1
|
Tan L, Tao Y, Wang T, Zou F, Zhang S, Kou Q, Niu A, Chen Q, Chu W, Chen X, Wang H, Yang Y. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections. J Med Chem 2017; 60:2669-2684. [DOI: 10.1021/acs.jmedchem.6b01261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liang Tan
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunliang Tao
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, China
| | - Ting Wang
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Feng Zou
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Shuhua Zhang
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Qunhuan Kou
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Niu
- Department
of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Qian Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Chu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haidong Wang
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, China
| | - Yushe Yang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Canham SM, France DJ, Overman LE. Total synthesis of (+)-sieboldine a: evolution of a pinacol-terminated cyclization strategy. J Org Chem 2013; 78:9-34. [PMID: 22734821 PMCID: PMC3825683 DOI: 10.1021/jo300872y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article describes synthetic studies that culminated in the first total synthesis of the Lycopodium alkaloid sieboldine A. During this study, a number of pinacol-terminated cationic cyclizations were examined to form the cis-hydrindanone core of sieboldine A. Of these, a mild Au(I)-promoted 1,6-enyne cyclization that was terminated by a semipinacol rearrangement proved to be most efficient. Fashioning the unprecedented N-hydroxyazacyclononane ring embedded within the bicyclo[5.2.1]decane-N,O-acetal moiety of sieboldine A was a formidable challenge. Ultimately, the enantioselective total synthesis of (+)-sieboldine A was completed by forming this ring in good yield by cyclization of a protected-hydroxylamine thioglycoside precursor.
Collapse
Affiliation(s)
| | | | - Larry E. Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| |
Collapse
|
3
|
Farrera-Sinfreu J, Español Y, Geslain R, Guitart T, Albericio F, Ribas de Pouplana L, Royo M. Solid-Phase Combinatorial Synthesis of a Lysyl-tRNA Synthetase (LysRS) Inhibitory Library. ACTA ACUST UNITED AC 2008; 10:391-400. [DOI: 10.1021/cc700157j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Josep Farrera-Sinfreu
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Yaiza Español
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Renaud Geslain
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Tanit Guitart
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| | - Miriam Royo
- Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010-Barcelona, Spain
| |
Collapse
|
6
|
Kline T, Fromhold M, McKennon TE, Cai S, Treiberg J, Ihle N, Sherman D, Schwan W, Hickey MJ, Warrener P, Witte PR, Brody LL, Goltry L, Barker LM, Anderson SU, Tanaka SK, Shawar RM, Nguyen LY, Langhorne M, Bigelow A, Embuscado L, Naeemi E. Antimicrobial effects of novel siderophores linked to beta-lactam antibiotics. Bioorg Med Chem 2000; 8:73-93. [PMID: 10968267 DOI: 10.1016/s0968-0896(99)00261-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
As a strategy to increase the penetration of antibiotic drugs through the outer membrane of gram-negative pathogens, facilitated transport through siderophore receptors has been frequently exploited. Hydroxamic acids, catechols, or very close isosteres of catechols, which are mimics of naturally occurring siderophores, have been used successfully as covalently linked escorting moieties, but a much wider diversity of iron binding motifs exists. This observation, coupled to the relative lack of specificity of siderophore receptors, prompted us to initiate a program to identify novel, noncatechol siderophoric structures. We screened over 300 compounds for their ability to (1) support growth in low iron medium of a Pseudomonas aeruginosa siderophore biosynthesis deletion mutant, or (2) compete with a bactericidal siderophore-antibiotic conjugate for siderophore receptor access. From these assays we identified a set of small molecules that fulfilled one or both of these criteria. We then synthesized these compounds with functional groups suitable for attachment to both monobactam and cephalosporin core structures. Siderophore-beta-lactam conjugates then were tested against a panel of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Although several of the resultant chimeric compounds had antimicrobial activity approaching that of ceftazidime, and most compounds demonstrated very potent activity against their cellular targets, only a single compound was obtained that had enhanced, siderophore-mediated antibacterial activity. Results with tonB mutants frequently showed increased rather than decreased susceptibilities. suggesting that multiple factors influenced the intracellular concentration of the drugs.
Collapse
Affiliation(s)
- T Kline
- PathoGenesis Corporation, Seattle, WA 98119, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|