1
|
Rauniyar K, Akhondzadeh S, Gąciarz A, Künnapuu J, Jeltsch M. Bioactive VEGF-C from E. coli. Sci Rep 2022; 12:18157. [PMID: 36307539 PMCID: PMC9616921 DOI: 10.1038/s41598-022-22960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.
Collapse
Affiliation(s)
- Khushbu Rauniyar
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Soheila Akhondzadeh
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Anna Gąciarz
- grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Jaana Künnapuu
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Michael Jeltsch
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland ,grid.452042.50000 0004 0442 6391Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
2
|
Novakovic M, Battistel MD, Azurmendi HF, Concilio MG, Freedberg DI, Frydman L. The Incorporation of Labile Protons into Multidimensional NMR Analyses: Glycan Structures Revisited. J Am Chem Soc 2021; 143:8935-8948. [PMID: 34085814 PMCID: PMC8297728 DOI: 10.1021/jacs.1c04512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glycan structures
are often stabilized by a repertoire of hydrogen-bonded
donor/acceptor groups, revealing longer-lived structures that could
represent biologically relevant conformations. NMR provides unique
data on these hydrogen-bonded networks from multidimensional experiments
detecting cross-peaks resulting from through-bond (TOCSY) or through-space
(NOESY) interactions. However, fast OH/H2O exchange, and
the spectral proximity among these NMR resonances, hamper the use
of glycans’ labile protons in such analyses; consequently,
studies are often restricted to aprotic solvents or supercooled aqueous
solutions. These nonphysiological conditions may lead to unrepresentative
structures or to probing a small subset of accessible conformations
that may miss “active” glycan conformations. Looped,
projected spectroscopy (L-PROSY) has been recently shown to substantially
enhance protein NOESY and TOCSY cross-peaks, for 1Hs that
undergo fast exchange with water. This study shows that even larger
enhancements can be obtained for rapidly exchanging OHs in saccharides,
leading to the retrieval of previously undetectable 2D TOCSY/NOESY
cross-peaks with nonlabile protons. After demonstrating ≥300%
signal enhancements on model monosaccharides, these experiments were
applied at 1 GHz to elucidate the structural network adopted by a
sialic acid homotetramer, used as a model for α,2–8 linked
polysaccharides. High-field L-PROSY NMR enabled these studies at higher
temperatures and provided insight previously unavailable from lower-field
NMR investigations on supercooled samples, involving mostly nonlabile
nuclei. Using L-PROSY’s NOEs and other restraints, a revised
structural model for the homotetramer was obtained combining rigid
motifs and flexible segments, that is well represented by conformations
derived from 40 μs molecular dynamics simulations.
Collapse
Affiliation(s)
- Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marcos D Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Hugo F Azurmendi
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Maria-Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
3
|
Park D, Xu G, Barboza M, Shah IM, Wong M, Raybould H, Mills DA, Lebrilla CB. Enterocyte glycosylation is responsive to changes in extracellular conditions: implications for membrane functions. Glycobiology 2018; 27:847-860. [PMID: 28486580 DOI: 10.1093/glycob/cwx041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells in the lining of the intestines play critical roles in maintaining homeostasis while challenged by dynamic and sudden changes in luminal contents. Given the high density of glycosylation that encompasses their extracellular surface, environmental changes may lead to extensive reorganization of membrane-associated glycans. However, neither the molecular details nor the consequences of conditional glycan changes are well understood. Here we assessed the sensitivity of Caco-2 and HT-29 membrane N-glycosylation to variations in (i) dietary elements, (ii) microbial fermentation products and (iii) cell culture parameters relevant to intestinal epithelial cell growth and survival. Based on global LC-MS glycomic and statistical analyses, the resulting glycan expression changes were systematic, dependent upon the conditions of each controlled environment. Exposure to short chain fatty acids produced significant increases in fucosylation while further acidification promoted hypersialylation. Notably, among all conditions, increases of high mannose type glycans were identified as a major response when extracellular fructose, galactose and glutamine were independently elevated. To examine the functional consequences of this discrete shift in the displayed glycome, we applied a chemical inhibitor of the glycan processing mannosidase, globally intensifying high mannose expression. The data reveal that upregulation of high mannose glycosylation has detrimental effects on basic intestinal epithelium functions by altering permeability, host-microbe associations and membrane protein activities.
Collapse
Affiliation(s)
| | | | - Mariana Barboza
- Department of Chemistry.,Department of Anatomy, Physiology and Cell Biology
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, 1 Shields Ave, Davis, CA 95616,USA
| | | | | | - David A Mills
- Department of Food Science and Technology, University of California, 1 Shields Ave, Davis, CA 95616,USA
| | | |
Collapse
|
4
|
Wingfield PT. Overview of the purification of recombinant proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2015; 80:6.1.1-6.1.35. [PMID: 25829302 PMCID: PMC4410719 DOI: 10.1002/0471140864.ps0601s80] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.
Collapse
Affiliation(s)
- Paul T. Wingfield
- Protein Expression Laboratory, NIAMS - NIH, Building 6B, Room 1B130, 6 Center Drive, Bethesda, MD 20814, Tel: 301-594-1313,
| |
Collapse
|
5
|
Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet 2013; 38:231-9. [PMID: 23584976 DOI: 10.1007/s13318-013-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Rajan Swami
- , House no. 1089, Sector 20 B, Chandigarh, 160020, India,
| | | |
Collapse
|
6
|
Battistel MD, Pendrill R, Widmalm G, Freedberg DI. Direct Evidence for Hydrogen Bonding in Glycans: A Combined NMR and Molecular Dynamics Study. J Phys Chem B 2013; 117:4860-9. [DOI: 10.1021/jp400402b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcos D. Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, Maryland 20852-1448, United States
| | - Robert Pendrill
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, Maryland 20852-1448, United States
| |
Collapse
|
7
|
Abstract
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Collapse
|
8
|
Abstract
General mass spectrometry-based strategies for analysis of N-glycosylated peptides are described. The well-established method utilizes Peptide-N-glycosidase F (PNGase F) for in-gel or in-solution release of N-linked glycans from the polypeptide chains (along with the conversion of the formerly N-glycosylated Asn to Asp), thus allowing separate analysis of glycan moieties and deglycosylated peptides. However, no assignment of individual glycans to a glycosylation site can be realized. Intact glycopeptides (i.e., proteolytic mixtures in which the glycan chains stay attached at their original glycosylation sites) can be analyzed either by a direct infusion or with HPLC separation prior to MALDI or ESI mass spectrometric analysis to provide both information on the glycan structure and glycosylation site in the same experiment. Several different strategies for efficient in-solution digestion of glycoproteins are described, such as proteolytic digestion in the electrospray capillary and simultaneous analysis of the resulting (glyco)peptides.
Collapse
Affiliation(s)
- Stefanie Henning
- Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | | | |
Collapse
|
9
|
Wingfield PT. Overview of the purification of recombinant proteins produced in Escherichia coli. ACTA ACUST UNITED AC 2008; Chapter 6:6.1.1-6.1.37. [PMID: 18429246 DOI: 10.1002/0471140864.ps0601s30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The updated version of this unit presents an overview of recombinant protein purification with special emphasis on proteins expressed in E. coli. The first section deals with information pertinent to protein purification that can be derived from translation of the cDNA sequence. This is followed by a discussion of common problems associated with bacterial protein expression. A flow chart summarizes approaches for establishing solubility and localization of bacterially produced proteins. Purification strategies for both soluble and insoluble proteins are also reviewed. A section on glycoproteins produced in bacteria in the nonglycosylated state is included to emphasize that, although they may not be useful for in vivo studies, such proteins are well suited for structural studies. Finally, protein handling, scale and aims of purification, and specialized equipment needed for recombinant protein purification and characterization are discussed. The methodologies and approaches described here are essentially suitable for laboratory-scale operations.
Collapse
|
10
|
Braza-Boïls A, Tomás M, Marín MP, Megías L, Sancho-Tello M, Fornas E, Renau-Piqueras J. GLYCOSYLATION IS ALTERED BY ETHANOL IN RAT HIPPOCAMPAL CULTURED NEURONS. Alcohol Alcohol 2006; 41:494-504. [PMID: 16751217 DOI: 10.1093/alcalc/agl044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. METHODS Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. RESULTS Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. CONCLUSIONS Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.
Collapse
Affiliation(s)
- Aitana Braza-Boïls
- Section of Cell Biology and Pathology, Center for Investigation, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 2005; 3:2633-48. [PMID: 16129023 DOI: 10.1111/j.1538-7836.2005.01478.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Hansson
- Department of Clinical Chemistry, Lund University, University Hospital Malmö, Malmö, Sweden.
| | | |
Collapse
|
12
|
Abstract
[reaction: see text] A route for the synthesis of an electrophilic, carbocyclic galactose equivalent from D-galactose is described. The strategy utilizes ring-closing metathesis with Grubbs's second-generation catalyst as the key step. The galactose-derived electrophile reacted in an S(N)2 fashion with N-Boc-cysteine methyl ester to provide an alpha-galactosylserine isostere. The method was extended to the synthesis of a glycopeptide isostere.
Collapse
Affiliation(s)
- Lisa J Whalen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
13
|
Mechref Y, Muzikar J, Novotny MV. Comprehensive assessment of N-glycans derived from a murine monoclonal antibody: a case for multimethodological approach. Electrophoresis 2005; 26:2034-46. [PMID: 15841499 PMCID: PMC1524875 DOI: 10.1002/elps.200410345] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Highly efficient separation techniques, laser-induced fluorescence (LIF) detection, and different mass-spectrometric (MS) measurements were combined in a multimethodological scheme to perform a comprehensive structural characterization of N-linked oligosaccharides in a murine monoclonal antibody (immunoglobulin G (IgG(kappa))). Monosaccharide compositional analysis was carried out through a capillary electrophoresis (CE)-LIF method, in which the chemically and enzymatically released sugars were fluorescently labeled. This analysis provides a preliminary assessment of certain structures, being followed by CE-LIF and matrix-assisted laser desorption/ionization (MALDI)-MS profiling of the intact glycan structures. Linkages and monosaccharide residues were confirmed by MALDI-MS in conjunction with exoglycosidase digestion. MALDI-MS and CE data were effectively combined to reveal the overall structural diversity of both acidic and neutral glycans. Finally, the sites of glycosylation and site occupancies were deduced through the measurements performed with microcolumn liquid chromatography coupled via electrospray to a quadrupole/time-of-flight instrument.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
14
|
Tomás M, Fornas E, Megías L, Durán JM, Portolés M, Guerri C, Egea G, Renau-Piqueras J. Ethanol impairs monosaccharide uptake and glycosylation in cultured rat astrocytes. J Neurochem 2002; 83:601-12. [PMID: 12390522 DOI: 10.1046/j.1471-4159.2002.01167.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astrocyte and glial-neuron interactions have a critical role in brain development, which is partially mediated by glycoproteins, including adhesion molecules and growth factors. Ethanol affects the synthesis, intracellular transport, subcellular distribution and secretion of these glycoproteins, suggesting alterations in glycosylation. We analyzed the effect of long-term exposure to low doses of ethanol (30 mm) on glycosylation process in growing cultured astrocytes in vitro. Cells were incubated for short (5 min) and long (90 min) periods with several radioactively labeled carbohydrate precursors. The uptake, kinetics and metabolism of these precursors, as well as the radioactivity distribution in protein gels were analyzed. The levels of GLUT1 and mannosidase II were also determined. Ethanol increased the uptake of monosaccharides and the protein levels of GLUT1 but decreased those of mannosidase II. It altered the carbohydrate moiety of proteins and increased cell surface glycoproteins containing terminal non-reduced mannose. These results indicate that ethanol impairs glycosylation in rat astrocytes, thus disrupting brain development.
Collapse
Affiliation(s)
- M Tomás
- Centro de Investigación, Department of Biology and Cellular Pathology, Hospital Universitario La Fe, Avda. Campenar 21, E-46009 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Analysis of Protein Therapeutics by Capillary Electrophoresis. CE IN BIOTECHNOLOGY: PRACTICAL APPLICATIONS FOR PROTEIN AND PEPTIDE ANALYSES 2001. [DOI: 10.1007/978-3-322-83021-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Affiliation(s)
- T S Raju
- Analytical Chemistry, MS 62, Genentech Inc., One DNA Way, South San Francisco, California 94080, USA.
| |
Collapse
|
17
|
Ma S, Nashabeh W. Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 1999; 71:5185-92. [PMID: 10575965 DOI: 10.1021/ac990376z] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method for the analysis of asparaginyl-linked (N-linked) carbohydrate moieties of an IgG1 monoclonal antibody is described here. The antibody, rituximab, is a mouse/human chimeric antibody to human CD20 antigen. The glycans present on rituximab are neutral complex biantennary oligosaccharides with zero, one, and two terminal galactose residues (G0, G1, and G2, respectively). To monitor the variation of the glycosylation during manufacture, the glycans were first enzymatically released from the antibody via digestion with peptide-N-glycosidase F, then derivatized with a charged fluorophore, 8-aminopyrene-1,3,6-trisulfonic acid and further separated by capillary electrophoresis with laser-induced fluorescence detection. All observed glycans were fully resolved, including the positional isomers of G1. The exact nature of the isomers in terms of the location of the terminal galactose was further characterized via multiple enzymatic digestion steps including mannosidase with activity toward specific Man(alpha 1,3) linkage. The optimization and several key parameters, i.e., enzymatic digestion and derivatization, in the assay development will be discussed. Moreover, to ensure that the assay can be used in routine lot release testing, the assay was validated and found to be accurate and precise. The analytical approach described is suitable for characterization as well as routine testing of the N-linked glycan content in any IgG1 monoclonal antibody and glycoproteins in general.
Collapse
Affiliation(s)
- S Ma
- Department of Analytical Chemistry, Genentech, Inc., South San Francisco, California 94704, USA
| | | |
Collapse
|
18
|
Bhatia PK, Mukhopadhyay A. Protein glycosylation: implications for in vivo functions and therapeutic applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:155-201. [PMID: 9933978 DOI: 10.1007/3-540-49811-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glycosylation machinery in eukaryotic cells is available to all proteins that enter the secretory pathway. There is a growing interest in diseases caused by defective glycosylation, and in therapeutic glycoproteins produced through recombinant DNA technology route. The choice of a bioprocess for commercial production of recombinant glycoprotein is determined by a variety of factors, such as intrinsic biological properties of the protein being expressed and the purpose for which it is intended, and also the economic target. This review summarizes recent development and understanding related to synthesis of glycans, their functions, diseases, and various expression systems and characterization of glycans. The second section covers processing of N- and O-glycans and the factors that regulate protein glycosylation. The third section deals with in vivo functions of protein glycosylation, which includes protein folding and stability, receptor functioning, cell adhesion and signal transduction. Malfunctioning of glycosylation machinery and the resultant diseases are the subject of the fourth section. The next section covers the various expression systems exploited for the glycoproteins: it includes yeasts, mammalian cells, insect cells, plants and an amoeboid organism. Biopharmaceutical properties of therapeutic proteins are discussed in the sixth section. In vitro protein glycosylation and the characterization of glycan structures are the subject matters for the last two sections, respectively.
Collapse
Affiliation(s)
- P K Bhatia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
19
|
Quintero O, Montesino R, Cremata JA. Two-dimensional mapping of 8-amine-1,3,6-naphthalene trisulfonic acid derivatives of N-linked neutral and sialyloligosaccharides. Anal Biochem 1998; 256:23-32. [PMID: 9466794 DOI: 10.1006/abio.1997.2420] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe a simple and sensitive two-dimensional sugar-mapping technique of 8-amine-1,3,6-naphthalene trisulfonic acid derivatives (ANTS derivatives) of neutral and sialyloligosaccharides for structure analysis and characterization of N-linked oligosaccharides using picomoles of samples. The method includes: (1) reductive amination with ANTS of enzymatically released oligosaccharides, (2) simultaneous separation of oligosaccharide derivatives in a fluorophore-assisted carbohydrate electrophoresis and NH2-HPLC column under ion suppression conditions, (3) plotting of the relative migration indexes (X axis) and relative retention times (Y axis), and (4) when necessary, additional exoglycosidase digestion. As illustrated by the glycosylation profiling and structural analysis of alpha 1 anti-trypsin and murine IgG 2a, this methodology fulfills most of the requirements for a complete characterization of neutral and charged oligosaccharides released from N-glycosylated glycoprotein.
Collapse
Affiliation(s)
- O Quintero
- GlycoLab, Bio-Industry Division, Havana, Cuba
| | | | | |
Collapse
|
20
|
Abstract
AbstractAn important risk factor for thrombosis is the polymorphism R506Q in factor V that causes resistance of factor Va to proteolytic inactivation by activated protein C (APC). To study the potential influence of the carbohydrate moieties of factor Va on its inactivation by APC, factor V was subjected to mild deglycosylation (neuraminidase plus N-glycanase) under nondenaturing conditions. The APC resistance ratio values (ratio of activated partial thromboplastin time [APTT] clotting times with and without APC) of the treated factor V were increased (2.4 to 3.4) as measured in APTT assays. O-glycanase treatment of factor V did not change the APC resistance ratio. The procoagulant activity of factor V as well as its activation by thrombin was not affected by mild deglycosylation. Treatment of factor V with neuraminidase and N-glycanase mainly altered the electrophoretic mobility of the factor Va heavy chain, whereas treatment with O-glycanase changed the mobility of the connecting region. This suggests that the removal of the N-linked carbohydrates from the heavy chain of factor Va, which is the substrate for APC, is responsible for the increase in susceptibility to inactivation by APC. Thus, variability in carbohydrate could account for some of the known variability in APC resistance ratios, including the presence of borderline or low APC resistance ratios among patients who lack the R506Q mutation.
Collapse
|
21
|
Delagebeaudeuf C, Gassama A, Collet X, Nauze M, Chap H. Guinea pig intestinal phospholipase B: protein expression during enterocyte maturation and effects of N-oligosaccharide removal on enzymatic activities and protein stability. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:119-26. [PMID: 8856041 DOI: 10.1016/0005-2760(96)00090-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Guinea pig phospholipase B (PLB) is an intestinal brush-border hydrolase displaying a broad substrate specificity towards various dietary lipids. PLB was detected by immunoblotting as a single 140-kDa polypeptide in all cell populations isolated from guinea pig intestinal mucosa, but increased in parallel to its activity from undifferentiated to mature cells, the specific activity of the enzyme remaining constant. Moreover, N-glycosylation, which contributed to 23% of the apparent molecular mass, was identical along the cell differentiation axis. In all cell fractions, N-linked sugar chains were of the complex type, since they were removed by N-glycosidase F, whereas PLB remained insensitive to endoglycosidase H. Moreover, lack of O-glycosylation was demonstrated by the insensitivity of PLB to O-glycosidase and by its failure to interact with Helix pomatia lectin after prior treatment with neuraminidase or alpha-fucosidase. Enzymatic removal of sugar chains reduced phospholipase A2, lysophospholipase and diacylglycerol lipase activities by 27-35%, kinetic analysis indicating a decrease in apparent Vmax values for the three enzymatic activities, whereas the Km remained unchanged. Finally, the carbohydrate-depleted form of PLB did not display gross changes in thermal stability, in contrast to PLB from microorganisms previously investigated. Our data indicate that the high level of PLB N-glycosylation is poorly related to its biological function. Whether carbohydrate chains are involved in proper targeting of the enzyme to the brush-border membrane remains to be established.
Collapse
Affiliation(s)
- C Delagebeaudeuf
- Institut Fédératif de Recherches en Immunologie Cellulaire et Moléculaire, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
22
|
Jackson P. The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol Biotechnol 1996; 5:101-23. [PMID: 8734424 DOI: 10.1007/bf02789060] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The glycans of glycoconjugates mediate numerous important biological processes. Their separation and structural determination present considerable difficulties because of the small quantities that are available from biological sources and the inherent difficulty of analyzing the wide variety of complex structures that exist. A method for the analysis of reducing saccharides by PAGE that uses specific fluorophore labeling and is simple, rapid, sensitive, and readily available to biological researchers, has been developed. This method is known acronimically either as PAGEFS (PAGE of Fluorophore-labeled Saccharides) or in one commercial format as FACE (Fluorophore-Assisted Carbohydrate Electrophoresis). In the PAGEFS method, saccharides having an aldehydic reducing end group are labeled quantitatively with a fluorophore and then separated with high resolution by PAGE. Two fluorophores, 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) and 2-aminoacridone (AMAC), have been used to enable the separation of a variety of saccharide positional isomers, anomers, and epimers. Subpicomolar quantities of individual saccharides can be detected using a sensitive imaging system. Mixtures of oligosaccharides obtained by enzymatic cleavage from glycoproteins can be labeled and electrophoresed to yield an oligosaccharide profile of each protein. AMAC can be used to distinguish unequivocally between acidic and neutral oligosaccharides. Methods of obtaining saccharide sequence information from purified oligosaccharides have been developed using enzymatic degradation. Other applications and the potential of the system are described.
Collapse
Affiliation(s)
- P Jackson
- Division of Transfusion Medicine, University of Cambridge, UK
| |
Collapse
|
23
|
Van Zuylen CW, De Beer T, Rademaker GJ, Haverkamp J, Thomas-Oates JE, Hård K, Kamerling JP, Vliegenthart JF. Site-specific and complete enzymic deglycosylation of the native human chorionic gonadotropin alpha-subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:754-60. [PMID: 7544284 DOI: 10.1111/j.1432-1033.1995.tb20758.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous studies have shown that glycosylation of the alpha-subunit of human chorionic gonadotropin (alpha hCG) is essential for the biological activity of this hormone. To obtain detailed insight into the function of N-glycosylation, the availability of site-specifically and fully deglycosylated alpha-subunits obtained under non-denaturing conditions is a prerequisite. NMR spectroscopy in combination with FAB-mapping demonstrates that only Asn52 of the alpha-subunit is accessible to digestion by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F under native conditions. Treatment of native alpha hCG with endo-beta-N-acetylglucosaminidase B results in full deglycosylation yielding alpha hCG with one GlcNAc residue at both Asn52 and Asn78.
Collapse
Affiliation(s)
- C W Van Zuylen
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Carbohydrates, in particular the complex carbohydrates conjugated to proteins and lipids, have important functions in a variety of biological systems. Their isolation and structural determination--prerequisites for elucidation of their biological functions--have been technical challenges for many decades. Almost all available chromatographic and electrophoretic methods as well as NMR and MS have been applied to carbohydrate analysis but none has proved satisfactory in terms of simplicity, sensitivity, reproducibility, cost and requirement for materials. Recently, a technique called fluorophore-assisted carbohydrate electrophoresis was developed which is very promising. It separates fluorescently-labeled carbohydrates on polyacrylamide gels and uses a charge-coupled device camera to detect and quantitate the products. This review describes the principles of the method and its applications to several aspects of research on carbohydrate-containing biological biomolecules.
Collapse
Affiliation(s)
- G F Hu
- Center for Biochemical Sciences and Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Vouret-Craviari V, Grall D, Chambard JC, Rasmussen UB, Pouysségur J, Van Obberghen-Schilling E. Post-translational and activation-dependent modifications of the G protein-coupled thrombin receptor. J Biol Chem 1995; 270:8367-72. [PMID: 7713946 DOI: 10.1074/jbc.270.14.8367] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of the present study was to analyze the post-translational and activation-dependent modifications of the G protein-coupled thrombin receptor. A human receptor cDNA was engineered to encode an epitope tag derived from the vesicular stomatitis virus glycoprotein at the COOH terminus of the receptor and expressed in human embryonic kidney 293 cells. We show here that the mature receptor is a glycosylated protein with an apparent molecular mass ranging from 68 to 80 kDa by SDS-polyacrylamide gel electrophoresis. Removal of asparagine-linked oligosaccharides with N-glycosidase F leads to the appearance of a 36-40-kDa receptor species. The current model for receptor activation by thrombin involves specific hydrolysis of the arginine-41/serine-42 (Arg-41/Ser-42) peptide bond. Cleavage of the receptor by thrombin was demonstrated directly by Western analyses performed on membranes and glycoprotein-enriched lysates from transfected cells. Whereas thrombin treatment of cells results in increased mobility of the receptor in SDS-polyacrylamide gel electrophoresis, we found that their treatment with the thrombin receptor agonist peptide leads to a decrease in thrombin receptor mobility due, in part, to phosphorylation. The serine proteases trypsin and plasmin also cleave and activate the receptor similar to thrombin, whereas chymotrypsin cleaves the receptor at a site distal to Arg-41, thus rendering it unresponsive to thrombin while still responsive to thrombin receptor agonist peptide.
Collapse
|
26
|
Counillon L, Pouysségur J, Reithmeier RA. The Na+/H+ exchanger NHE-1 possesses N- and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry 1994; 33:10463-9. [PMID: 8068684 DOI: 10.1021/bi00200a030] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ubiquitously-expressed human Na+H+ exchanger (NHE-1) contains three consensus sites (Asn-X-Ser/Thr) for N-linked glycosylation at asparagines 75, 370, and 410. The first extracellular loop is rich in serine and threonine residues which may contain O-linked carbohydrate. In order to determine unambiguously the sites of glycosylation and their role in biosynthesis and cation transport, site-directed mutagenesis at the individual potential N-glycosylation sites (Asn to Asp) was performed and all possible double and triple mutants were constructed. The mutated DNAs were expressed in PS120 hamster fibroblasts lacking endogenous exchanger, and the transfected cells were selected by their ability to survive acute intracellular acidification. All constructs produced functional exchangers that had transport rates and pharmacological profiles that were similar to that of wild-type. Immunoblot analysis of the expressed proteins with and without N-glycosidase F treatment showed that only the first N-glycosylation site (Asn 75) is utilized. In addition, treatment of NHE-1 with neuraminidase and O-glycosidase demonstrated that NHE-1 also contains O-linked oligosaccharide. Two forms of NHE-1 was consistently observed, a mature form with a molecular mass of 110,000 Da which contains N-linked and O-linked oligosaccharide and is expressed at the cell surface, and a lower molecular mass form (85,000 Da) present in the endoplasmic reticulum which only contains N-linked high-mannose oligosaccharide. NHE-3, an apically-expressed epithelial isoform which does not possess the N75 N-linked putative glycosylation site and any extracellular loops enriched in serine and threonine residues, does not exhibit any detectable glycosylation.
Collapse
Affiliation(s)
- L Counillon
- Centre de Biochimie-CNRS, Université de Nice, France
| | | | | |
Collapse
|
27
|
The functions of the human insulin receptor are affected in different ways by mutation of each of the four N-glycosylation sites in the beta subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32417-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Núñez E, Aragón C. Structural analysis and functional role of the carbohydrate component of glycine transporter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89477-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Brigle KE, Spinella MJ, Westin EH, Goldman ID. Increased expression and characterization of two distinct folate binding proteins in murine erythroleukemia cells. Biochem Pharmacol 1994; 47:337-45. [PMID: 8304978 DOI: 10.1016/0006-2952(94)90025-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously identified two membrane-bound folate binding proteins, FBP1 and FBP2, in murine L1210 leukemia cells. We now report on the development of two variant murine erythroleukemia cell lines that were used for direct comparison and biochemical characterization of the two murine folate binding proteins. Based on the results of northern analysis and the mobilities of affinity-labeled proteins on polyacrylamide gels, these cell lines exhibit specific up-regulated expression of FBP1 or FBP2. The affinities of the folate binding proteins for various (anti)folates were determined based upon the ability of the compounds to inhibiting of [3H]folic acid. The two proteins exhibited considerably different affinities and stereospecificities and, in general, FBP2 consistently bound each test compound with lesser affinity than FBP1. Both proteins displayed greatest affinity for folic acid, 5-methyltetrahydrofolate, and the antifolates CB3717 and 5,10-dideazatetrahydrofolate (DDATHF). Conversely, the proteins exhibited poor affinity for the dihydrofolate reductase inhibitors methotrexate and aminopterin. For 5-formyltetrahydrofolate, FBP1 had high affinity for the (6S) diastereoisomer, whereas FBP2 showed preference for the non-physiologic (6R) diasterceoisomer. The binding properties of FBP1 and FBP2 overexpressed in these cell lines closely paralleled those of their respective human homologs. These lines provide a model system in which to examine the biochemical characteristics of the individual folate binding proteins without the potential problems associated with expression of proteins in dissimilar cell lines.
Collapse
Affiliation(s)
- K E Brigle
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond 23298
| | | | | | | |
Collapse
|
30
|
A Facile Method for the Release, Labeling and ce Analysis of Glycoprotein Oligosaccharides. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-194710-1.50036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Grootenhuis PD, van Boeckel CA, Haasnoot CA. Carbohydrates and drug discovery--the role of computer simulation. Trends Biotechnol 1994; 12:9-14. [PMID: 7764557 DOI: 10.1016/0167-7799(94)90005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent advances in the molecular modelling of carbohydrates have brought this technique to a level comparable with that of protein and nucleic acid simulations. After a brief introduction to the techniques used in the computer simulation of carbohydrates and carbohydrate interactions, an overview of applications in the field of carbohydrate-related drug discovery is presented.
Collapse
Affiliation(s)
- P D Grootenhuis
- Scientific Development Group, Organon International B.V., Oss, The Netherlands
| | | | | |
Collapse
|
32
|
Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:1-27. [PMID: 8243456 DOI: 10.1111/j.1432-1033.1993.tb18347.x] [Citation(s) in RCA: 574] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the last decade, there have been enormous advances in our knowledge of glycoproteins and the stage has been set for the biotechnological production of many of them for therapeutic use. These advances are reviewed, with special emphasis on the structure and function of the glycoproteins (excluding the proteoglycans). Current methods for structural analysis of glycoproteins are surveyed, as are novel carbohydrate-peptide linking groups, and mono- and oligo-saccharide constituents found in these macromolecules. The possible roles of the carbohydrate units in modulating the physicochemical and biological properties of the parent proteins are discussed, and evidence is presented on their roles as recognition determinants between molecules and cells, or cell and cells. Finally, examples are given of changes that occur in the carbohydrates of soluble and cell-surface glycoproteins during differentiation, growth and malignancy, which further highlight the important role of these substances in health and disease.
Collapse
Affiliation(s)
- H Lis
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
33
|
Grootenhuis PDJ, Haasnoot CAG. A CHARMm Based Force Field for Carbohydrates Using the CHEAT Approach: Carbohydrate Hydroxyl Groups Represented by Extended Atoms. MOLECULAR SIMULATION 1993. [DOI: 10.1080/08927029308022160] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|