1
|
Yu WH, Zhao P, Draghi M, Arevalo C, Karsten CB, Suscovich TJ, Gunn B, Streeck H, Brass AL, Tiemeyer M, Seaman M, Mascola JR, Wells L, Lauffenburger DA, Alter G. Exploiting glycan topography for computational design of Env glycoprotein antigenicity. PLoS Comput Biol 2018; 14:e1006093. [PMID: 29677181 PMCID: PMC5931682 DOI: 10.1371/journal.pcbi.1006093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 05/02/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022] Open
Abstract
Mounting evidence suggests that glycans, rather than merely serving as a “shield”, contribute critically to antigenicity of the HIV envelope (Env) glycoprotein, representing critical antigenic determinants for many broadly neutralizing antibodies (bNAbs). While many studies have focused on defining the role of individual glycans or groups of proximal glycans in bNAb binding, little is known about the effects of changes in the overall glycan landscape in modulating antibody access and Env antigenicity. Here we developed a systems glycobiology approach to reverse engineer the complexity of HIV glycan heterogeneity to guide antigenicity-based de novo glycoprotein design. bNAb binding was assessed against a panel of 94 recombinant gp120 monomers exhibiting defined glycan site occupancies. Using a Bayesian machine learning algorithm, bNAb-specific glycan footprints were identified and used to design antigens that selectively alter bNAb antigenicity as a proof-of concept. Our approach provides a new design strategy to predictively modulate antigenicity via the alteration of glycan topography, thereby focusing the humoral immune response on sites of viral vulnerability for HIV. Carbohydrates on the HIV Env glycoprotein, previously often considered as a “shield” permitting immune evasion, can themselves represent targets for broadly neutralizing antibody (bNAb) recognition. Efforts to define the impact of individual glycans on bNAb recognition have clearly illustrated the critical nature of individual or groups of glycans on bNAb binding. However, glycans represent half the mass of the HIV envelope glycoprotein, representing a lattice of interacting sugars that shape the topographical landscape that alters antibody accessiblity to the underlying protein. However, whether alterations in individual glycans alter the broader interactions among glycans, proximal and distal, has not been heretofore rigorously examined, nor how this lattice may be actively exploited to improve antigenicity. To address this challenge, we describe here a systems glycobiology approach to reverse engineer the complex relationship between bNAb binding and glycan landscape effects on Env proteins spanning across various clades and tiers. Glycan occupancy was interrogated across every potential N-glycan site in 94 recombinant gp120 recombinant antigens. Sequences, glycan occupancy, as well as bNAb binding profiles were integrated across each of the 94-atngeins to generate a machine learning computational model enabling the identification of the glycan site determinants involved in binding to any given bNAb. Moreover, this model was used to generate a panel of novel gp120 variants with augmented selective bNAb binding profiles, further validating the contributions of glycans in Env antigen design. Whether glycan-optimization will additionally influence immunogenicity, particularly on emerging stabilized trimers, is unknown, but this study provides a proof of concept for selectively and agnostically exploiting both proximal and distal viral protein glycosylation in a principled manner to improve target Ab binding profiles.
Collapse
Affiliation(s)
- Wen-Han Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Monia Draghi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Claudia Arevalo
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Christina B Karsten
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Todd J Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Bronwyn Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas A Lauffenburger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
2
|
Brade H, Brabetz W, Brade L, Hoist O, Löbau S, Lucakova M, Mamat U, Rozalski A, Zych K, Kosma P. Review: Chlamydial lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H. Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - W. Brabetz
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - L. Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - O. Hoist
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - S. Löbau
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - M. Lucakova
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - U. Mamat
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - A. Rozalski
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - K. Zych
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - P. Kosma
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria
| |
Collapse
|
3
|
Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat Commun 2016; 7:11224. [PMID: 27091615 PMCID: PMC4838876 DOI: 10.1038/ncomms11224] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. Immunologically-active glycans are promising vaccine candidates but can be difficult to synthesize. Here, the authors show that pentavalent display of a minimal disaccharde epitope on a chemical scaffold can mimic a native C. difficile glycan antigen, representing a simple approach to synthetic vaccine production.
Collapse
|
4
|
Meininger M, Stepath M, Hennig R, Cajic S, Rapp E, Rotering H, Wolff M, Reichl U. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:193-203. [DOI: 10.1016/j.jchromb.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
5
|
Silva MLS. Cancer serum biomarkers based on aberrant post-translational modifications of glycoproteins: Clinical value and discovery strategies. Biochim Biophys Acta Rev Cancer 2015; 1856:165-77. [PMID: 26232626 DOI: 10.1016/j.bbcan.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Due to the increase in life expectancy in the last decades, as well as changes in lifestyle, cancer has become one of the most common diseases both in developed and developing countries. Early detection remains the most promising approach to improve long-term survival of cancer patients and this may be achieved by efficient screening of biomarkers in biological fluids. Great efforts have been made to identify specific alterations during oncogenesis. Changes at the cellular glycosylation profiles are among such alterations. The "glycosylation machinery" of cells is affected by malignant transformation due to the altered expression of glycogens, leading to changes in glycan biosynthesis and diversity. Alterations in the post-translational modifications of proteins that occur in cancer result in the expression of antigenically distinct glycoproteins. Therefore, these aberrant and cancer-specific glycoproteins and the autoantibodies that are produced in response to their presence constitute targets for cancer biomarkers' search. Different strategies have been implemented for the discovery of cancer glycobiomarkers and are herein reviewed, along with their potentialities and limitations. Practical issues related with serum analysis are also addressed, as well as the challenges that this area faces in the near future.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo km 4.5, 42184 Mineral de la Reforma, Hidalgo, México.
| |
Collapse
|
6
|
Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Antibody recognition of carbohydrate epitopes†. Glycobiology 2015; 25:920-52. [PMID: 26033938 DOI: 10.1093/glycob/cwv037] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| |
Collapse
|
7
|
Kong L, Wilson IA, Kwong PD. Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins 2015; 83:590-6. [PMID: 25546301 PMCID: PMC4409329 DOI: 10.1002/prot.24747] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023]
Abstract
The crystal structure of a fully glycosylated HIV-1 gp120 core in complex with CD4 receptor and Fab 17b at 4.5-Å resolution reveals 9 of the 15 N-linked glycans of core gp120 to be partially ordered. The glycan at position Asn262 had the most extensive and well-ordered electron density, and a GlcNAc(2)Man(7) was modeled. The GlcNAc stem of this glycan is largely buried in a cleft in gp120, suggesting a role in gp120 folding and stability. Its arms interact with the stems of neighboring glycans from the oligomannose patch, which is a major target for broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Leopold Kong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Wang Y, Kotsuchibashi Y, Uto K, Ebara M, Aoyagi T, Liu Y, Narain R. pH and glucose responsive nanofibers for the reversible capture and release of lectins. Biomater Sci 2014. [PMID: 26214198 DOI: 10.1039/c4bm00269e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A dual pH and glucose responsive boronic acid containing nanofiber was constructed for the reversible capture and release of lectins. The effects of surface groups and pH values on selective lectin capture were investigated by fluorescence microscopy. Compared to the pristine nanofibrous membrane, glucose and galactose functionalized nanofiber surfaces showed significantly higher capture of ConA and Jacalin, under alkaline conditions. On the other hand, treatment of the modified nanofibers with an acidic solution resulted in the detachment of both the lectins and glycopolymers from the nanofiber surface. As expected, once the glycopolymers are displaced, no lectins were adhered to the nanofiber surface under alkaline conditions. These functional nanofibers can therefore be easily modified and hence can be used for quick removal of selective proteins or toxins from the solution.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Chemical and Materials Engineering, University of Alberta, 116 St and 85 Ave, Edmonton, AB T6G 2G6, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Narain R, Liu Y. Study of bacterial adhesion on different glycopolymer surfaces by quartz crystal microbalance with dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7377-7387. [PMID: 24885262 DOI: 10.1021/la5016115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein-carbohydrate interactions are involved in a wide variety of cellular recognition processes including cell growth regulation, differentiation and adhesion, the immune response, and viral or bacterial infections. A common way for bacteria to achieve adhesion is through their fimbriae which possess cellular lectins that can bind to complementary carbohydrates on the surface of the host tissues. In this work, we synthesized glycopolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization which were subsequently immobilized on a sensor surface for studies of bacterial adhesion by quartz crystal microbalance with dissipation (QCM-D). Ricinus communis Agglutinin (RCA120), a galactose specific lectin, was first studied by QCM-D to determine the specific lectin interactions to the different glycopolymers-treated surfaces. Subsequently, Pseudomonas aeruginosa PAO1 (a Gram-negative bacterium with galactose-specific binding C-type lectin (PA-IL)) and Escherichia coli K-12 (a Gram-negative bacterium with mannose-specific binding lectin) were then used as model bacteria to study bacterial adhesion mechanisms on different polymer-treated sensor surfaces by the coupled resonance theory. Our results showed that lectin-carbohydrate interactions play significant roles in comparison to the nonspecific interactions, such as electrostatic interactions. A significantly higher amount of P. aeruginosa PAO1 could adhere on the glycopolymer surface with strong contact point stiffness as compared to E. coli K-12 on the same surface. Furthermore, in comparison to E. coli K-12, the adhesion of P. aeruginosa PAO1 to the glycopolymers was found to be highly dependent on the presence of calcium ions due to the specific C-type lectin interactions of PA-IL, and also the enhanced bacterial adhesion is attributed to the stiffer glycopolymer surface in higher ionic strength condition.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Chemical and Materials Engineering and ‡Department of Civil and Environmental Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | | | | |
Collapse
|
10
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
11
|
Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J 2014; 457:379-90. [PMID: 24171862 DOI: 10.1042/bj20130413] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The major birch pollen allergen Bet v 1 is the main elicitor of airborne type I allergies and belongs to the PR-10 family (pathogenesis-related proteins 10). Bet v 1 is the most extensively studied allergen, and is well characterized at a biochemical and immunological level; however, its physiological function remains elusive. In the present study, we identify Q3OS (quercetin-3-O-sophoroside) as the natural ligand of Bet v 1. We isolated Q3OS bound to Bet v 1 from mature birch pollen and confirmed its binding by reconstitution of the Bet v 1-Q3OS complex. Fluorescence and UV-visible spectroscopy experiments, as well as HSQC (heteronuclear single-quantum coherence) titration, and the comparison with model compounds, such as quercetin, indicated the specificity of Q3OS binding. Elucidation of the binding site by NMR combined with a computational model resulted in a more detailed understanding and shed light on the physiological function of Bet v 1. We postulate that the binding of Q3OS to Bet v 1 plays an important, but as yet unclear, role during the inflammation response and Bet v 1 recognition by IgE.
Collapse
|
12
|
Shahbuddin M, Bullock AJ, MacNeil S, Rimmer S. Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2013; 2:727-738. [PMID: 32261291 DOI: 10.1039/c3tb21640c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides interact with cells in ways that can be conducive to wound healing. We have recently reported that konjac glucomannan (KGM) which is comprised of d-mannose and d-glucose linked by β-1,4 glycosidic chains, stimulates fibroblast proliferation. The aim of this study was to produce a range of crosslinked KGMs and bicomponent KGM containing hydrogels and to examine their potential for wound healing. Two types of KGM hydrogel were synthesized, biodegradable from crosslinked KGM and non-biodegradable by forming semi-IPNs and graft-conetworks with a second synthetic component, poly(N-vinyl pyrrolidinone-co-poly(ethyleneglycol)diacrylate) (P(NVP-co-PEGDA)), which was produced by UV initiated radical polymerization. Crosslinked KGM was formed by bimolecular termination of macro-radicals formed by oxidation with Ce(iv). Semi-IPNs were formed by copolymerization of NVP and PEGDA in the presence of KGM and in the graft-conetworks the KGM was also crosslinked using the Ce(iv) procedure. The hydrogels had different swelling properties and differences could be observed in their chemical structure using 13C solid state NMR, DSC and FTIR. Both forms were cytocompatible but only the graft-conetworks had the ability to stimulate fibroblast metabolic activity and to stimulate the migration of both fibroblasts and keratinocytes. In conclusion a form of KGM hydrogel has been produced that could benefit wound healing.
Collapse
Affiliation(s)
- Munira Shahbuddin
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Broad Lane, S37HQ, Sheffield, UK.
| | | | | | | |
Collapse
|
13
|
Luo J, Xu ZK. Protein−Carbohydrate Interactions on the Surfaces of Glycosylated Membranes. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1120.ch011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Carrero P, Ardá A, Alvarez M, Doyagüez EG, Rivero-Buceta E, Quesada E, Prieto A, Solís D, Camarasa MJ, Peréz-Pérez MJ, Jiménez-Barbero J, San-Félix A. Differential Recognition of Mannose-Based Polysaccharides by Tripodal Receptors Based on a Triethylbenzene Scaffold Substituted with Trihydroxybenzoyl Moieties. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Kong L, Julien JP, Calarese D, Scanlan C, Lee HK, Rudd P, Wong CH, Dwek RA, Burton DR, Wilson IA. Toward a Carbohydrate-Based HIV-1 Vaccine. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1102.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Leopold Kong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Daniel Calarese
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher Scanlan
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hing-Ken Lee
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Pauline Rudd
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Chi-Huey Wong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Raymond A. Dwek
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Zeng X, Andrade CAS, Oliveira MDL, Sun XL. Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 2011; 402:3161-76. [DOI: 10.1007/s00216-011-5594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023]
|
17
|
Lindberg L, Johansson SM, Liu J, Grufman P, Holgersson J. Is there a clinical need for a diagnostic test allowing detection of chain type-specific anti-A and anti-B? Transfusion 2010; 51:494-503. [PMID: 20849404 DOI: 10.1111/j.1537-2995.2010.02870.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hemagglutination for detection and semiquantification of ABO antibodies is associated with large center-to-center variations and poor reproducibility. Because acceptance for transplantation and diagnosis of rejection in ABO-incompatible transplantation rely on the levels and specificity of ABO antibodies, reproducible tests that allow their detection and specificity determination are required. STUDY DESIGN AND METHODS The level of chain type-specific anti-A and anti-B were analyzed in the sera of 44 healthy individuals of known ABO blood group using an enzyme-linked immunosorbent assay (ELISA) with polyacrylamide (PAA) conjugates of blood group A and B trisaccharides or Type 2 chain A and B tetrasaccharides. Selected sera were further analyzed by hemagglutination and in an ELISA with Types 1 to 4 chain A or B neoglycolipids (NGL) as antigens. RESULTS Immunoglobulin (Ig)G anti-A and anti-B levels were higher (p ≤ 0.05) in blood group O than in B and A individuals. More IgM anti-A and anti-B cross-reactivity was detected in AB serum on PAA-conjugated A and B trisaccharides than on the tetrasaccharides. One of 11 blood group B and two of 12 A individuals had IgG antibodies binding the tetrasaccharide despite lack of, or very low reactivity with, the trisaccharides. IgG antibodies preferring the A and B Type 2 tetrasaccharides were of the IgG2 subclass. The NGL ELISA further supported the presence of chain type-specific anti-A and -B antibodies among nonsensitized, healthy individuals. CONCLUSION An ELISA with structurally defined ABH antigens will allow the antibody class and fine specificity of ABO antibodies to be determined, which may improve risk assessment in ABO-incompatible transplantation.
Collapse
Affiliation(s)
- Linda Lindberg
- AbSorber AB and the Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
19
|
Jiménez-Barbero J, L. Asensio J, Cuevas G, Canales A, Fernández-Alonso MC, Javier Cañada F. Conformational insights on the molecular recognition processes of carbohydrate molecules by proteins and enzymes: A 3D view by using NMR. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600598103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Christensen PA, Danielczyk A, Ravn P, Larsen M, Stahn R, Karsten U, Goletz S. Modifying Antibody Specificity by Chain Shuffling of VH / VLbetween Antibodies with Related Specificities. Scand J Immunol 2009; 69:1-10. [DOI: 10.1111/j.1365-3083.2008.02164.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Jayaraman N. Multivalent ligand presentation as a central concept to study intricate carbohydrate–protein interactions. Chem Soc Rev 2009; 38:3463-83. [DOI: 10.1039/b815961k] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Matei E, Furey W, Gronenborn AM. Solution and crystal structures of a sugar binding site mutant of cyanovirin-N: no evidence of domain swapping. Structure 2008; 16:1183-94. [PMID: 18682220 DOI: 10.1016/j.str.2008.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/30/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The cyanobacterial lectin Cyanovirin-N (CV-N) exhibits antiviral activity against HIV at a low nanomolar concentration by interacting with high-mannose oligosaccharides on the virus surface envelope glycoprotein gp120. Atomic structures of wild-type CV-N revealed a monomer in solution and a domain-swapped dimer in the crystal, with the monomer comprising two independent carbohydrate binding sites that individually bind with micromolar affinity to di- and trimannoses. In the mutant CVN(mutDB), the binding site on domain B was abolished and the protein was found to be completely inactive against HIV. We determined the solution NMR and crystal structures of this variant and characterized its sugar binding properties. In solution and the crystal, CVN(mutDB) is a monomer and no domain-swapping was observed. The protein binds to Man-3 and Man-9 with similar dissociation constants ( approximately 4 muM). This confirms that the nanomolar activity of wild-type CV-N is related to the multisite nature of the protein carbohydrate interaction.
Collapse
Affiliation(s)
- Elena Matei
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
23
|
Geraci C, Consoli GML, Galante E, Bousquet E, Pappalardo M, Spadaro A. Calix[4]arene Decorated with Four Tn Antigen Glycomimetic Units and P3CS Immunoadjuvant: Synthesis, Characterization, and Anticancer Immunological Evaluation. Bioconjug Chem 2008; 19:751-8. [DOI: 10.1021/bc700411w] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corrada Geraci
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Grazia M. L. Consoli
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Eva Galante
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Ennio Bousquet
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Maria Pappalardo
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Angelo Spadaro
- Istituto di Chimica Biomolecolare, C.N.R., Via del Santuario 110, I-95028 Valverde (CT), Italy, and Dipartimento di Scienze Farmaceutiche - Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
24
|
Ganguly D, Mukhopadhyay C. Extended binding site of ricin B lectin for oligosaccharide recognition. Biopolymers 2007; 86:311-20. [PMID: 17450571 DOI: 10.1002/bip.20746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plant lectin ricin B chain binds oligosaccharide with more affinity than the mono- or disaccharide ligands. The experiments indicated that a biantennary oligosaccharide could bind itself to any of the crystallographically established 1st or 2nd binding sites. After manual docking of either terminal galactose residues of the oligosaccharide in the 1st and 2nd binding sites of Ricin B and simulating the systems over nanosecond trajectories in implicit solvent, it was observed that the protein bound the oligosaccharide strongly through both its 1st and 2nd binding sites. Not only were the terminal galactose residues, several other residues of the oligosaccharide were involved in the binding scheme. Average gas phase energies were calculated molecular mechanically, solvation energies were calculated by Generalized Born model and the normal mode analysis was used to calculate the entropic contribution of binding. The entropy/enthalpy compensation has been observed for the protein-oligosaccharide interactions. The binding was found to be enthalpically favorable and compensating for the unfavorable entropic contribution. Comparison of the calculated free energy with the experimental data clearly suggests that binding is mono-dentate rather than bi-dentate through a single Gal-containing antenna.
Collapse
Affiliation(s)
- Debabani Ganguly
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India
| | | |
Collapse
|
25
|
Weikkolainen K, Aitio O, Blomqvist M, Natunen J, Helin J. Conjugation of oligosaccharides by reductive amination to amine modified chondroitin oligomer and γ-cyclodextrin. Glycoconj J 2007; 24:157-65. [PMID: 17268859 DOI: 10.1007/s10719-006-9024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/31/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Carbohydrates present on cell surfaces participate in numerous biological recognition phenomena including cell-cell interactions, cancer metastasis and pathogen invasion. Therefore, synthetic carbohydrates have a potential to act as pharmaceutical substances for treatment of various pathological phenomena by inhibiting specifically the interaction between cell surface carbohydrates and their protein receptors (lectins). However, the inherently low affinity of carbohydrate-protein interactions has often been an obstacle for successful generation of carbohydrate based pharmaceuticals. Multivalent glycoconjugates, i.e. structures carrying several copies of the active carbohydrate sequence in a carrier molecule, have been constructed to overcome this problem. Here we present two novel types of multivalent carbohydrate conjugates based on chondroitin oligomer and cyclodextrin carriers. These carriers were modified to express primary amino groups, and oligosaccharides were then bound to carrier molecules by reductive amination. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT, and GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc.
Collapse
Affiliation(s)
- Krista Weikkolainen
- Department of Biological and Environmental Sciences, University of Helsinki, P. O. Box 56, 00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Woods RJ. The Application of Molecular Modeling Techniques to the Determination of Oligosaccharide Solution Conformations. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125861.ch3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Bock K, Duus JØ. A Conformational Study of Hydroxymethyl Groups in Carbohydrates Investigated by 1H NMR Spectroscopy. J Carbohydr Chem 2006. [DOI: 10.1080/07328309408011662] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Klaus Bock
- a Carlsberg Laboratory, Department of Chemistry , Gamle Carlsberg Vej 10 DK 2500, Valby, Copenhagen, Denmark
| | - Jens Ø Duus
- b Beckman Institute, California Institute of Technology , Pasadena, CA, 91125
| |
Collapse
|
28
|
Komath SS, Kavitha M, Swamy MJ. Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 2006; 4:973-88. [PMID: 16525538 DOI: 10.1039/b515446d] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although for a long time carbohydrate binding property has been used as the defining feature of lectins, studies carried out mostly during the last two decades or so demonstrate that many plant lectins exhibit specific interactions with small molecules that are predominantly hydrophobic in nature. Such interactions, in most cases, appear to be at specific sites that do not interfere with the ability of the lectins to recognise and bind carbohydrates. Further, several of these ligands have binding affinities comparable to those for the binding of specific carbohydrates to the lectins. Given the ability of lectins to specifically recognise the glycocode (carbohydrate code) on different cell surfaces and distinguish between diseased and normal tissues, these additional sites may be viewed as potential drug carrying sites that could be exploited for targeted delivery to sites of choice. Porphyrin-lectin complexes are especially suited for such targeting since porphyrins are already under investigation in photodynamic therapy for cancer. This review will provide an update on the interactions of plant lectins with non-carbohydrate ligands, with particular emphasis on porphyrin ligands. The implications and potential applications of such studies will also be discussed.
Collapse
Affiliation(s)
- Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | | | | |
Collapse
|
29
|
Holgersson J, Gustafsson A, Breimer ME. Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol Cell Biol 2005; 83:694-708. [PMID: 16266322 DOI: 10.1111/j.1440-1711.2005.01373.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relative shortage of human organs for transplantation is today the major barrier to a broader use of transplantation as a means of treating patients with end-stage organ failure. This barrier could be partly overcome by an increased use of blood group ABO-incompatible live donors, and such trials are currently underway at several transplant centres. If xenotransplantation can be used clinically in the future, the human organ shortage will, in principle, be eradicated. In both these cases, carbohydrate antigens and the corresponding anti-carbohydrate antibodies are the major primary immunological barriers to overcome. Refined carbohydrate-based therapeutics may permit an increased number of ABO-incompatible transplantations to be carried out, and may remove the initial barriers to clinical xenotransplantation. Here, we will discuss the chemical characteristics of protein-carbohydrate interactions and outline carbohydrate-based antirejection therapies as used today in experimental as well as in clinical settings. Novel mucin-based adsorbers of natural anti-carbohydrate antibodies will also be described.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institute, Karolinska University Hospital at Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Volkova NL, Lebedeva NS, Parfenyuk EV. Complexation of D-Xylose and L-Arabinose with 18-Crown-6 in Aqueous Solutions: Calorimetric, Densimetric, and Viscometric Studies. RUSS J COORD CHEM+ 2005. [DOI: 10.1007/s11173-005-0189-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Ohlsson J, Sundin A, Nilsson UJ. Conformational studies on phenyl thioglycosides: a remote effect on disaccharide linkage by phenyl aglycons attenuates recognition of galabiosides by a bacterial adhesin. Chem Commun (Camb) 2003:384-5. [PMID: 12613624 DOI: 10.1039/b210649c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenyl S-galabiosides display altered conformational properties, as compared to phenyl O-galabiosides, characterised by a remote effect on the galabiose intersaccharidic glycoside bond by the phenyl aglycon, resulting in significantly lowered affinity for the PapG class II adhesin of uropathogenic E. coli.
Collapse
Affiliation(s)
- Jörgen Ohlsson
- Bioorganic Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | | | | |
Collapse
|
32
|
Lowary TL, Eichler E, Bundle DR. Oligosaccharide recognition by antibodies: Synthesis and evaluation of talose oligosaccharide analogues. CAN J CHEM 2002. [DOI: 10.1139/v02-118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of monosaccharide (46), disaccharide (3,712), and trisaccharide (1315) analogs of the native ligand 2, which fills the binding site of monoclonal antibody Se 155.4, have been synthesized and their bioactivity measured by solid- and solution-phase assays. The syntheses of disaccharide analogs sought to replace galactose by various alkyl groups at the O-2 position of mannose. The activity of one of these O-2 alkyl analogs was 75% of that observed for the trisaccharide and points to only weak net bonding between the solvent exposed galactose residue and the antibody binding site. The synthesis of talose analogs 13 and 14, where the mannose or galactose residues of 2 were replaced by talose produced ligands with activities from one-third to one-half of that seen for the native ligand 2. These activity changes did not exhibit discernable correlations with the ability of talose to disrupt water of solvation.Key words: abequose, 3,6-dideoxy-D-xylo-hexose, talose disaccharide and trisaccharide, antibody oligosaccharide interactions, molecular recognition of carbohydrates, water in antibody complexes, Salmonella LPS, monoclonal antibody Se 155.4, bacterial O-antigen.
Collapse
|
33
|
Roy R, Baek MG. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. case study with T-antigen markers from breast cancer MUC1 glycoprotein. J Biotechnol 2002; 90:291-309. [PMID: 12071230 DOI: 10.1016/s1389-0352(01)00065-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycodendrimers are relatively novel synthetic biomacromolecules that are made of biologically relevant carbohydrate ligands constructed at the periphery of a wide range of highly functionalized and repetitive scaffolds having varied molecular weights and structures. They were aimed to fill the gap between glycopolymers, having generally dispersed higher molecular weight, and small glycoclusters, in the study of multivalent carbohydrate protein interactions. In a way, glycodendrimers, with their spheroidal or dendritic (wedge) type structures, were initially designed as bioisosteres of cell surface multiantennary glycans. Taken as a curiosity and elegant molecules at their beginning, they are now considered as potent inhibitors of microbial adhesins. They have also been shown to play some roles in signal transduction and in receptor cross-linking. This brief report will describe advances that have been made toward the syntheses of a range of glycodendrimers bearing the immunodominant T-antigen disaccharide [beta-D-Gal-(1-3)-alpha-D-GalNAc] found on malignant cells of carcinomas, particularly related to breast cancer. This antigen, usually cryptic on healthy tissues, is greatly increased on cancer cells as a result of aberrant glycosylation. It is considered to be an important cancer marker. The high incidence of these carcinomas to invade other tissues such as lymph nodes, lung, and liver by metastasis was one of the arguments raised to generate T-antigen dendrimers that might have the potential to block the receptor sites following surgery. The synthesis of the T-antigen disaccharide will be briefly described, followed by the elaboration of neoglycoproteins and glycopolymers used to raise monoclonal antibodies against the T-antigen and for screening purpose, respectively. Scaffolds made of poly(amidoamine) (PAMAM), poly(propylene imine), N,N'-bis(acrylamido)acetic acid, and finally hyperbranched L-lysine were used to construct relatively small glycodendrimers bearing T-antigen moieties. Few glycodendrimers were also linked to fluorescein and biotin probes to generate ligands that can be used to detect T-Ag receptor sites.
Collapse
Affiliation(s)
- René Roy
- Centre for Research in Biopharmaceuticals, Department of Chemistry, University of Ottawa, ON, Canada.
| | | |
Collapse
|
34
|
Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 2002; 102:387-429. [PMID: 11841248 DOI: 10.1021/cr000401x] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Frandsen TP, Palcic MM, Svensson B. Substrate recognition by three family 13 yeast alpha-glucosidases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:728-34. [PMID: 11856334 DOI: 10.1046/j.0014-2956.2001.02714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Important hydrogen bonding interactions between substrate OH-groups in yeast alpha-glucosidases and oligo-1,6-glucosidase from glycoside hydrolase family 13 have been identified by measuring the rates of hydrolysis of methyl alpha-isomaltoside and its seven monodeoxygenated analogs. The transition-state stabilization energy, DeltaDeltaG, contributed by the individual OH-groups was calculated from the activities for the parent and the deoxy analogs, respectively, according to DeltaDeltaG = -RT ln[(Vmax/Km)analog/(Vmax/Km)parent]. This analysis of the energetics gave DeltaDeltaG values for all three enzymes ranging from 16.1 to 24.0 kJ.mol-1 for OH-2', -3', -4', and -6', i.e. the OH-groups of the nonreducing sugar ring. These OH-groups interact with enzyme via charged hydrogen bonds. In contrast, OH-2 and -3 of the reducing sugar contribute to transition-state stabilization, by 5.8 and 4.1 kJ.mol-1, respectively, suggesting that these groups participate in neutral hydrogen bonds. The OH-4 group is found to be unimportant in this respect and very little or no contribution is indicated for all OH-groups of the reducing-end ring of the two alpha-glucosidases, probably reflecting their exposure to bulk solvent. The stereochemical course of hydrolysis by these three members of the retaining family 13 was confirmed by directly monitoring isomaltose hydrolysis using 1H NMR spectroscopy. Kinetic analysis of the hydrolysis of methyl 6-S-ethyl-alpha-isomaltoside and its 6-R-diastereoisomer indicates that alpha-glucosidase has 200-fold higher specificity for the S-isomer. Substrate molecular recognition by these alpha-glucosidases are compared to earlier findings for the inverting, exo-acting glucoamylase from Aspergillus niger and a retaining alpha-glucosidase of glycoside hydrolase family 31, respectively.
Collapse
Affiliation(s)
- Torben P Frandsen
- Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | |
Collapse
|
36
|
Roy R, Baek MG, Rittenhouse-Olson K. Synthesis of N,N'-bis(acrylamido)acetic acid-based T-antigen glycodendrimers and their mouse monoclonal IgG antibody binding properties. J Am Chem Soc 2001; 123:1809-16. [PMID: 11456798 DOI: 10.1021/ja002596w] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel glycodendrimers based on N,N'-bis(acrylamido)acetic acid core with valencies between two and six were synthesized. The breast cancer-associated T-antigen carbohydrate marker, (beta-Gal-(1-3)-alpha-GalNAc-OR), was then conjugated by (i) 1,4-conjugate addition of thiolated T-antigen to the N-acrylamido dendritic cores and by (ii) amide bond formation between an acid derivative of the T-antigen and the polyamino dendrimers. The protein-binding ability of these new glycodendrimers was fully demonstrated by turbidimetric analysis and by enzyme-linked immunosorbent assay (ELISA) using peanut lectin from Arachis hypogaea and a mouse monoclonal antibody (MAb) FAA-J11 (IgG3). When tested as inhibitors of binding between MAb and a polymeric form of the T-antigen (T-antigen-co-polyacrylamide) used as a coating antigen, di- (17), tetra- (20), hexa- (21), and tetravalent (22) dendrimers showed IC(50) values of 174, 19, 48, and 18 nM, respectively. Two tetramers showed 120- to approximately 128-fold increased inhibitory properties over the monovalent antigen 6 used as a standard (IC(50) 2.3 mM). Heterobifunctional glycodendrimer bearing a biotin probe was also prepared for cancer cell labeling.
Collapse
Affiliation(s)
- R Roy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | |
Collapse
|
37
|
Jiménez-Barbero J, Espinosa JF, Asensio JL, Cañada FJ, Poveda A. The conformation of C-glycosyl compounds. Adv Carbohydr Chem Biochem 2001; 56:235-84. [PMID: 11039113 DOI: 10.1016/s0065-2318(01)56006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Komath SS, Kenoth R, Swamy MJ. Thermodynamic analysis of saccharide binding to snake gourd (Trichosanthes anguina) seed lectin. Fluorescence and absorption spectroscopic studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:111-9. [PMID: 11121110 DOI: 10.1046/j.1432-1327.2001.01852.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction of different saccharides with the snake gourd (Trichosanthes anguina) seed lectin (SGSL) was investigated by fluorescence spectroscopy. Binding of 4-methylumbelliferyl-beta-D-galactopyranoside (MeUmb beta Gal) to SGSL resulted in a significant increase in the fluorescence emission intensity of the sugar at 376 nm, and this change was used to estimate the association constants for the binding interaction. Interestingly, the increase in emission intensity changed with a change in temperature, increasing from 19.2% at 20 degrees C to 80.2% at 40 degrees C. At 20 degrees C the association constant, K(a), for the MeUmb beta Gal-SGSL interaction was found by fluorescence titration to be 5.8 x 10(4) M(-1). From the temperature dependence of the association constants, the changes in enthalpy (Delta H) and entropy (Delta S) associated with binding of MeUmb beta Gal to SGSL were estimated to be -80.85 kJ.mol(-1) and -184.0 J.mol(-1).K(-1), respectively. Binding of unlabeled sugars was investigated by monitoring the decrease in fluorescence intensity when they were added to a mixture of SGSL and MeUmb beta Gal. The Ka values for different sugars were determined at several temperatures, and Delta H and Delta S were determined from the van't Hoff plots. Enthalpy-entropy compensation was noticed in all cases. The results indicate that saccharide binding to SGSL is enthalpy-driven and the negative contribution from entropy is, in general, quite high.
Collapse
Affiliation(s)
- S S Komath
- School of Chemistry, University of Hyderabad, India
| | | | | |
Collapse
|
39
|
Asensio JL, Siebert HC, von der Lieth CW, Laynez J, Bruix M, Soedjanaamadja U, Beintema JJ, Ca�ada FJ, Gabius HJ, Jim�nez-Barbero J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N?,N?-triacetylchitotriose. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000801)40:2<218::aid-prot50>3.0.co;2-p] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Espinosa JF, Asensio JL, García JL, Laynez J, Bruix M, Wright C, Siebert HC, Gabius HJ, Cañada FJ, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N', N"-triacetylchitotriose. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3965-78. [PMID: 10866795 DOI: 10.1046/j.1432-1327.2000.01415.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The specific interaction of the isolated B domain of wheat germ agglutinin (WGA-B) with N,N',N"-triacetylchitotriose has been analyzed by 1H-NMR spectroscopy. The association constants for the binding of WGA-B to this trisaccharide have been determined from both 1H-NMR titration experiments and microcalorimetry methods. Entropy and enthalpy of binding have been obtained. The driving force for the binding process is provided by a negative DeltaH which is partially compensated by negative DeltaS. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 327 protein proton-proton distance constraints. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the refined solution conformation of this protein/carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein NOEs were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 35 refined structures was 1.05 A, while the heavy atom rmsd was 2.10 A. Focusing on the bound ligand, two different orientations of the trisaccharide within WGA-B binding site are possible. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to both complexes. A comparison of the three-dimensional structure of WGA-B in solution to that reported in the solid state and to those deduced for hevein and pseudohevein in solution has also been performed.
Collapse
Affiliation(s)
- J F Espinosa
- Instituto de Química Orgánica General, Centro de Investigaciones Biológicas, Instituto de Química Física Rocasolano, and Instituto de Estructura de la Materia, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Frandsen TP, Lok F, Mirgorodskaya E, Roepstorff P, Svensson B. Purification, enzymatic characterization, and nucleotide sequence of a high-isoelectric-point alpha-glucosidase from barley malt. PLANT PHYSIOLOGY 2000; 123:275-286. [PMID: 10806244 PMCID: PMC59001 DOI: 10.1104/pp.123.1.275] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/1999] [Accepted: 01/23/2000] [Indexed: 05/23/2023]
Abstract
High-isoelectric-point (pI) alpha-glucosidase was purified 7, 300-fold from an extract of barley (Hordeum vulgare) malt by ammonium sulfate fractionation, ion-exchange, and butyl-Sepharose chromatography. The enzyme had high activity toward maltose (k(cat) = 25 s(-1)), with an optimum at pH 4.5, and catalyzed the hydrolysis by a retaining mechanism, as shown by nuclear magnetic resonance. Acarbose was a strong inhibitor (K(i) = 1.5 microM). Molecular recognition revealed that all OH-groups in the non-reducing ring and OH-3 in the reducing ring of maltose formed important hydrogen bonds to the enzyme in the transition state complex. Mass spectrometry of tryptic fragments assigned the 92-kD protein to a barley cDNA (GenBank accession no. U22450) that appears to encode an alpha-glucosidase. A corresponding sequence (HvAgl97; GenBank accession no. AF118226) was isolated from a genomic phage library using a cDNA fragment from a barley cDNA library. HvAgl97 encodes a putative 96.6-kD protein of 879 amino acids with 93.8% identity to the protein deduced from U22450. The sequence contains two active site motifs of glycoside hydrolase family 31. Three introns of 86 to 4,286 bp interrupt the coding region. The four exons vary from 218 to 1,529 bp. Gene expression analysis showed that transcription reached a maximum 48 h after the start of germination.
Collapse
Affiliation(s)
- T P Frandsen
- Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | | | |
Collapse
|
42
|
Taroni C, Jones S, Thornton JM. Analysis and prediction of carbohydrate binding sites. PROTEIN ENGINEERING 2000; 13:89-98. [PMID: 10708647 DOI: 10.1093/protein/13.2.89] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An analysis of the characteristic properties of sugar binding sites was performed on a set of 19 sugar binding proteins. For each site six parameters were evaluated: solvation potential, residue propensity, hydrophobicity, planarity, protrusion and relative accessible surface area. Three of the parameters were found to distinguish the observed sugar binding sites from the other surface patches. These parameters were then used to calculate the probability for a surface patch to be a carbohydrate binding site. The prediction was optimized on a set of 19 non-homologous carbohydrate binding structures and a test prediction was carried out on a set of 40 protein-carbohydrate complexes. The overall accuracy of prediction achieved was 65%. Results were in general better for carbohydrate-binding enzymes than for the lectins, with a rate of success of 87%.
Collapse
Affiliation(s)
- C Taroni
- Biomolecular Structure and Modelling Unit, Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
43
|
Asensio JL, Espinosa JF, Dietrich H, Cañada FJ, Schmidt RR, Martín-Lomas M, André S, Gabius HJ, Jiménez-Barbero J. Bovine Heart Galectin-1 Selects a Unique (Syn) Conformation of C-Lactose, a Flexible Lactose Analogue. J Am Chem Soc 1999. [DOI: 10.1021/ja990601u] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Recent progress in peptide and glycopeptide chemistry make the preparation of peptide and glycopeptide dendrimers of acceptable purity, with designed structural and immunochemical properties reliable. New methodologies using unprotected peptide building blocks have been developed to further increase the possibilities of their design and improve their preparation and separation. The sophisticated design of peptide and glycopeptide dendrimers has led to their use as antigens and immunogens, for serodiagnosis and other biochemical uses including drug delivery. Dendrimers bearing peptide with predetermined secondary structures are useful tools in protein de novo design. This article covers synthesis and applications of multiple antigen peptides (MAPs), multiple antigen glycopeptides (MAGs), multiple antigen peptides based on sequential oligopeptide carriers (MAP-SOCs), glycodendrimers and template-assembled synthetic proteins (TASPs). In part II the preparation of MAPs, and the utility of glycodendrimers and TASPs are discussed.
Collapse
Affiliation(s)
- P Veprek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
45
|
Di Virgilio S, Glushka J, Moremen K, Pierce M. Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1. Glycobiology 1999; 9:353-64. [PMID: 10089209 DOI: 10.1093/glycob/9.4.353] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of a study of protein-carbohydrate interactions, linear N-acetyl-polyllactosamines [Galbeta1,4GlcNAcbeta1,3]nwere synthesized at the 10-100 micromol scale using enzymatic methods. The methods described also provided specifically [1-13C]-galactose-labeled tetra- and hexasaccharides ([1-13C]-Galbeta1,4GlcNAcbeta1,3Galbeta1,4Glc and Galbeta1, 4GlcNAcbeta1,3[1-13C]Galbeta1,4GlcNAcbeta1,3Galbeta 1,4Glc) suitable for NMR studies. Two series of oligosaccharides were produced, with either glucose or N-acetlyglucosamine at the reducing end. In both cases, large amounts of starting primer were available from human milk oligosaccharides (trisaccharide primer GlcNAcbeta1,3Galbeta1, 4Glc) or via transglycosylation from N-acetyllactosamine. Partially purified and immobilized glycosyltransferases, such as bovine milk beta1,4 galactosyltransferase and human serum beta1,3 N- acetylglucosaminyltransferase, were used for the synthesis. All the oligo-saccharide products were characterized by1H and13C NMR spectroscopy and MALDI-TOF mass spectrometry. The target molecules were then used to study their interactions with recombinant galectin-1, and initial1H NMR spectroscopic results are presented to illustrate this approach. These results indicate that, for oligomers containing up to eight sugars, the principal interaction of the binding site of galectin-1 is with the terminal N-acetyllactosamine residues.
Collapse
Affiliation(s)
- S Di Virgilio
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens,GA 30602-7229, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Sponges are the lowest extant metazoan phylum and for about a century they have been used as a model system to study cell adhesion. There are three classes of molecules in the extracellular matrix of vertebrates: collagens, proteoglycans, and adhesive glycoproteins, all of them have been identified in sponges. Species-specific cell recognition in sponges is mediated by supramolecular proteoglycan-like complexes termed aggregation factors, still to be identified in higher animals. Polyvalent glycosaminoglycan interactions are involved in the species-specificity, representing one of the few known examples of a regulatory role for carbohydrates. Aggregation factors mediate cell adhesion via a bifunctional activity that combines a calcium-dependent self-interaction of aggregation factor molecules plus a calcium-independent heterophilic interaction with cell surface receptors. Important cases of cell adhesion are the phenomena involved in histocompatibility reactions. A long-standing prediction has been that the evolutionary ancestors of histocompatibility systems might be found among primitive cell-cell interaction molecules. A surprising characteristic of sponges, considering their low phylogenetic position, is that they possess an exquisitely sophisticated histocompatibility system. Any grafting between two different sponge individuals (allograft) is almost invariably incompatible in the many species investigated, exhibiting a variety of transitive qualitatively and quantitatively different responses, which can only be explained by the existence of a highly polymorphic gene system. Individual variability of protein and glycan components in the aggregation factor of the red beard sponge, Microciona prolifera, matches the elevated sponge alloincompatibility, suggesting an involvement of the cell adhesion system in sponge allogeneic reactions and, therefore, an evolutionary relationship between cell adhesion and histocompatibility systems.
Collapse
|
48
|
Irazoqui FJ, Vides MA, Nores GA. Structural requirements of carbohydrates to bind Agaricus bisporus lectin. Glycobiology 1999; 9:59-64. [PMID: 9884407 DOI: 10.1093/glycob/9.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Galbeta1-3GalNAc (T-disaccharide) and related molecules were assayed to describe the structural requirements of carbohydrates to bind Agaricus bisporus lectin (ABL). Results provide insight into the most relevant regions of T-disaccharide involved in the binding of ABL. It was found that monosaccharides bind ABL weakly indicating a more extended carbohydrate-binding site as compared to those involvedin the T-disaccharide specific lectins such as jacalin and peanut agglutinin. Lacto-N-biose (Galbeta1-3GlcNAc) unlike T-disaccharide, is unable to inhibit the ABL interaction, thus showing the great importance of the position of the axial C-4 hydroxyl group of GalNAc in T-disaccharide. This finding could explain the inhibitory ability of Galbeta1-6GlcNAc and lactose because C-4 and C-3 hydroxyl groups of reducing Glc, respectively, occupy a similar position as reported by conformational analysis. From the comparison of different glycolipids bearing terminal T-disaccharide bound to different linkages, it can be seen than ABL binding is even more impaired by an adjacent C-6 residual position than by the anomeric influence of T-disaccharide. Furthermore, the addition of beta-GlcNAc to the terminal T-disaccharide in C-3 position of Gal does not affect the ABL binding whereas if an anionic group such as glucuronic acid is added to C-3, the binding is partially affected. These findings demonstrate that ABL holds a particular binding nature different from that of other T-disaccharide specific lectins.
Collapse
Affiliation(s)
- F J Irazoqui
- Departamento de Bioquímica Clínica and Departamento de Química Biológica-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Agencia Postal 4, CC 61, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
49
|
Abstract
The concepts of rational design and solid phase combinatorial chemistry were used to develop affinity adsorbents for glycoproteins. A detailed assessment of protein-carbohydrate interactions was used to identify key residues that determine monosaccharide specificity, which were subsequently exploited as the basis for the synthesis of a library of glycoprotein binding ligands. The ligands were synthesised using solid phase combinatorial chemistry and were assessed for their sugar-binding ability with the glycoenzymes, glucose oxidase and RNase B. Partial and completely deglycosylated enzymes were used as controls. The triazine-based ligand, histamine/tryptamine (8/10) was identified as a putative glycoprotein binding ligand, since it displayed particular affinity for glucose oxidase and other mannosylated glycoproteins. Experiments with deglycosylated control proteins, specific eluants and retardation in the presence of competing sugars strongly suggest that the ligand binds the carbohydrate moiety of glucose oxidase rather than the protein itself.
Collapse
Affiliation(s)
- U D Palanisamy
- Institute of Biotechnology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QT, UK
| | | | | | | | | |
Collapse
|
50
|
Nilsson UJ, Fournier EJ, Hindsgaul O. Solid-phase extraction on C18 silica as a purification strategy in the solution synthesis of a 1-thio-beta-D-galactopyranoside library. Bioorg Med Chem 1998; 6:1563-75. [PMID: 9801828 DOI: 10.1016/s0968-0896(98)00087-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel strategy for the purification of carbohydrate-based chemical libraries synthesized in solution was developed. Purification of reaction products was accomplished by means of solid-phase extraction enabled by protecting the 2-, 3-, 4-, and 6-hydroxyl groups of a galactose derivative as their hydrophobic O-laurates. The presence of multiple O-laurates allowed adsorption of reaction products onto C18 silica while reagents and by-products were washed away with MeOH. Products were quantitatively eluted with pentane. Purification of products using solid-phase extraction offers the combined advantages of solution synthesis (normal solution reactivity and ease of reaction monitoring) with those of solid-phase synthesis (facile product isolation permitting the use of large excesses of reagents). To demonstrate the utility of the hydrophobic recovery-procedure, tetra-O-lauroyl-beta-D-galactopyranose-1-thiol was subjected to high-yielding reactions with a panel of Michael-acceptors and an alpha-chloro ketone. The resulting ketone adducts were then either reduced to the alcohols or reductively aminated with a selection of amino acids to give 30 different 1-thio-beta-D-galactosides as mixtures of four diastereomers after removal of protecting groups. At each step, the product was separated from the reagents and their by-products by simple adsorption onto C18 silica, washing with MeOH and elution of product with pentane. After completion of the combinatorial chemistry sequence, the O-laurates were cleaved by methanolysis and the product methyl laurate in turn removed from the desired water-soluble products by C18 adsorption. Individual library members were thus conveniently produced on 10-30 mg scales at purity levels of > 90%. One of the 1-thio-beta-D-galactosides thus produced was found to be a competitive inhibitor of the beta-galactosidase from E. coli with Ki value of 1.7 microM.
Collapse
Affiliation(s)
- U J Nilsson
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|