1
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
2
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Ma F, Jiang S, Zhang CY. Recent advances in histone modification and histone modifying enzyme assays. Expert Rev Mol Diagn 2018; 19:27-36. [DOI: 10.1080/14737159.2019.1559053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis 2017; 8:e2812. [PMID: 28542146 PMCID: PMC5520745 DOI: 10.1038/cddis.2017.52] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Histones are intra-nuclear cationic proteins that are present in all eukaryotic cells and are highly conserved across species. Within the nucleus, they provide structural stability to chromatin and regulate gene expression. Histone may be released into the extracellular space in three forms: freely, as a DNA-bound nucleosome or as part of neutrophil extracellular traps, and all three can be detected in serum after significant cellular death such as sepsis, trauma, ischaemia/reperfusion injury and autoimmune disease. Once in the extracellular space, histones act as damage-associated molecular pattern proteins, activating the immune system and causing further cytotoxicity. They interact with Toll-like receptors (TLRs), complement and the phospholipids of cell membranes inducing endothelial and epithelial cytotoxicity, TLR2/TLR4/TLR9 activation and pro-inflammatory cytokine/chemokine release via MyD88, NFκB and NLRP3 inflammasome-dependent pathways. Drugs that block the release of histone, neutralise circulating histone or block histone signal transduction provide significant protection from mortality in animal models of acute organ injury but warrant further research to inform future clinical applications.
Collapse
Affiliation(s)
- Eleanor Silk
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hao Weng
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Fengxian District, Shanghai, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
5
|
Choudhuri S. Some Major Landmarks in the Path from Nuclein to Human Genome. Toxicol Mech Methods 2008; 16:137-59. [DOI: 10.1080/15376520600558606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Porter D, Brown D, Wells D. An H3-H4 histone gene pair in the marine copepod Tigriopus californicus, contains an intergenic dyad symmetry element. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 1:197-206. [PMID: 1840514 DOI: 10.3109/10425179109020771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone genes are one of the most widely studied multigene families in eucaryotes. Over 200 histone genes have been sequenced, primarily in vertebrates, echinoderms, fungi and plants. We present here the structure and genomic orientation of an H3-H4 histone gene pair from the marine copepod, Tigriopus californicus. These histone gene sequences are the first to be determined for the class Crustacea and among the first to be determined for protostomes. The H4 and H3 genes in Tigriopus are shown to be adjacent, to have opposite polarity, and to contain a 26 bp region of dyad symmetry centrally located within the spacer region between the two genes. A similarly located dyad element has been found in yeast which contributes to the coordinated cell cycle control of the adjacent histone genes. The Tigriopus H3-H4 histone gene pair is clustered with one H2A and two H2B histone genes on a 15 kb genomic Bam H1 fragment. The H4 gene sequence predicts an H4 protein with an unusual serine to threonine substitution at the amino terminal residue. The H3 gene sequence predicts an H3 protein which is identical to the vertebrate H3.2 histone.
Collapse
Affiliation(s)
- D Porter
- Department of Biology, University of Houston, Texas 77204
| | | | | |
Collapse
|
8
|
Wu RS, Panusz HT, Hatch CL, Bonner WM. Histones and their modifications. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:201-63. [PMID: 3519076 DOI: 10.3109/10409238609083735] [Citation(s) in RCA: 213] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histones constitute the protein core around which DNA is coiled to form the basic structural unit of the chromosome known as the nucleosome. Because of the large amount of new histone needed during chromosome replication, the synthesis of histone and DNA is regulated in a complex manner. During RNA transcription and DNA replication, the basic nucleosomal structure as well as interactions between nucleosomes must be greatly altered to allow access to the appropriate enzymes and factors. The presence of extensive and varied post-translational modifications to the otherwise highly conserved histone primary sequences provides obvious opportunities for such structural alterations, but despite concentrated and sustained effort, causal connections between histone modifications and nucleosomal functions are not yet elucidated.
Collapse
|