1
|
Pengfei L, Weiwei W, Xiaofei L, Qin L, Jinwen Z, Rui H, Hang C. Regulation of Hormone-Related Genes in Ericerus pela (Hemiptera: Coccidae) for Dimorphic Metamorphosis. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5587053. [PMID: 31612946 PMCID: PMC6792091 DOI: 10.1093/jisesa/iez092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 05/21/2023]
Abstract
Insect hormones regulate metamorphosis including that leading to sexual dimorphism. Using RNA-Seq, we discovered that the second-instar male larva (SM) of the white wax insect, Ericerus pela, have 5,968 and 8,620 differentially expressed transcripts compared with the second-instar female larva (SF) and the first-instar male larva (FM), respectively. The expression levels of genes involved in the apoptosis of old tissues and the reconstruction of new ones in the SM significantly enhanced, while the SF mainly has enhanced expression levels of anabolic genes such as chitin. We predicted that the second-instar larvae are the developmental origin of sexual dimorphic metamorphosis. Meanwhile, in the juvenile hormone (JH) metabolic pathway, CYP15A1 and JH esterase (JHE) are differentially expressed; and in the 20-hydroxyecdysone (20E) metabolic pathway, CYP307A1, CYP314A1, and CYP18A1 are differentially expressed. In the SM, the expression levels of CYP307A1 and CYP314A1 are significantly increased, whereas the expression level of CYP18A1 is significantly decreased; in the SF, the expression levels of the above genes are opposite to that of the SM. Expression trends of RNA-seq is consistent with the expression level of qRT-PCR, and seven of them are highly correlated (R ≥ 0.610) and four are moderately correlated (0.588 ≥ R ≥ 0.542).
Collapse
Affiliation(s)
- Liu Pengfei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- NanJing Forestry University, Nanjing, China
| | - Wang Weiwei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Ling Xiaofei
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Lu Qin
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - Zhang Jinwen
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
| | - He Rui
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Chen Hang
- Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China
- The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
- Corresponding author, e-mail:
| |
Collapse
|
2
|
MacDonald CA, Boyd RJ. Computational insights into the suicide inhibition of Plasmodium falciparum Fk506-binding protein 35. Bioorg Med Chem Lett 2015; 25:3221-5. [PMID: 26091727 DOI: 10.1016/j.bmcl.2015.05.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023]
Abstract
Malaria is a parasite affecting millions of people worldwide. With the risk of malarial resistance reaching catastrophic levels, novel methods into the inhibition of this disease need to be prioritized. The exploitation of active site differences between parasitic and human peptidyl-prolyl cis/trans isomerases can be used for suicide inhibition, effectively poisoning the parasite without affecting the patient. This method of inhibition was explored using Plasmodium falciparum and Homo sapiens Fk506-binding proteins as templates for quantum mechanics/molecular mechanics calculations. Modification of the natural substrate has shown suicide inhibition is a valid approach for novel anti-malarials with little risk for parasitic resistance.
Collapse
Affiliation(s)
- Corey A MacDonald
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Russell J Boyd
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
3
|
Zhou J, Zhang H, Li J, Sheng X, Zong S, Luo Y, Nagaoka K, Weng Q, Watanabe G, Taya K. Molecular cloning and expression profile of a Halloween gene encoding Cyp307A1 from the seabuckthorn carpenterworm, Holcocerus hippophaecolus. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:56. [PMID: 23909572 PMCID: PMC3740924 DOI: 10.1673/031.013.5601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 09/12/2012] [Indexed: 05/30/2023]
Abstract
20-Hydroxyecdyone, an active form of ecdysteroid, is the key hormone in insect growth and development. Halloween genes encode ecdysteroidogenic enzymes, including cytochrome P450 monooxygenase. CYP307A1 (spook) is accepted as an enzyme acting in the so-called 'black box' that includes a series of hypothetical and unproven reactions that finally result in the oxidation of 7-dehydrocholesterol to diketol. In this study, the Holcocerus hippophaecolus Hua (Lepidoptera: Cossidae) CYP307A1 (HhSpo) gene was identified and characterized. The obtained cDNA sequence was 2084 base pairs with an open reading frame of 537 animo acids, in which existed conserved motifs of CYP450 enzymes. The transcript profiles of HhSpo were analyzed in various tissues of final instar larvae. The highest expression was observed in the prothoracic gland, while expression level was low but significant in other tissues. These results suggest that the sequence character and expression profile of HhSpo were well conserved and provided the basic information for its functional analysis.
Collapse
Affiliation(s)
- Jiao Zhou
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Juan Li
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xia Sheng
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shixiang Zong
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Youqing Luo
- The Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Kentaro Nagaoka
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gen Watanabe
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuyoshi Taya
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
4
|
Warren JT, O'Connor MB, Gilbert LI. Studies on the Black Box: incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by Drosophila melanogaster and Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:677-687. [PMID: 19699302 DOI: 10.1016/j.ibmb.2009.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
It has long been hypothesized that the oxidation of 7-dehydrocholesterol (7dC), made from dietary cholesterol (C), to 3-oxo-7dC (3-oxo-Delta(5,7)C) immediately precedes the unknown "Black Box" oxidations that lead to the formation of the first up-stream intermediate exhibiting the highly characteristic ecdysteroid structure of the steroid molting hormone of insects, crustaceans and some other arthropods. Perhaps rate-limiting and under the control of the prothoracicotropic hormone (PTTH), the biosynthesis of 3-oxo-7dC and its subsequent oxidative modifications have been difficult to study because of their apparent instability, i.e. no intermediates between 7dC and the diketol (3-oxo-25,22,2-trideoxyecdysone) have ever been observed or identified in insect prothoracic gland incubations with radiolabelled precursors. However, we show that 3-oxo-7dC can be converted into lipophilic, photosensitive, ketone-blocked (PSKB) ketal derivatives which will release 3-oxo-7dC when and where desired following brief irradiation with innocuous long-wave (365 nm) UV-light both in vivo and in vitro. In this manner, 3-oxo-7dC is quickly and efficiently incorporated into ecdysteroids by adult male and female Drosophila raised on a diet containing the PSKB ketals and in prothoracic glands of Manduca sexta incubated with the ketals emulsified into media. The instability of 3-oxo-7dC and its spontaneous transformation into extensively electron-delocalized intermediates will be discussed in relation to a possible mechanism of the Black Box oxidations eventually leading to the production of the active molting hormone 20-hydroxyecdysone (20E).
Collapse
Affiliation(s)
- James T Warren
- Department of Biology, Campus Box 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
5
|
Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 2007; 133:2565-74. [PMID: 16763204 DOI: 10.1242/dev.02428] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steroid hormones mediate a wide variety of developmental and physiological events in multicellular organisms. During larval and pupal stages of insects, the principal steroid hormone is ecdysone, which is synthesized in the prothoracic gland (PG) and plays a central role in the control of development. Although many studies have revealed the biochemical features of ecdysone synthesis in the PG, many aspects of this pathway have remained unclear at the molecular level. We describe the neverland (nvd) gene, which encodes an oxygenase-like protein with a Rieske electron carrier domain, from the silkworm Bombyx mori and the fruitfly Drosophila melanogaster. nvd is expressed specifically in tissues that synthesize ecdysone, such as the PG. We also show that loss of nvd function in the PG causes arrest of both molting and growth during Drosophila development. Furthermore, the phenotype is rescued by application of 20-hydroxyecdysone or the precursor 7-dehydrocholesterol. Given that the nvd family is evolutionally conserved, these results suggest that Nvd is an essential regulator of cholesterol metabolism or trafficking in steroid synthesis across animal phyla.
Collapse
Affiliation(s)
- Takuji Yoshiyama
- Department of Integrated Biosciences, Rm201, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
6
|
Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marqués G, Shimell MJ, Gilbert LI, O'Connor MB. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 2006; 298:555-70. [PMID: 16949568 DOI: 10.1016/j.ydbio.2006.07.023] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 11/30/2022]
Abstract
Ecdysteroids regulate many key developmental events in arthropods including molting and metamorphosis. Recently, members of the Drosophila Halloween group of genes, that are required for embryonic viability and cuticle deposition, have been shown to code for several cytochrome P450 enzymes that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each is expressed at all stages of development and shows no closely related homolog in their respective genomes. In contrast, we show here that several dipteran genomes encode two novel, highly related, microsomal P450 enzymes, Cyp307A1 and Cyp307A2, that likely participate as stage-specific components of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during larval stages within the prothoracic gland cells of the ring gland. RNAi mediated reduction in the expression of this heterochromatin localized gene leads to arrest at the first instar stage which can be rescued by feeding the larva 20E, E or ketodiol but not 7dC. In addition, spok expression is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development.
Collapse
Affiliation(s)
- Hajime Ono
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rewitz KF, Rybczynski R, Warren JT, Gilbert LI. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:188-99. [PMID: 16503480 DOI: 10.1016/j.ibmb.2005.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 05/06/2023]
Abstract
The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation of the Halloween genes.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
8
|
Sieglaff DH, Duncan KA, Brown MR. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:471-490. [PMID: 15804580 DOI: 10.1016/j.ibmb.2005.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 05/24/2023]
Abstract
A blood meal induces the ovaries of female Aedes aegypti mosquitoes to produce ecdysteroid hormones that regulate many processes required for egg maturation. Various proteins involved in the intracellular transport and biosynthesis of ecdysteroid precursors have been identified by analysis of Drosophila melanogaster mutants and by biochemical and molecular techniques in other insects. To begin examining these processes in mosquito ovaries, complete cDNAs were cloned for putative orthologs of diazepam-binding inhibitor (DBI), StAR-related lipid transfer domain containing protein (Start1), aldo/keto reductase (A/KR), adrenodoxin reductase (AR), and the cytochrome P450 enzymes, CYP302a1 (22-hydroxylase), CYP315a1 (2-hydroxylase) and CYP314a1 (20-hydroxylase). As shown by RT-PCR, transcripts for all seven genes were present in ovaries and other tissues both before and following a blood meal. Expression of these genes likely supports the low level of ecdysteroids produced in vitro (7-10 pg /tissue/6 h) by tissues other than ovaries. Ovaries from females not blood fed and up to 6 h post blood meal (PBM) also produced low amounts of ecdysteroids in vitro, but by 18 and 30 h PBM, ecdysteroid production was greatly increased (75-106 pg/ovary pair/6h) and thereafter (48 and 72 h PBM) returned to low levels. As determined by real-time PCR analysis, gene transcript abundance for AedaeCYP302 and AedaeCYP315a1 was significantly greater (9 and 12 fold, respectively) in ovaries during peak ecdysteroid production relative to that in ovaries from females not blood fed or 2 h PBM. AedaeStart1, AedaeA/KR and AedaeAR also had high transcript levels in ovaries during peak ecdysteroid production, and AedaeDBI transcripts had the greatest increase at 48 h PBM. In contrast, gene transcript abundance of AedaeCYP314a1 decreased PBM. This study shows for the first time that transcription of a few key genes for proteins involved in ecdysteroid biosynthesis is positively correlated with the rise in ecdysteroid production by ovaries of a female insect.
Collapse
|
9
|
Mu X, LeBlanc GA. Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:287-92. [PMID: 11857462 DOI: 10.1002/jez.10020] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of ecdysteroids in crustacean embryo development and the susceptibility of the developing embryo to the antiecdysteroidal properties of an environmental chemical were evaluated. The agricultural fungicide fenarimol was shown to exhibit antiecdysteroidal activity to the crustacean Daphnia magna by lowering endogenous ecdysone levels and delaying molting in a concentration-dependent fashion that was mitigated by co-exposure to exogenous 20-hydroxyecdysone. Exposure of either gravid maternal organisms or isolated embryos to fenarimol resulted in embryo abnormalities ranging from early partial developmental arrest to incomplete development of antennae and shell spines. Developmental abnormalities were associated with suppressed ecdysone levels in the embryos and the abnormalities could be prevented by co-exposure to 20-hydroxyecdysone. Developmental abnormalities caused by the antiecdysteroid were associated with reduced fecundity of the parental organisms. These results demonstrate that ecdysteroids are critical to normal crustacean embryo development and environmental antiecdysteroids can disrupt normal embryo development and compromise the production of viable offspring. Antiecdysteroidal activity may provide a means by which environmental chemicals impact crustacean species while not affecting vertebrates.
Collapse
Affiliation(s)
- Xueyan Mu
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | |
Collapse
|
10
|
Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway. ANNUAL REVIEW OF ENTOMOLOGY 2002; 47:883-916. [PMID: 11729094 DOI: 10.1146/annurev.ento.47.091201.145302] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Molting is elicited by a critical titer of ecdysteroids that includes the principal molting hormone, 20-hydroxyecdysone (20E), and ecdysone (E), which is the precursor of 20E but also has morphogenetic roles of its own. The prothoracic glands are the predominate source of ecdysteroids, and the rate of synthesis of these polyhydroxylated sterols is critical for molting and metamorphosis. This review concerns three aspects of ecdysteroidogenesis: (a) how the brain neuropeptide prothoracicotropic hormone (PTTH) initiates a transductory cascade in cells of the prothoracic gland, which results in an increased rate of ecdysteroid biosynthesis (upregulation); (b) how the concentrations of 20E in the hemolymph feed back on the prothoracic gland to decrease rates of ecdysteroidogenesis (downregulation); and (c) how the prothoracic gland cells convert cholesterol to the precursor of E and then 20E, a series of reactions only now being understood because of the use of a combination of classical biochemistry and molecular genetics.
Collapse
Affiliation(s)
- Lawrence I Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
11
|
Warren JT, Wismar J, Subrahmanyam B, Gilbert LI. Woc (without children) gene control of ecdysone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 2001; 181:1-14. [PMID: 11476936 DOI: 10.1016/s0303-7207(01)00404-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The first step in ecdysteroidogenesis, i.e. the 7,8-dehydrogenation of dietary cholesterol (C) to 7-dehydrocholesterol (7dC), is blocked in Drosophila melanogaster homozygous woc (without children) third instar larval ring glands (source of ecdysone). Unlike ring glands from wild-type D. melanogaster larvae, glands from woc mutants cannot convert radiolabelled C or 25-hydroxycholesterol (25C) to 7dC or 7-dehydro-25-hydroxycholesterol (7d25C) in vitro, nor to ecdysone (E). Yet, when these same glands are incubated with synthetic tracer 7d25C, the rate of metabolism of this polar Delta(5,7)-sterol into E is identical to that observed with glands from comparably staged wild-type larvae. The absence of this enzymatic activity in vivo is probably the direct cause of the observed low whole-body ecdysteroid titers in late third instar homozygous mutant larvae, the low ecdysteroid secretory activity in vitro of brain-ring gland complexes from these animals, and the failure of the larvae to pupariate (undergo metamorphosis). Oral administration of 7dC, but not C, results in a dramatic increase in ecdysteroid production both in vivo and in vitro by the woc mutant brain-ring gland complexes and affects a partial rescue to the beginning of pupal-adult development, but no further, despite elevated whole-body ecdysteroid titers. Data previously reported (Wismar et al., 2000) indicate that the woc gene encodes a zinc-finger protein that apparently modulates the activity of the 7,8-dehydrogenase.
Collapse
Affiliation(s)
- J T Warren
- Department of Biology, Campus Box #3280, University of North Carolina at Chapel Hill, 27599-3280, USA
| | | | | | | |
Collapse
|
12
|
Baker KD, Warren JT, Thummel CS, Gilbert LI, Mangelsdorf DJ. Transcriptional activation of the Drosophila ecdysone receptor by insect and plant ecdysteroids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:1037-1043. [PMID: 10989290 DOI: 10.1016/s0965-1748(00)00075-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A number of insect ecdysteroids, plant ecdysteroids and juvenoids were assayed for their ability to activate Drosophila nuclear receptors in transfected tissue culture cells. Discrete modifications to 20-hydroxyecdysone, the apparent natural ligand for the ecdysone receptor (EcR), conferred dramatic changes on the transcriptional activity of this receptor, suggesting that other biologically relevant EcR ligands may exist. Conversely, none of the compounds tested had a significant effect on the activity of three Drosophila orphan nuclear receptors: DHR38, DHR78 or DHR96. Taken together, these results demonstrate the selectivity of EcR for a series of natural and synthetic ecdysone agonists and suggest that as yet untested compounds may be responsible for activating DHR38, DHR78 and DHR96.
Collapse
Affiliation(s)
- K D Baker
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 75390-9050, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
13
|
Wismar J, Habtemichael N, Warren JT, Dai JD, Gilbert LI, Gateff E. The mutation without children(rgl) causes ecdysteroid deficiency in third-instar larvae of Drosophila melanogaster. Dev Biol 2000; 226:1-17. [PMID: 10993670 DOI: 10.1006/dbio.2000.9811] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Larvae homozygous for the recessive lethal allele without children(rgl) (woc(rgl)) fail to pupariate. Application of exogenous 20-hydroxyecdysone elicits puparium formation and pupation. Ecdysteroid titer measurements on mutant larvae show an endocrine deficiency in the brain-ring gland complex, which normally synthesizes ecdysone, resulting in a failure of the larvae to achieve a threshold whole body hormone titer necessary for molting. Ultrastructural investigation revealed extensive degeneration of the prothoracic cells of the ring gland in older larvae. The woc gene, located in polytene chromosomal region 97F, consists of 11 exons. A 6.8-kb transcript is expressed throughout development but is absent in the mutant woc(rgl) larvae. The woc gene encodes a protein of 187 kDa. Eight zinc fingers of the C2-C2 type point to a possible function as a transcription factor. The woc protein shows considerable homology to human proteins which have been implicated in both mental retardation and a leukemia/lymphoma syndrome.
Collapse
Affiliation(s)
- J Wismar
- Institut für Genetik, Johannes Gutenberg Universität, Saarstrasse 21a, Mainz, 55099, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Warren JT, Dai JD, Gilbert LI. Can the insect nervous system synthesize ecdysteroids? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:571-579. [PMID: 10406093 DOI: 10.1016/s0965-1748(99)00033-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The term "neurosteroid" refers to both classic and unique steroid molecules that are synthesized from cholesterol (C) by the central and peripheral nervous systems of higher vertebrates. Therein, they accumulate and modulate nervous activity by a variety of mechanisms other than the classic steroid receptor-mediated modulation of genomic activity, although such may also be involved. Since the insect nervous system expresses ecdysteroid receptors and responds both directly and developmentally to ecdysteroids, the possibility of ecdysteroidogenesis in the pupal and adult central and peripheral nervous system of Manduca sexta and the nervous system of Drosophila melanogaster larvae was investigated. The endogenous concentrations of the critical, dietary-derived delta 5,7-sterols ergosterol and 7-dehydrocholesterol (7dC) remained 10 to 20-fold higher in the Manduca pupal and adult nervous tissues than was found in the larval hemolymph at the cessation of feeding. In addition, it was determined that the Manduca pupal nervous system, but not that of the adult, could synthesize 3H/14C-7dC or 3H-7-dehydro-25-hydroxycholesterol (3H-7d25C) from 3H/14C-cholesterol (3H/14C-C) or the polar sterol substrate 3H-25-hydroxycholesterol (3H-25C), respectively. However, none of the nervous system samples from the two species and the several stages analyzed, a small window of neural development in these insects, were capable of incorporating any of the above tracer precursor sterols into a radiolabelled ecdysteroid, i.e. less than 0.0005%. Thus, the absence of neurosteroidogenesis by the insect nervous system stands in sharp contrast to previously described nervous system steroid hormone biosynthesis by the mammalian nervous system.
Collapse
Affiliation(s)
- J T Warren
- Department of Biology, University of North Carolina at Chapel Hill 27599-3280, USA
| | | | | |
Collapse
|
15
|
Amichot M, Brun A, Cuany A, De Souza G, Le Mouél T, Bride JM, Babault M, Salaün JP, Rahmani R, Bergé JB. Induction of cytochrome P450 activities in Drosophila melanogaster strains susceptible or resistant to insecticides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:311-9. [PMID: 9972473 DOI: 10.1016/s0742-8413(98)10052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed Drosophila melanogaster cytochrome P450s (P450) through the measurements of four enzymatic activities: ethoxycoumarin-O-deethylase, ethoxyresorufin-O-deethylase, lauric acid hydroxylation, and testosterone hydroxylation. We did these measurements in two Drosophila strains: one is susceptible to insecticides (Cantons) and the other is resistant to insecticides by enhanced P450 activities (RDDTR). In addition, we also treated the flies with eight chemicals (beta-naphtoflavone, benzo-alpha-pyrene, 3-methylcholanthrene, phenobarbital, aminopyrine, rifampicin, prochloraz, and clofibrate) known to induces genes from the families CYP1, CYP2, CYP3, CYP4, and CYP6. Metabolisation of all the substrates by P450 from flies microsomes was observed. The chemicals had different effects on these activities, ranging from induction to inhibition. The effects of these chemicals varied with the strains as most of them were ineffective on the RDDTR strain. The results showed that P450-dependent activities are numerous in Drosophila. Regulation features of these activities are complex. The availability of mutant strains as RDDTR should allow fundamental studies of P450 in insects.
Collapse
Affiliation(s)
- M Amichot
- Unité de Recherches sur la Résistance aux Xénobiotiques, LBI, INRA, Antibes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Spiegelman VS, Fuchs SY, Belitsky GA. The expression of insecticide resistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem Biophys Res Commun 1997; 232:304-7. [PMID: 9125169 DOI: 10.1006/bbrc.1997.6273] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression and enzymatic activities of insecticide resistance-related cytochrome P450B are increased by the treatment with 20-hydroxyecdysone (20HE) in D. melanogaster Oregon R flies. We have explored the role of this hormone in the maintenance of P450B basal expression. Arrest of ecdysone synthesis led to a decrease in CYP6A2 mRNA level, as well as in P450B expression and activities. This effect occurred both in insecticide susceptible (ecd1) and resistant (IRED) strains carrying the temperature-sensitive ecd mutation. The role of the 20HE in the regulation of cytochrome P450-mediated insecticide resistance has been proposed.
Collapse
Affiliation(s)
- V S Spiegelman
- Institute of Carcinogenesis, Cancer Research Center, AMS of Russia, Moscow.
| | | | | |
Collapse
|
18
|
Blais C, Dauphin-Villemant C, Kovganko N, Girault JP, Descoins C, Lafont R. Evidence for the involvement of 3-oxo-delta 4 intermediates in ecdysteroid biosynthesis. Biochem J 1996; 320 ( Pt 2):413-9. [PMID: 8973547 PMCID: PMC1217946 DOI: 10.1042/bj3200413] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the involvement of 3-oxo-delta 4 compounds as intermediates in arthropod ecdysteroid biosynthesis has been postulated for a long time, it has not yet been directly demonstrated. In the present study, 3-oxo-delta 4-steroids have been synthesized and incubated in vitro with dissociated moulting gland cells from the crab Carcinus maenas. The tritiated compounds were converted into 3-dehydroecdysone, ecdysone and/or 25-deoxyecdysone, i.e. final ecdysteroids. This means that the 3-oxo-delta 4 compounds had undergone a 5 beta-reduction, to give the 5 beta-conformation of ecdysteroids. Our results suggest that the 3-oxo-delta 4-steroid 4,7-cholestadien-14 alpha-ol-3,6-dione may be an intermediate in the biosynthetic pathway. The 5 beta-reduction reaction involves a cytosolic enzyme which requires NADPH as electron donor and seems specific for 3-oxo-delta 4 substrates. This reaction was the most active in crab Y-organs, as compared with other tissues. The characteristics of the 5 beta-reductase (subcellular localization, substrate and cofactor requirements) appear similar to those of the vertebrate 3-oxo-delta 4-steroid 5 beta-reductase involved in steroid hormone catabolism and bile acid biosynthesis.
Collapse
Affiliation(s)
- C Blais
- Ecole Normale Supérieure, Laboratoire de Biochimie, CNRS EP 119, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Warren JT, Gilbert LI. Metabolism in vitro of cholesterol and 25-hydroxycholesterol by the larval prothoracic glands of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:917-929. [PMID: 9014337 DOI: 10.1016/s0965-1748(96)00058-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The prothoracic glands in vitro convert 25-hydroxycholesterol (25C) to 25-hydroxy-7-dehydrocholesterol (7d25C) and to ecdysteroids at a greater rate than cholesterol (C) is converted to ecdysteroids via 7-dehydrocholesterol (7dC). Mediated via a cytochrome P450 most probably located in the endoplasmic reticulum (ER), both intact and extensively homogenized prothoracic glands, as well as crude subcellular fractions, were able to 7,8-dehydrogenate 25C to 7d25C eight-fold more efficiently than they could convert C to 7dC. However, less than a two-fold difference was observed in the subsequent monooxygenase mediated conversion of these two intermediates formed in situ into ecdysteroids, mainly ecdysone (E) and 2-deoxyecdysone (2dE) and/or their 3-dehydroderivatives. When 7dC, and particularly 7d25C, were made directly available to these tissue preparations, their conversion to ecdysteroids greatly exceeded that of the in situ conversion of either C or 25C, via 7dC or 7d25C, respectively. Indeed, there was an eight-fold increase in the VMAX for 25C dehydrogenation by homogenized glands relative to the dehydrogenation of C. Most important, however, was the 1000-fold increase in the VMAX observed for the direct production of E from emulsified 7d25C by gland homogenates relative to E production from 25C via 7d25C synthesized in situ. Thus, it is apparent that even after the rapid and efficient conversion of 25C to 7d25C within the ER, the subsequent rate of conversion of this intermediate to E is greatly retarded relative to that observed following the direct incubation of emulsified 7d25C with gland homogenates. These differential kinetics of direct and indirect 7d25C incorporation into E are interpreted as evidence for the existence of a barrier to the efficient translocation of the delta 5,7-sterol intermediates from the ER to another site where the subsequent, uncharacterized initial conversions leading to ecdysteroids take place. On the basis of studies on mammalian adrenal cortical steroidogenesis, this site is postulated to be the inner membrane/matrix of the mitochondria. The present data support the hypothesis that the translocation of both 7dC and 7d25C, first from the site of their probable synthesis within the ER membranes, next through the cytosol to the outer mitochondrial membrane, and then across the intramitochondrial aqueous space to the inner membrane/matrix compartment, may be analogous to the translocation in the adrenal cortex of ER-derived C, first to the plasma membrane and/or to the outer mitochondrial membrane and then to the inner mitochondrial membrane/matrix for P450scc-mediated conversion into pregnenolone.
Collapse
Affiliation(s)
- J T Warren
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|