1
|
Won H, Renner SS. The chloroplast trnT-trnF region in the seed plant lineage Gnetales. J Mol Evol 2005; 61:425-36. [PMID: 16155750 DOI: 10.1007/s00239-004-0240-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 05/26/2005] [Indexed: 11/29/2022]
Abstract
The trnT-trnF region is located in the large single-copy region of the chloroplast genome. It consists of the trnL intron, a group I intron, and the trnT-trnL and trnL-trnF intergenic spacers. We analyzed the evolution of the region in the three genera of the gymnosperm lineage Gnetales (Gnetum, Welwitschia, and Ephedra), with especially dense sampling in Gnetum for which we sequenced 41 accessions, representing most of the 25-35 species. The trnL intron has a conserved secondary structure and contains elements that are homologous across land plants, while the spacers are so variable in length and composition that homology cannot be found even among the three genera. Palindromic sequences that form hairpin structures were detected in the trnL-trnF spacer, but neither spacer contained promoter elements for the tRNA genes. The absence of promoters, presence of hairpin structures in the trnL-trnF spacer, and high sequence variation in both spacers together suggest that trnT and trnF are independently transcribed. Our model for the expression and processing of the genes tRNA(Thr)(UGU), tRNA(Leu)(UAA), and tRNA(Phe) (GAA) therefore attributes the seemingly neutral evolution of the two spacers to their escape from functional constraints.
Collapse
Affiliation(s)
- Hyosig Won
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | | |
Collapse
|
2
|
Baba K, Schmidt J, Espinosa-Ruiz A, Villarejo A, Shiina T, Gardeström P, Sane AP, Bhalerao RP. Organellar gene transcription and early seedling development are affected in the rpoT;2 mutant of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:38-48. [PMID: 15053758 DOI: 10.1111/j.1365-313x.2004.02022.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An Arabidopsis mutant that exhibited reduced root length was isolated from a population of activation-tagged T-DNA insertion lines in a screen for aberrant root growth. This mutant also exhibited reduced hypocotyl length as well as a delay in greening and altered leaf shape. Molecular genetic analysis of the mutant indicated a single T-DNA insertion in the gene RpoT;2 encoding a homolog of the phage-type RNA polymerase (RNAP), that is targeted to both mitochondria and plastids. A second T-DNA-tagged allele also showed a similar phenotype. The mutation in RpoT;2 affected the light-induced accumulation of several plastid mRNAs and proteins and resulted in a lower photosynthetic efficiency. In contrast to the alterations in the plastid gene expression, no major effect of the rpoT;2 mutation on the accumulation of examined mitochondrial gene transcripts and proteins was observed. The rpoT;2 mutant exhibited tissue-specific alterations in the transcript levels of two other organelle-directed nuclear-encoded RNAPs, RpoT;1 and RpoT;3. This suggests the existence of cross-talk between the regulatory pathways of the three RNAPs through organelle to nucleus communication. These data provide an important information on a role of RpoT;2 in plastid gene expression and early plant development.
Collapse
Affiliation(s)
- Kyoko Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Odom OW, Holloway SP, Deshpande NN, Lee J, Herrin DL. Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: highly efficient homing of an exogenous intron containing its own promoter. Mol Cell Biol 2001; 21:3472-81. [PMID: 11313473 PMCID: PMC100269 DOI: 10.1128/mcb.21.10.3472-3481.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introns 2 and 4 of the psbA gene of Chlamydomonas reinhardtii chloroplasts (Cr.psbA2 and Cr.psbA4, respectively) contain large free-standing open reading frames (ORFs). We used transformation of an intronless-psbA strain (IL) to test whether these introns undergo homing. Each intron, plus short exon sequences, was cloned into a chloroplast expression vector in both orientations and then cotransformed into IL along with a spectinomycin resistance marker (16S rrn). For Cr.psbA2, the sense construct gave nearly 100% cointegration of the intron whereas the antisense construct gave 0%, consistent with homing. For Cr.psbA4, however, both orientations produced highly efficient cointegration of the intron. Efficient cointegration of Cr.psbA4 also occurred when the intron was introduced as a restriction fragment lacking any known promoter. Deletion of most of the ORF, however, abolished cointegration of the intron, consistent with homing. The Cr.psbA4 constructs also contained a 3-(3,4-dichlorophenyl)-1,1-dimethylurea resistance marker in exon 5, which was always present when the intron integrated, thus demonstrating exon coconversion. Remarkably, primary selection for this marker gave >100-fold more transformants (>10,000/microgram of DNA) than did the spectinomycin resistance marker. A trans homing assay was developed for Cr.psbA4; the ORF-minus intron integrated when the ORF was cotransformed on a separate plasmid. This assay was used to identify an intronic region between bp -88 and -194 (relative to the ORF) that stimulated homing and contained a possible bacterial (-10, -35)-type promoter. Primer extension analysis detected a transcript that could originate from this promoter. Thus, this mobile, self-splicing intron also contains its own promoter for ORF expression. The implications of these results for horizontal intron transfer and organelle transformation are discussed.
Collapse
Affiliation(s)
- O W Odom
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
4
|
Baba K, Nakano T, Yamagishi K, Yoshida S. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. PLANT PHYSIOLOGY 2001; 125:595-603. [PMID: 11161017 PMCID: PMC64861 DOI: 10.1104/pp.125.2.595] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2000] [Revised: 06/18/2000] [Accepted: 10/03/2000] [Indexed: 05/20/2023]
Abstract
In the chloroplast psbD light-responsive promoter (LRP), a highly conserved sequence exists upstream from the bacterial -10/-35 elements. Multiple sequence-specific DNA binding proteins are predicted to bind to the conserved sequence as transcription factors. Using yeast one-hybrid screening of an Arabidopsis cDNA library, a possible DNA binding protein of the psbD LRP upstream sequence was identified. The protein, designated PTF1, is a novel protein of 355 amino acids (estimated molecular weight of 39.6) that contains a basic helix-loop-helix DNA binding motif in the predicted N-terminal region of the mature protein. Transient expression assay of PTF1-GFP fusion protein showed that PTF1 was localized in chloroplasts. Using the modified DNA sequence in the one-hybrid system, the ACC repeat was shown to be essential for PTF1 binding. The rate of psbD LRP mRNA accumulation was reduced in a T-DNA-inserted Arabidopsis ptf1 mutant. Compared with wild-type plants, the mutant had pale green cotyledons and its growth was inhibited under short-day conditions. These results suggest that PTF1 is a trans-acting factor of the psbD LRP.
Collapse
Affiliation(s)
- K Baba
- RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
5
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kim M, Thum KE, Morishige DT, Mullet JE. Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 1999; 274:4684-92. [PMID: 9988705 DOI: 10.1074/jbc.274.8.4684] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The photosystem II reaction center chlorophyll protein D2, is encoded by the chloroplast gene psbD. PsbD is transcribed from at least three different promoters, one which is activated by high fluence blue light. Sequences within 130 base pairs (bp) of the psbD blue light-responsive promoter (BLRP) are highly conserved in higher plants. In this study, the structure of the psbD BLRP was analyzed in detail using deletion and site-directed mutagenesis and in vitro transcription. Deletion analysis showed that a 53-bp DNA region of the psbD BLRP, from -57 to -5, was sufficient for transcription in vitro. Mutation of a putative prokaryotic -10 element (TATTCT) located from -7 to -12 inhibited transcription from the psbD BLRP. In contrast, mutation of a putative prokaryotic -35 element, had no influence on transcription. Mutation of a TATATA sequence located between the barley psbA -10 and -35 elements significantly reduced transcription from this promoter. However, site-directed mutation of sequences located between -35 and -10 had no effect on transcription from the psbD BLRP. Transcription from the psbD BLRP was previously shown to require a 22-bp sequence, termed the AAG-box, located between -36 and -57. The AAG-box specifically binds the protein complex AGF. Site-directed mutagenesis identified two different sequence motifs in the AAG-box that are important for transcription in vitro. Based on these results, we propose that positive factors bind to the AAG-box and interact with the chloroplast-encoded RNA polymerase to promote transcription from the psbD BLRP. Transcription from the psbD BLRP is thus similar to type II bacterial promoters that use activating proteins to stimulate transcription. Transcription of the psbD BLRP was approximately 6. 5-fold greater in plastid extracts from illuminated versus dark-grown plants. This suggests that light-induced activation of this promoter in vivo involves factors interacting with the 53-bp psbD BLRP in vitro.
Collapse
Affiliation(s)
- M Kim
- Department of Biochemistry and Biophysics, Crop Biotechnology Center, Texas A & M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
7
|
Nakahira Y, Baba K, Yoneda A, Shiina T, Toyoshima Y. Circadian-regulated transcription of the psbD light-responsive promoter in wheat chloroplasts. PLANT PHYSIOLOGY 1998; 118:1079-88. [PMID: 9808753 PMCID: PMC34781 DOI: 10.1104/pp.118.3.1079] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 08/17/1998] [Indexed: 05/20/2023]
Abstract
The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between -54 and -36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional "-35" element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.
Collapse
Affiliation(s)
- Y Nakahira
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
8
|
Tozawa Y, Tanaka K, Takahashi H, Wakasa K. Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression. Nucleic Acids Res 1998; 26:415-9. [PMID: 9421493 PMCID: PMC147261 DOI: 10.1093/nar/26.2.415] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A full-length cDNA encoding a putative sigma factor for a plastid RNA polymerase was isolated from the higher plant Oryza sativa . The nucleotide sequence of the corresponding nuclear gene, named Os-sigA ( O.sativa sigma A), predicts a polypeptide of 519 amino acids that contains a putative plastid-targeting sequence in its N-terminal region. The predicted mature protein shows extensive sequence homology to bacterial sigma factors, encompassing the conserved regions 1.2, 2.1, 2.2, 2.3, 2.4, 3, 4.1 and 4.2 implicated in binding to -10 promoter elements, promoter melting and interaction with the core RNA polymerase enzyme. RNA blot analysis revealed that the abundance of Os-sigA transcripts was markedly greater in green shoots than in roots or in dark-grown etiolated shoots of rice seedlings. Furthermore, exposure of dark-grown etiolated seedlings to light resulted in a rapid increase in the amount of Os-sigA mRNA in the shoot. These observations suggest that regulation of expression of the nuclear gene for this putative plastid RNA polymerase sigmafactor by light contributes to light-dependent transcriptional regulation of plastid genes.
Collapse
Affiliation(s)
- Y Tozawa
- National Agriculture Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305, Japan
| | | | | | | |
Collapse
|
9
|
Wu CY, Lin CH, Chen LJ. Identification of the transcription start site for the spinach chloroplast serine tRNA gene. FEBS Lett 1997; 418:157-61. [PMID: 9414117 DOI: 10.1016/s0014-5793(97)01373-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Deleting part of the 3' end of the spinach chloroplast serine tRNA coding region, which destroyed the proper folding of its RNA transcript and resulted in the inhibition of tRNA processing, allowed the detection of a serine tRNA primary transcript. The transcription start site for this primary transcript, synthesized from the internal promoter, was mapped to -12 upstream from the mature tRNA coding region. Transcription analysis with various 5' deletion mutants suggested that the AT-rich region between -31 and -11, immediately upstream of the serine tRNA transcription start site, affects the transcription efficiency, and possibly the selection of transcription start site. Identification of the transcription start site for the spinach chloroplast serine tRNA gene in this study represents the first example of 5' end mapping of a tRNA precursor transcribed from chloroplast tRNA genes containing an internal promoter.
Collapse
MESH Headings
- Base Sequence
- Chloroplasts/metabolism
- Cloning, Molecular
- Genes, Plant
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids
- RNA Caps/metabolism
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Transfer, Ser/biosynthesis
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- Sequence Deletion
- Spinacia oleracea/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- C Y Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
10
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
11
|
Vera A, Hirose T, Sugiura M. A ribosomal protein gene (rpl32) from tobacco chloroplast DNA is transcribed from alternative promoters: similarities in promoter region organization in plastid housekeeping genes. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:518-25. [PMID: 8709957 DOI: 10.1007/bf02173640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple transcriptional start sites have been identified in the tobacco plastid ribosomal protein gene rpl32 by RNA mapping and in vitro capping techniques. A promotor with a canonical -10 Pribnow Box (P1) produces a major transcript in leaf chloroplasts. Transcription is also driven from additional promoters in non-photosynthetic plastids from heterotrophically cultured cells (BY2 line). Among them, a second promoter located downstream (P2) generates the most prominent transcript in this type of cell. The absence of typical plastid promoter motifs upstream of this site and the higher steady-state level of the P2-derived transcript in BY2 cells suggest a distinct modulation of transcription. Mobility shift experiments also seem to indicate the existence of differences in protein-DNA binding between both kinds of plastids with respect to a DNA fragment including the sequence upstream from the P2 starting site. The structure of the rpl32 promoter region is discussed in relation to that of other plastid housekeeping genes encoding elements of the genetic machinery.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
12
|
|
13
|
Tonkyn JC, Gruissem W. Differential expression of the partially duplicated chloroplast S10 ribosomal protein operon. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:141-52. [PMID: 8232197 DOI: 10.1007/bf00280211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chloroplast S10 ribosomal protein operon is partially duplicated in many plants because it initiates within the inverted repeat of the circular chloroplast genome. In spinach, the complete S10 operon (S10B) spans the junction between inverted repeat B (IRB) and the large single-copy (LSC) region. The S10 operon is partially duplicated in the inverted repeat A (IRA), but the sequence of S10A completely diverges from S10B at the junction of S10A and the LSC region. The DNA sequence shared by S10A and S10B includes trnI1, the rpl23 pseudogene (rpl23 psi), the intron-containing rpl2 and rps19, which is truncated in S10A at the S10A/LSC junction (rps19'). Transcription of rps19' from the promoter region of S10A could result in the synthesis of a mutant S19 protein. Analysis of RNA accumulation and run-on transcription from S10A and S10B using unique probes from the S10A/LSC and S10B/LSC junctions reveals that expression of S10A is reduced. The difference in S10A and S10B expression appears to be the result of reduced transcription from S10A, rather than differences in RNA stability. Transcription of S10B can initiate at three distinct promoter regions, P1, P2 and P3, which map closely to transcripts detected by S1 nuclease analysis. P1 is located upstream of trnI1 and has the highest transcription initiation frequency in vitro of the three promoter regions. The DNA sequence of P1 is most similar to the chloroplast promoter consensus DNA sequence. Interference by the highly and convergently transcribed psbA-trnH1 operon is considered as a mechanism to explain the reduced activity of the S10A promoters.
Collapse
Affiliation(s)
- J C Tonkyn
- Department of Plant Biology, University of California, Berkeley 94720
| | | |
Collapse
|
14
|
Nimzyk R, Schöndorf T, Hachtel W. In-frame length mutations associated with short tandem repeats are located in unassigned open reading frames of Oenothera chloroplast DNA. Curr Genet 1993; 23:265-70. [PMID: 8435856 DOI: 10.1007/bf00351505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chloroplast DNAs were compared between two closely related species in the subsection Munzia of the genus Oenothera. A restriction fragment length dimorphism (273 bp) within the large inverted repeats was localized to an unassigned open reading frame that is homologous to ORF 2280 of tobacco chloroplast DNA. This dimorphism is due to different copy numbers of various short tandem repeated sequences, with each repeat unit specifying an in-frame addition or deletion. Other small length mutations were detected within an unassigned reading frame that appears to be homologous to the tobacco ORF 1244, and in the non-coding sequence upstream of that frame. These insertions and/or deletions are all associated with short direct repeats that lie in tandem.
Collapse
Affiliation(s)
- R Nimzyk
- Botanisches Institut, Universität Bonn, Federal Republic of Germany
| | | | | |
Collapse
|
15
|
Rapp J, Baumgartner B, Mullet J. Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36624-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Kasten B, Wehe M, Kruse S, Reutter K, Abel WO, Reski R. The plastome-encoded zfpA gene of a moss contains procaryotic as well as eucaryotic promoter consensus sequences and its RNA abundance is modulated by cytokinin. Curr Genet 1992; 22:327-33. [PMID: 1394516 DOI: 10.1007/bf00317930] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plastid DNA of the moss Physcomitrella patens has been sequenced. An open reading frame (ORF 315) was identified downstream from rbcL, between trnR-CCG and psaI. This ORF shares homology with zfpA, a putative regulatory gene in Pisum sativum. The moss ORF is preceded by a Shine-Dalgarno sequence, two plastid promoter consensus sequences, and three TATA boxes. A specific probe detected three transcripts of low abundance in the wild-type moss and a cytokinin-sensitive chloroplast mutant. Steady state levels of zfpA transcripts were different in the two genotypes. In mutant protonemata treated with cytokinin, steady state levels of the largest transcript decreased significantly.
Collapse
Affiliation(s)
- B Kasten
- Institut für Allgemeine Botanik, Hamburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
17
|
Vera A, Matsubayashi T, Sugiura M. Active transcription from a promoter positioned within the coding region of a divergently oriented gene: the tobacco chloroplast rpl32 gene. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:151-6. [PMID: 1603058 DOI: 10.1007/bf00587573] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new transcription unit has been identified and characterized in the small single-copy region of tobacco chloroplast DNA. A primary transcript (1550 nucleotides) spanning the entire transcription unit contains no significant open reading frames (ORFs), other than ORF55, recently identified as the gene encoding the ribosomal protein CL32 (rpl32). The leader sequence extends 1101 nucleotides from the rpl32 initiation codon. Primer extension and in vitro capping experiments in combination with ribonuclease protection assays, revealed a promoter situated more than 322 bp inside the coding region of ndhF, which is divergently oriented with respect to rpl32. A canonical Pribnow-box is found just upstream of the transcription start site, but a typical -35 motif was not detected. This is the first internal divergent promoter to be characterized in the chloroplast genome.
Collapse
Affiliation(s)
- A Vera
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
18
|
Monod C, Goldschmidt-Clermont M, Rochaix JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1992; 231:449-59. [PMID: 1371579 DOI: 10.1007/bf00292715] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5' and 3' termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3' flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of -46 kcal) is near the 3' terminus of the transcript.
Collapse
Affiliation(s)
- C Monod
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
19
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Lidholm J, Gustafsson P. The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet 1991; 20:161-6. [PMID: 1682061 DOI: 10.1007/bf00312780] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overlapping restriction fragments of chloroplast DNA from the conifer Pinus contorta were cloned. Out of a total of 49 clones, 33 comprise the minimum set required to represent the entire genome. Using the purified inserts of these clones as probes in filter hybridizations, all sites for the three restriction enzymes KpnI, HpaI and SacI in the P. contorta chloroplast genome were mapped. Heterologous filter hybridizations and sequence analysis of some of the P. contorta clones were used to determine the position of 15 genes on the restriction map. The size of the genome, which lacks an inverted repeat organization, was found to be approximately 121 kilobase pairs (kbp). Unusual features of this genome are a duplication of the psbA gene and the presence of two genes, gidA and frxC, which are not found in angiosperms. The genome appeared essentially colinear with that of Pinus radiata, for which a map has previously been published. Two different restriction fragment length polymorphisms were found to be produced by variable numbers of copies of 124 bp- and 150 bp-long, tandemly repeated elements.
Collapse
Affiliation(s)
- J Lidholm
- Department of Plant Physiology, University of Umeå, Sweden
| | | |
Collapse
|
21
|
Orozco EM, Chen LJ, Eilers RJ. The divergently transcribed rbcL and atpB genes of tobacco plastid DNA are separated by nineteen base pairs. Curr Genet 1990; 17:65-71. [PMID: 2138063 DOI: 10.1007/bf00313250] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The in vivo transcripts of the tobacco chloroplast gene for the beta subunit of the ATPase (atpB) were examined. In tobacco, like spinach, the atpB gene encodes multiple transcripts. Six tobacco atpB transcripts are present in vivo, with 5' ends at positions "-90", "-255", "-290", "-490", "-500" and "-610" relative to the translation initiation site. The 5' end of the atpB gene ("-610" position) is 20 base pairs from the 5' end of the rbcL gene, coded for on the complementary strand. The "-255", "-490" and "-610" regions are recognized as promoters in vitro by spinach chloroplast and E. coli RNA polymerases.
Collapse
Affiliation(s)
- E M Orozco
- United States Department of Agriculture, Urbana, IL 61801
| | | | | |
Collapse
|
22
|
Hudson GS, Mahon JD, Anderson PA, Gibbs MJ, Badger MR, Andrews TJ, Whitfeld PR. Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40121-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40258-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Willey DL, Gray JC. Two small open reading frames are co-transcribed with the pea chloroplast genes for the polypeptides of cytochrome b-559. Curr Genet 1989; 15:213-20. [PMID: 2766383 DOI: 10.1007/bf00435508] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genes encoding the 9 kDa and 4 kDa polypeptides of cytochrome b-559 have been located in pea chloroplast DNA by coupled transcription-translation of cloned restriction fragments of chloroplast DNA in a cell-free extract of Escherichia coli and by nucleotide sequence analysis. The genes (psbE and psbF) are located approximately 1.0 kbp downstream of the gene for cytochrome f and are transcribed in the opposite direction, similar to the arrangement in the chloroplast genomes of other higher plants. Nucleotide sequence analysis of this region revealed four open reading frames encoding hydrophobic proteins of 83 (psbE), 39 (psbF), 38 and 40 amino acid residues, which are co-transcribed as a single major RNA of 1.1 kb. The 5' and 3' ends of this RNA have been located by primer extension and S1 nuclease mapping. The 5' end of the RNA is located 140 bp upstream of the initiating ATG codon of psbE and is preceded by typical chloroplast promoter sequences. The 3' end of the RNA is located approximately 515 bp downstream of the TAA stop codon of psbF close to a stable stem-loop structure.
Collapse
Affiliation(s)
- D L Willey
- Botany School, University of Cambridge, UK
| | | |
Collapse
|
25
|
Affiliation(s)
- W Gruissem
- Department of Botany, University of California, Berkeley 94720
| |
Collapse
|
26
|
|
27
|
|
28
|
Evrard JL, Kuntz M, Straus NA, Weil JH. A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene 1988; 71:115-22. [PMID: 3215522 DOI: 10.1016/0378-1119(88)90083-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyanelles are photosynthetic organelles which are considered as intermediates between cyanobacteria and chloroplasts, and which have been found in unicellular eukaryotes such as Cyanophora paradoxa. The nucleotide sequence of a 667-bp region of the cyanelle genome from Cyanophora paradoxa containing genes coding for tRNA(UUCGlu) and tRNA(UAALeu) has been determined. The gene coding for tRNA(UAALeu) is split by a 232-bp intron which has a secondary structure typical for class-I structured introns and which is closely related to the intron located in the corresponding gene from liverwort and higher plant chloroplasts. It appears therefore that these tRNA(UAALeu) genes are all derived from one common ancestral gene which already contained a class-I intron.
Collapse
Affiliation(s)
- J L Evrard
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Hudson GS, Mason JG. The chloroplast genes encoding subunits of the H(+)-ATP synthase. PHOTOSYNTHESIS RESEARCH 1988; 18:205-222. [PMID: 24425166 DOI: 10.1007/bf00042985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/1987] [Accepted: 02/12/1988] [Indexed: 06/03/2023]
Abstract
Three CF1 and three CF0 subunits of the chloroplast H(+)-ATP synthase are encoded on the chloroplast genome. The chloroplast atp genes are organized as two operons in plants but not in the green alga, Chlamydomonas reinhardtii. The atpBE or β operon shows a relatively simple organisation and transcription pattern, while the atpIHFA or α operon is transcribed into a large variety of mRNAs. The atp genes are related to those of cyanobacteria and, more distantly, to those of non-photosynthetic bacteria such as E. coli, suggesting a common origin of most F1F0 ATP synthase subunits. Both the chloroplast and cyanobacterial ATP synthases have four F0 subunits, not three as in the E. coli complex. The proton pore of the CF0 is proposed to be formed by the interaction of subunits III and IV.
Collapse
Affiliation(s)
- G S Hudson
- Division of Plant Industry, CSIRO, GPO Box 1600, 2601, Canberra, A.C.T., Australia
| | | |
Collapse
|
30
|
Gruissem W, Barkan A, Deng XW, Stern D. Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet 1988; 4:258-63. [PMID: 3070872 DOI: 10.1016/0168-9525(88)90033-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Boyer SK, Mullet JE. Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene. PHOTOSYNTHESIS RESEARCH 1988; 17:7-22. [PMID: 24429659 DOI: 10.1007/bf00047679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/1987] [Accepted: 12/15/1987] [Indexed: 06/03/2023]
Abstract
The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.
Collapse
Affiliation(s)
- S K Boyer
- Biological Sciences Department, Purdue University, Lilly hall of Life Sciences, 47907, West Lafayette, Indiana, USA
| | | |
Collapse
|
32
|
Hudson GS, Holton TA, Whitfield PR, Bottomley W. Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 1988; 200:639-54. [PMID: 3045324 DOI: 10.1016/0022-2836(88)90477-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequence analysis of a 12,400 base-pair region of the spinach chloroplast genome indicates the presence of three genes encoding subunits of the chloroplast RNA polymerase. These genes are analogous to the rpoBC operon of Escherichia coli, with some significant differences. The first gene, termed rpoB, encodes a 121,000 Mr homologue of the bacterial beta subunit. The second and third genes, termed rpoC1 and rpoC2, encode 78,000 and 154,000 Mr proteins homologous to the N and C-terminal portions, respectively, of the bacterial beta' subunit. RNA mapping analysis indicates that the three genes are cotranscribed, and that a single intron occurs in the rpoC1 gene. No splicing occurs within the rpoC2 gene or between rpoC1 and rpoC2. Furthermore, the data indicate the possibility of an alternative splice acceptor site for the rpoC1 intron that would give rise to a 71,000 Mr gene product. Thus, with the inclusion of the alpha subunit encoded by rpoA at a separate locus, the chloroplast genome is predicted to encode four subunits (respectively called alpha, beta, beta', beta") equivalent to the three subunits of the core enzyme of the E. coli RNA polymerase.
Collapse
Affiliation(s)
- G S Hudson
- CSIRO, Division of Plant Industry, Canberra City, A.C.T., Australia
| | | | | | | |
Collapse
|
33
|
Gatenby AA, Rothstein SJ, Bradley D. Using bacteria to analyze sequences involved in chloroplast gene expression. PHOTOSYNTHESIS RESEARCH 1988; 19:7-22. [PMID: 24425365 DOI: 10.1007/bf00114566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/1987] [Accepted: 03/24/1988] [Indexed: 05/19/2023]
Abstract
The expression of higher plant chloroplast genes in prokaryotic cells has been used to examine organelle sequences involved in promoter recognition by RNA polymerase, and protein translocation through membranes. The similarity in sequence structure between Escherichia coli promoters and the maize chloroplast atpB promoter has been investigated using deletion and single base pair substitution mutants. The atpB mutants were mainly isolated by a selection system in E. coli, and then used as templates for the analysis of transcription using chloroplast RNA polymerase. It was found that both the bacterial and chloroplast RNA polymerases behaved in a similar fashion with the wild-type and mutant promoters, indicating that the sequences involved in promoter recognition share a considerable degree of homology. Signal peptide recognition of pea cytochrome f has also been examined in E. coli. This signal peptide, which is probably responsible for insertion of the protein into the thylakoid membrane, is efficiently recognized in E. coli leading to the inner membrane insertion of petA::lacZ fusion proteins. This process requires the bacterial SecA protein and points to a general similarity in the mechanisms of protein translocation within chloroplasts and bacteria.
Collapse
Affiliation(s)
- A A Gatenby
- Central Research and Development Department, Experimental Station, E.I. du Pont de Nemours & Co., 19898, Wilmington, DE, USA
| | | | | |
Collapse
|
34
|
Krupinska K. Characterization and in vitro expression of the cytochrome b-559 genes of barley. II. In vitro transcription and translation. CARLSBERG RESEARCH COMMUNICATIONS 1988; 53:233-46. [PMID: 3255312 DOI: 10.1007/bf02907180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The two cytochrome b-559 apoproteins of 9.4 kD and 4.5 kD molecular weight have been expressed in vitro using DNA templates containing either the two genes psbE and psbF in tandem or the individual genes. Transcription with E. coli RNA-polymerase or SP6 RNA-polymerase has been followed by translation in E. coli derived lysates. Simultaneous as well as independent synthesis of the apoproteins is possible. A 9.4 kD in vitro translation product has been identified as apoprotein I by immunoprecipitation with a monoclonal antibody specific for the C-terminal part of the 9.4 kD apoprotein of cytochrome b-559. The isolated psbF gene directs the synthesis of a translation product with a molecular weight of 4.5 kD corresponding to apoprotein II. Expression of the psbE gene requires the presence of endogenous regulatory sequences 5' upstream of psbE, while this is not the case for psbF. Additional in vitro translation products of 5.7 and 2.4 kD molecular weights are synthesized and probably translated from two reading frames starting with two different out-of-phase ATG codons in the nucleotide sequence of the psbE gene.
Collapse
Affiliation(s)
- K Krupinska
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby
| |
Collapse
|
35
|
Krupinska K, Berry-Lowe S. Characterization and in vitro expression of the cytochrome b-559 genes of barley. I. Localization and sequence of the genes. CARLSBERG RESEARCH COMMUNICATIONS 1988; 53:43-55. [PMID: 3256307 DOI: 10.1007/bf02908413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The psbE and psbF genes encoding the 9.4 and 4.4 kD apoproteins of cytochrome b-559 have been located in the chloroplast genome of barley. As in other plant species they are found adjacent to each other in the large single copy region of the chloroplast DNA. Both the nucleotide sequence and the deduced amino acid sequence for the two polypeptides are identical to that of wheat and more than 95% similar to those of spinach, tobacco and Oenothera. The region between the two genes spans 10 nucleotides (excluding the stopcodon) and contains a typical procaryotic ribosomal binding site. A dicistronic transcript is identified, but the presence of a ribosomal binding site between the two genes may allow independent translation.
Collapse
Affiliation(s)
- K Krupinska
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby
| | | |
Collapse
|
36
|
The chloroplast glutamate tRNA gene required for δ-aminolevulinate synthesis. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02910592] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Wu NH, Côté JC, Wu R. Structure of the chloroplastpsbA gene encoding the QB protein fromOryza sativa L. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/dvg.1020080505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|