appear as gaps, breaks and triradial figures when cells are cultured under conditions that inhibit replication or repair of DNA. The removal of replication-inhibitory challenges is followed by repair activation to restore the DNA damage at the fragile site. The breast cancer cell line MDA-MB-436 has a spontaneous and non-random expression pattern of fragile sites that appear to be related to the complex pattern of chromosomal rearrangements. The high frequency of which fragile sites are spontaneously activated should make MDA-MB-436 cells a powerful tool to study in greater detail the DNA sequences of a multiplicity of fragile sites. Here, we have explored if the DNA at spontaneously activated fragile sites in MDA-MB-436 cells can be genetically tagged by the repair-mediated insertion of an exogenously supplied drug resistance gene. The cells were transfected with pSV2Neo, stably transfected clones were selected with neomycin, and the sites of pSV2Neo integration were determined by fluorescent in situ hybridization. Eighty-eight of 100 isolated clones had a non-random distribution of a total of 112 pSV2Neo integrations. Of these, 95 integrations (85%) coincide with the position at which non-random gaps and breaks appear in the MDA-MB-436 cells. Forty-nine (44%) of the 112 integrations appeared to be at position of known fragile sites, 46 (41%) were at the non-random chromosomal sites not previously described as "true" fragile sites. It is possible, however, that these non-random instabilities signal of genomic regions equivalent to fragile sites, that either have not previously been detected due to low level expression or that are activated in a tissue- or cell-type-specific manner. Collectively, our results show a preferential integration of exogenous DNA into fragile sites and other non-random regions of high genomic instability in MDA-MB-436 cells. This approach has provided a platform for the efficient targeted cloning and characterization of a substantial number of both common fragile sites and other non-random instability regions possibly related to breast cancer, and possibly also to other types of cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Chromosome Fragile Sites
- Chromosome Fragility
- Chromosome Mapping
- Chromosomes, Human/genetics
- Chromosomes, Human/metabolism
- Chromosomes, Human/ultrastructure
- DNA Repair
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Genes, Reporter
- Genes, Tumor Suppressor
- Genetic Vectors/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Kanamycin Kinase/genetics
- Karyotyping
- Mutagenesis, Insertional
- Recombinant Proteins/genetics
- Recombination, Genetic
- Transfection
- Tumor Cells, Cultured
- Virus Integration/genetics
Collapse
Affiliation(s)
- Isabel Matzner
- Abteilung Zytogenetik H-0400, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
43
|
Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, Trakhtenbrot L, Kerem B. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002; 1:89-97. [PMID: 12086891 DOI: 10.1016/s1535-6108(02)00017-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oncogene amplification is an important process in human tumorigenesis, but its underlying mechanism is currently unknown. Cytogenetic analysis indicates that amplification of drug-selected genes in rodent cells is driven by recurrent breaks within chromosomal common fragile sites (CFSs), via the breakage-fusion-bridge (BFB) mechanism. Here we show that BFB cycles drive the intrachromosomal amplification of the MET oncogene in a human gastric carcinoma. Our molecular evidence includes a "ladder-like" structure and inverted repeat organization of the MET amplicons. Furthermore, we show that the breakpoints, setting the centromeric amplicon boundaries, are within the CFS FRA7G region. Upon replication stress, this region showed perturbed chromatin organization, predisposing it to breakage. Thus, in vivo induction of CFSs can play an important role in human oncogenesis.
Collapse
Affiliation(s)
- Asaf Hellman
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ. Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 2002; 99:333-8. [PMID: 11782551 PMCID: PMC117561 DOI: 10.1073/pnas.012608599] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2001] [Indexed: 11/18/2022] Open
Abstract
We present a comparative proteome analysis of the five complete eukaryotic genomes (human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana), focusing on individual and multiple amino acid runs, charge and hydrophobic runs. We found that human proteins with multiple long runs are often associated with diseases; these include long glutamine runs that induce neurological disorders, various cancers, categories of leukemias (mostly involving chromosomal translocations), and an abundance of Ca(2 +) and K(+) channel proteins. Many human proteins with multiple runs function in development and/or transcription regulation and are Drosophila homeotic homologs. A large number of these proteins are expressed in the nervous system. More than 80% of Drosophila proteins with multiple runs seem to function in transcription regulation. The most frequent amino acid runs in Drosophila sequences occur for glutamine, alanine, and serine, whereas human sequences highlight glutamate, proline, and leucine. The most frequent runs in yeast are of serine, glutamine, and acidic residues. Compared with the other eukaryotic proteomes, amino acid runs are significantly more abundant in the fly. This finding might be interpreted in terms of innate differences in DNA-replication processes, repair mechanisms, DNA-modification systems, and mutational biases. There are striking differences in amino acid runs for glutamine, asparagine, and leucine among the five proteomes.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, and Center for Computational Genetics and Biological Modeling, Stanford University, Stanford, CA 94305-2125, USA.
| | | | | | | | | |
Collapse
|
45
|
Sun Y, Wyatt RT, Bigley A, Krontiris TG. Expression and replication timing patterns of wildtype and translocated BCL2 genes. Genomics 2001; 73:161-70. [PMID: 11318606 DOI: 10.1006/geno.2000.6479] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translocation of the BCL2 gene from chromosome 18 to chromosome 14 results in constitutive expression of the gene. We have recently demonstrated that the major breakpoint region (mbr) of BCL2, which is implicated in 70% of t(14;18) translocations present in human follicular lymphoma, is a matrix attachment region. Since these regions are implicated in control of both transcription and replication, we wished to determine whether BCL2 translocation was also accompanied by changes in replication timing of the translocated allele. Using both fluorescence in situ hybridization and allele-specific PCR, we have demonstrated that the translocated allele replicates at the G1/S boundary, while the wildtype allele continues to replicate as usual in mid-S phase. These differences are accompanied by allele-specific changes in BCL2 expression. Since the net structural effect of t(14;18) translocations within the mbr is to disrupt the BCL2 MAR and replace it with the IGH MARs located just downstream of each breakpoint, we conclude that MAR exchange is a significant, selectable outcome of these translocations. We propose that subsequent changes of replication and transcriptional patterns for the translocated BCL2 allele result from this exchange and represent important early steps in lymphomagenesis.
Collapse
Affiliation(s)
- Y Sun
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
46
|
Handt O, Baker E, Dayan S, Gartler SM, Woollatt E, Richards RI, Hansen RS. Analysis of replication timing at the FRA10B and FRA16B fragile site loci. Chromosome Res 2001; 8:677-88. [PMID: 11196131 DOI: 10.1023/a:1026737203447] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The molecular basis for the cytogenetic appearance of chromosomal fragile sites is not yet understood. Late replication and further delay of replication at fragile sites expressing alleles has been observed for FRAXA, FRAXE and FRA3B fragile site loci. We analysed the timing of replication at the FRA10B and FRA16B loci to determine whether late replication is a feature which is shared by all fragile sites and, therefore, is a necessary condition for chromosomal fragile site expression. The FRA10B locus was located in a transitional region between early and late zones of replication. Fragile and non-fragile alleles exhibit a similar replication pattern proximal to the repeat but fragile alleles are delayed relative to non-fragile ones on the distal side. Although fragility at FRA10B appears to be caused by expansion of an AT-rich repeat in the region, replication time near the repeat was similar in fragile and non-fragile alleles. The FRA16B locus was late replicating and appeared to replicate even later on fragile chromosomes. While these observations are compatible with the hypothesis that delayed replication may play a role in fragile site expression, they suggest that replication delay may not need to occur at the expanded repeat region itself in order to be permissive for fragility.
Collapse
Affiliation(s)
- O Handt
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Olsson PA, Bornhauser BC, Korhonen L, Lindholm D. Neuronal expression of the ERM-like protein MIR in rat brain and its localization to human chromosome 6. Biochem Biophys Res Commun 2000; 279:879-83. [PMID: 11162443 DOI: 10.1006/bbrc.2000.4028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ERM proteins, ezrin, radixin, and moesin, regulate cell motility by linking cortical F-actin to the plasma membrane in different cell types. Myosin regulatory light chain interacting protein (MIR) is a recently cloned ERM-like protein which was shown to be involved in neurite outgrowth. Here we have studied the occurrence and expression of MIR in rats during brain development. As shown using Western blotting, MIR is present in different regions both in developing and adult brain. Immunohistochemistry and double labelling studies showed that MIR is localized especially to neurons in hippocampus and cerebellum. A search using the gene bank showed that the MIR gene localised to human chromosome 6 in the interval 6p22.3-23, the loss of which is characterized by mental retardation and different malformations in man. The presence of MIR in brain neurons during development together with its known effects on neurite outgrowth suggest an important function of the protein in the regulation of nerve cell motility and cytoskeletal interactions.
Collapse
Affiliation(s)
- P A Olsson
- Department of Neuroscience, Neurobiology, Uppsala University, Uppsala, S-751 23, Sweden
| | | | | | | |
Collapse
|
48
|
Courtay-Cahen C, Morris JS, Edwards PA. Chromosome translocations in breast cancer with breakpoints at 8p12. Genomics 2000; 66:15-25. [PMID: 10843800 DOI: 10.1006/geno.2000.6178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unbalanced chromosome translocations with breakpoints around 8p12, resulting in loss of distal 8p, are common in carcinomas. We have mapped the 8p12 breakpoints in three breast cancer cell lines, T-47D, MDA-MB-361, and ZR-75-1, using YACs and PACs between D8S540 and D8S255 by fluorescence in situ hybridization. All three lines had a breakpoint close to D8S505, proximal to HGL. Each breakpoint was distinct, but all were within 0.5 to 1.5 Mb of each other. The T-47D cell line had a straightforward translocation, but in MDA-MB-361 and ZR-75-1 the translocations were accompanied by local rearrangements of surprising complexity. Small regions of 8p from close to the breakpoint were duplicated or amplified as inserts in the attached chromosome fragment. ZR-75-1 also had retained a separate fragment of about 1 Mb, from the region 1 to 3 Mb telomeric to the common breakpoint, that included HGL. This line also had an interstitial deletion several megabases more centromeric. The data suggest that breakpoints on 8p12 are clustered in a small region and show that translocations breaking there may be accompanied by additional rearrangements.
Collapse
Affiliation(s)
- C Courtay-Cahen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | | | | |
Collapse
|
49
|
Edelmann L, Spiteri E, McCain N, Goldberg R, Pandita RK, Duong S, Fox J, Blumenthal D, Lalani SR, Shaffer LG, Morrow BE. A common breakpoint on 11q23 in carriers of the constitutional t(11;22) translocation. Am J Hum Genet 1999; 65:1608-16. [PMID: 10577914 PMCID: PMC1288371 DOI: 10.1086/302689] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Structural chromosomal rearrangements occur commonly in the general population. Individuals that carry a balanced translocation are at risk of having unbalanced offspring; therefore, the frequency of translocations in couples with recurrent spontaneous abortions is higher than that in the general population. The constitutional t(11;22) translocation is the most common recurrent non-Robertsonian translocation in humans and may serve as a model to determine the mechanism that causes recurrent meiotic translocations. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat, termed "LCR22." To define the breakpoint on 11q23 and to ascertain whether this region shares homology with LCR22 sequences, we performed haplotype analysis on patients with der(22) syndrome. We found that the breakpoint on 11q23 occurred between two genetic markers, D11S1340 and APOC3-tetra, both being present within a single bacterial-artificial-chromosome clone. To determine whether the breakpoint occurred within the same region among a larger set of carriers, we performed FISH mapping studies. The breakpoints were all within the same clone, suggesting that this region may harbor sequences that are prone to breakage. We narrowed the breakpoint interval, in both derivative chromosomes from two unrelated carriers, to a 190-bp, AT-rich repeat, which indicates that this repeat may mediate recombination events on chromosome 11. Interestingly, the LCR22s harbor AT-rich repeats, suggesting that this sequence motif may mediate recombination events in nonhomologous chromosomes during meiosis.
Collapse
Affiliation(s)
- L Edelmann
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mishmar D, Mandel-Gutfreund Y, Margalit H, Rahat A, Kerem B. Common fragile sites: G-band characteristics within an R-band. Am J Hum Genet 1999; 64:908-10. [PMID: 10053029 PMCID: PMC1377812 DOI: 10.1086/302299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|