1
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
2
|
Backer N, Kumar A, Singh AK, Singh H, Narasimhan B, Kumar P. Medicinal chemistry aspects of uracil containing dUTPase inhibitors targeting colorectal cancer. Drug Discov Today 2024; 29:103853. [PMID: 38070703 DOI: 10.1016/j.drudis.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Deoxyuridine-5'-triphosphate nucleotidohydrolase (dUTPase), a vital enzyme in pyrimidine metabolism, is a prime target for treating colorectal cancer. Uracil shares structural traits with DNA/RNA bases, prompting exploration by medicinal chemists for pharmacological modifications. Some existing drugs, including thymidylate synthase (TS) and dUTPase inhibitors, incorporate uracil moieties. These derivatives hinder crucial cell proliferation pathways encompassing TS, dUTPases, dihydropyrimidine dehydrogenase, and uracil-DNA glycosylase. This review compiles uracil derivatives that have served as dUTPase inhibitors across various organisms, forming a library for targeting human dUTPase. Insights into their structural requisites for human applications and comparative analyses of binding pockets are provided for analyzing the compounds against human dUTPase.
Collapse
Affiliation(s)
- Nabeel Backer
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | | | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
3
|
Structural basis of staphylococcal Stl inhibition on a eukaryotic dUTPase. Int J Biol Macromol 2021; 184:821-830. [PMID: 34171258 DOI: 10.1016/j.ijbiomac.2021.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
dUTPases are key enzymes in all life kingdoms. A staphylococcal repressor protein (Stl) inhibited dUTPases from multiple species to various extents. Understanding the molecular basis underlying the inhibition differences is crucial to develop effective proteinaceous inhibitors of dUTPases. Herein, we report the complex structure of Stl N-terminal domain (StlN-ter) and Litopenaeus vannamei dUTPase domain (lvDUT65-210). Stl inhibited lvDUT65-210 through its N-terminal domain. The lvDUT65-210-StlN-ter complex structure revealed a heterohexamer encompassing three StlN-ter monomers bound to one lvDUT65-210 trimer, generating two types of Stl-dUTPase interfaces. Interface I is formed by Stl interaction with the lvDUT65-210 active-site region that is contributed by motifs I-IV from its two subunits; interface II results from Stl binding to the C-terminal motif V of the third lvDUT65-210 subunit. Structural comparison revealed both conserved features and obvious differences in Stl-dUTPase interaction patterns, giving clues about the inhibition differences of Stl on dUTPases. Noticeably, interface II is only observed in lvDUT65-210-StlN-ter. The Stl-interacting residues of lvDUT65-210 are conserved in other eukaryotic dUTPases, particularly human dUTPase. Altogether, our study presents the first structural model of Stl interaction with eukaryotic dUTPase, contributing to a more complete view of Stl inhibition and facilitating the development of proteinaceous inhibitor for eukaryotic dUTPases.
Collapse
|
4
|
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem 2021; 296:100015. [PMID: 33139328 PMCID: PMC7948977 DOI: 10.1074/jbc.ra120.014005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal β-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 μM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Benedek A, Pölöskei I, Ozohanics O, Vékey K, Vértessy BG. The Stl repressor from Staphylococcus aureus is an efficient inhibitor of the eukaryotic fruitfly dUTPase. FEBS Open Bio 2017; 8:158-167. [PMID: 29435406 PMCID: PMC5794464 DOI: 10.1002/2211-5463.12302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
DNA metabolism and repair is vital for the maintenance of genome integrity. Specific proteinaceous inhibitors of key factors in this process have high potential for deciphering pathways of DNA metabolism and repair. The dUTPase enzyme family is responsible for guarding against erroneous uracil incorporation into DNA. Here, we investigate whether the staphylococcal Stl repressor may interact with not only bacterial but also eukaryotic dUTPase. We provide experimental evidence for the formation of a strong complex between Stl and Drosophila melanogasterdUTPase. We also find that dUTPase activity is strongly diminished in this complex. Our results suggest that the dUTPase protein sequences involved in binding to Stl are at least partially conserved through evolution from bacteria to eukaryotes.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - István Pölöskei
- Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Károly Vékey
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Beáta G Vértessy
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| |
Collapse
|
6
|
Barabás O, Németh V, Bodor A, Perczel A, Rosta E, Kele Z, Zagyva I, Szabadka Z, Grolmusz VI, Wilmanns M, Vértessy BG. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling. Nucleic Acids Res 2013; 41:10542-55. [PMID: 23982515 PMCID: PMC3905902 DOI: 10.1093/nar/gkt756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/26/2022] Open
Abstract
Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.
Collapse
Affiliation(s)
- Orsolya Barabás
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Veronika Németh
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Perczel
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edina Rosta
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Kele
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Szabadka
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Vince I. Grolmusz
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Matthias Wilmanns
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beáta G. Vértessy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
7
|
Miyakoshi H, Miyahara S, Yokogawa T, Endoh K, Muto T, Yano W, Wakasa T, Ueno H, Chong KT, Taguchi J, Nomura M, Takao Y, Fujioka A, Hashimoto A, Itou K, Yamamura K, Shuto S, Nagasawa H, Fukuoka M. 1,2,3-Triazole-containing uracil derivatives with excellent pharmacokinetics as a novel class of potent human deoxyuridine triphosphatase inhibitors. J Med Chem 2012; 55:6427-37. [PMID: 22715973 DOI: 10.1021/jm3004174] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as a 5-fluorouracil-based combination chemotherapy. We describe the design and synthesis of a novel class of human dUTPase inhibitors, 1,2,3-triazole-containing uracil derivatives. Compound 45a, which possesses 1,5-disubstituted 1,2,3-triazole moiety that mimics the amide bond of tert-amide-containing inhibitor 6b locked in a cis conformation showed potent inhibitory activity, and its structure-activity relationship studies led us to the discovery of highly potent inhibitors 48c and 50c (IC(50) = ~0.029 μM). These derivatives dramatically enhanced the growth inhibition activity of 5-fluoro-2'-deoxyuridine against HeLa S3 cells in vitro (EC(50) = ~0.05 μM). In addition, compound 50c exhibited a markedly improved pharmacokinetic profile as a result of the introduction of a benzylic hydroxy group and significantly enhanced the antitumor activity of 5-fluorouracil against human breast cancer MX-1 xenograft model in mice. These data indicate that 50c is a promising candidate for combination cancer chemotherapies with TS inhibitors.
Collapse
Affiliation(s)
- Hitoshi Miyakoshi
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miyahara S, Miyakoshi H, Yokogawa T, Chong KT, Taguchi J, Muto T, Endoh K, Yano W, Wakasa T, Ueno H, Takao Y, Fujioka A, Hashimoto A, Itou K, Yamamura K, Nomura M, Nagasawa H, Shuto S, Fukuoka M. Discovery of Highly Potent Human Deoxyuridine Triphosphatase Inhibitors Based on the Conformation Restriction Strategy. J Med Chem 2012; 55:5483-96. [DOI: 10.1021/jm300416h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seiji Miyahara
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Hitoshi Miyakoshi
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
- Laboratory
of Pharmaceutical and
Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tatsushi Yokogawa
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Khoon Tee Chong
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Junko Taguchi
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Toshiharu Muto
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Kanji Endoh
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Wakako Yano
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Takeshi Wakasa
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Hiroyuki Ueno
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Yayoi Takao
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Akio, Fujioka
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Akihiro Hashimoto
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Kenjirou Itou
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Keisuke Yamamura
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Makoto Nomura
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| | - Hideko Nagasawa
- Laboratory
of Pharmaceutical and
Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Shuto
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Masayoshi Fukuoka
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki
300-2611, Japan
| |
Collapse
|
9
|
Miyakoshi H, Miyahara S, Yokogawa T, Chong KT, Taguchi J, Endoh K, Yano W, Wakasa T, Ueno H, Takao Y, Nomura M, Shuto S, Nagasawa H, Fukuoka M. Synthesis and Discovery of N-Carbonylpyrrolidine- or N-Sulfonylpyrrolidine-Containing Uracil Derivatives as Potent Human Deoxyuridine Triphosphatase Inhibitors. J Med Chem 2012; 55:2960-9. [DOI: 10.1021/jm201627n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hitoshi Miyakoshi
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
- Laboratory
of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Seiji Miyahara
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Tatsushi Yokogawa
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Khoon Tee Chong
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Junko Taguchi
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Kanji Endoh
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Wakako Yano
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Takeshi Wakasa
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Hiroyuki Ueno
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Yayoi Takao
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Makoto Nomura
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Hideko Nagasawa
- Laboratory
of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Masayoshi Fukuoka
- Drug Discovery Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| |
Collapse
|
10
|
Miyahara S, Miyakoshi H, Yokogawa T, Chong KT, Taguchi J, Muto T, Endoh K, Yano W, Wakasa T, Ueno H, Takao Y, Fujioka A, Hashimoto A, Itou K, Yamamura K, Nomura M, Nagasawa H, Shuto S, Fukuoka M. Discovery of a novel class of potent human deoxyuridine triphosphatase inhibitors remarkably enhancing the antitumor activity of thymidylate synthase inhibitors. J Med Chem 2012; 55:2970-80. [PMID: 22339362 DOI: 10.1021/jm201628y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inhibition of human deoxyuridine triphosphatase (dUTPase) has been identified as a promising approach to enhance the efficacy of 5-fluorouracil (5-FU)-based chemotherapy. This study describes the development of a novel class of dUTPase inhibitors based on the structure-activity relationship (SAR) studies of uracil derivatives. Starting from the weak inhibitor 7 (IC(50) = 100 μM), we developed compound 26, which is the most potent human dUTPase inhibitor (IC(50) = 0.021 μM) reported to date. Not only does compound 26 significantly enhance the growth inhibition activity of 5-fluoro-2'-deoxyuridine (FdUrd) against HeLa S3 cells in vitro (EC(50) = 0.075 μM) but also shows robust antitumor activity against MX-1 breast cancer xenograft model in mice when administered orally with a continuous infusion of 5-FU. This is the first in vivo evidence that human dUTPase inhibitors enhance the antitumor activity of TS inhibitors. On the basis of these findings, it was concluded that compound 26 is a promising candidate for clinical development.
Collapse
Affiliation(s)
- Seiji Miyahara
- Tsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Doláková P, Dračínský M, Fanfrlík J, Holý A. Synthesis of Analogues of Acyclic Nucleoside Diphosphates Containing a (Phosphonomethyl)phosphanyl Moiety and Studies of Their Phosphorylation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Kovári J, Barabás O, Varga B, Békési A, Tölgyesi F, Fidy J, Nagy J, Vértessy BG. Methylene substitution at the alpha-beta bridging position within the phosphate chain of dUDP profoundly perturbs ligand accommodation into the dUTPase active site. Proteins 2008; 71:308-19. [PMID: 17932923 DOI: 10.1002/prot.21757] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
dUTP pyrophosphatase, a preventive DNA repair enzyme, contributes to maintain the appropriate cellular dUTP/dTTP ratio by catalyzing dUTP hydrolysis. dUTPase is essential for viability in bacteria and eukaryotes alike. Identification of species-specific antagonists of bacterial dUTPases is expected to contribute to the development of novel antimicrobial agents. As a first general step, design of dUTPase inhibitors should be based on modifications of the substrate dUTP phosphate chain, as modifications in either base or sugar moieties strongly impair ligand binding. Based on structural differences between bacterial and human dUTPases, derivatization of dUTP-analogous compounds will be required as a second step to invoke species-specific character. Studies performed with dUTP analogues also offer insights into substrate binding characteristics of this important and structurally peculiar enzyme. In this study, alpha,beta-methylene-dUDP was synthesized and its complex with dUTPase was characterized. Enzymatic phosphorylation of this substrate analogue by pyruvate kinase was not possible in contrast to the successful enzymatic phosphorylation of alpha,beta-imino-dUDP. One explanation for this finding is that the different bond angles and the presence of the methylene group may preclude formation of a catalytically competent complex with the kinase. Crystal structure of E. coli dUTPase:alpha,beta-methylene-dUDP and E. coli dUTPase:dUDP:Mn complexes were determined and analyzed in comparison with previous data. Results show that the "trans" alpha-phosphate conformation of alpha,beta-methylene-dUDP differs from the catalytically competent "gauche" alpha-phosphate conformation of the imino analogue and the oxo substrate, manifested in the shifted position of the alpha-phosphorus by more than 3 A. The three-dimensional structures determined in this work show that the binding of the methylene analogue with the alpha-phosphorus in the "gauche" conformation would result in steric clash of the methylene group with the protein atoms. In addition, the metal ion cofactor was not bound in the crystal of the complex with the methylene analogue while it was clearly visible as coordinated to dUDP, arguing that the altered phosphate chain conformation also perturbs metal ion complexation. Isothermal calorimetry titrations indicate that the binding affinity of alpha,beta-methylene-dUDP toward dUTPase is drastically decreased when compared with that of dUDP. In conclusion, the present data suggest that while alpha,beta-methylene-dUDP seems to be practically nonhydrolyzable, it is not a strong binding inhibitor of dUTPase probably due to the altered binding mode of the phosphate chain. Results indicate that in some cases methylene analogues may not faithfully reflect the competent substrate ligand properties, especially if the methylene hydrogens are in steric conflict with the protein.
Collapse
Affiliation(s)
- Júlia Kovári
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Németh-Pongrácz V, Barabás O, Fuxreiter M, Simon I, Pichová I, Rumlová M, Zábranská H, Svergun D, Petoukhov M, Harmat V, Klement É, Hunyadi-Gulyás É, Medzihradszky KF, Kónya E, Vértessy BG. Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins. Nucleic Acids Res 2006; 35:495-505. [PMID: 17169987 PMCID: PMC1802613 DOI: 10.1093/nar/gkl1074] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The homotrimeric fusion protein nucleocapsid (NC)-dUTPase combines domains that participate in RNA/DNA folding, reverse transcription, and DNA repair in Mason-Pfizer monkey betaretrovirus infected cells. The structural organization of the fusion protein remained obscured by the N- and C-terminal flexible segments of dUTPase and the linker region connecting the two domains that are invisible in electron density maps. Small-angle X-ray scattering reveals that upon oligonucleotide binding the NC domains adopt the trimeric symmetry of dUTPase. High-resolution X-ray structures together with molecular modeling indicate that fusion with NC domains dramatically alters the conformation of the flexible C-terminus by perturbing the orientation of a critical β-strand. Consequently, the C-terminal segment is capable of double backing upon the active site of its own monomer and stabilized by non-covalent interactions formed with the N-terminal segment. This co-folding of the dUTPase terminal segments, not observable in other homologous enzymes, is due to the presence of the fused NC domain. Structural and genomic advantages of fusing the NC domain to a shortened dUTPase in betaretroviruses and the possible physiological consequences are envisaged.
Collapse
Affiliation(s)
| | | | | | | | - Iva Pichová
- Institute of Chemistry and Biochemistry, Czech Academy of SciencesPrague, Czech Republic
| | - Michalea Rumlová
- Institute of Chemistry and Biochemistry, Czech Academy of SciencesPrague, Czech Republic
| | - Helena Zábranská
- Institute of Chemistry and Biochemistry, Czech Academy of SciencesPrague, Czech Republic
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg OutstationHamburg, Germany, and Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Petoukhov
- European Molecular Biology Laboratory, Hamburg OutstationHamburg, Germany, and Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Veronika Harmat
- Hungarian Academy of Sciences-Eotvos Lorand University, Protein Modeling Research GroupBudapest, Hungary
| | - Éva Klement
- Proteomics Laboratory, Biological Research CenterHungarian Academy of Sciences, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Proteomics Laboratory, Biological Research CenterHungarian Academy of Sciences, Szeged, Hungary
| | | | | | - Beáta G. Vértessy
- To whom correspondence should be addressed. Tel: 36 12793116; Fax: 36 14665465;
| |
Collapse
|
14
|
Nguyen C, Kasinathan G, Leal-Cortijo I, Musso-Buendia A, Kaiser M, Brun R, Ruiz-Pérez LM, Johansson NG, González-Pacanowska D, Gilbert IH. Deoxyuridine Triphosphate Nucleotidohydrolase as a Potential Antiparasitic Drug Target. J Med Chem 2005; 48:5942-54. [PMID: 16161998 DOI: 10.1021/jm050111e] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a structure-activity study to identify novel, small-molecule inhibitors of the enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) from parasitic protozoa. The successful synthesis of a variety of analogues of dUMP is described in which the substituents are introduced at the 3'- and 5'-positions, together with variation in the heteroatom at the 5'-position. The compounds were assayed against recombinant Plasmodium falciparum and Leishmania major enzymes and the human enzyme to give a measure of selectivity. The compounds were also tested in vitro against the intact parasites P. falciparum and L. donovani. A number of potent and selective inhibitors of the P. falciparum dUTPase that show drug-like properties and represent good leads for future development were identified. The best inhibitors included the compounds 5'-tritylamino-2',5'-dideoxyuridine (2j) (Ki = 0.2 microM) and 5'-O-triphenylsilyl-2',3'-didehydro-2',3'-dideoxyuridine (5h) (Ki = 1.3 microM), with selectivity greater than 200-fold compared to the human enzyme. Structural features important for antiplasmodial activity were determined. The correlation observed between the inhibition of the enzyme and the inhibition of the parasite growth in vitro demonstrates that the P. falciparum dUTPase constitutes a valid and attractive novel target for the development of much-needed new antimalarial drugs.
Collapse
Affiliation(s)
- Corinne Nguyen
- Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Barabás O, Pongrácz V, Kovári J, Wilmanns M, Vértessy BG. Structural Insights into the Catalytic Mechanism of Phosphate Ester Hydrolysis by dUTPase. J Biol Chem 2004; 279:42907-15. [PMID: 15208312 DOI: 10.1074/jbc.m406135200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dUTPase is essential to keep uracil out of DNA. Crystal structures of substrate (dUTP and alpha,beta-imino-dUTP) and product complexes of wild type and mutant dUTPases were determined to reveal how an enzyme responsible for DNA integrity functions. A kinetic analysis of wild type and mutant dUTPases was performed to obtain relevant mechanistic information in solution. Substrate hydrolysis is shown to be initiated via in-line nucleophile attack of a water molecule oriented by an activating conserved aspartate residue. Substrate binding in a catalytically competent conformation is achieved by (i) multiple interactions of the triphosphate moiety with catalysis-assisting Mg2+, (ii) a concerted motion of residues from three conserved enzyme motifs as compared with the apoenzyme, and (iii) an intricate hydrogen-bonding network that includes several water molecules in the active site. Results provide an understanding for the catalytic role of conserved residues in dUTPases.
Collapse
Affiliation(s)
- Orsolya Barabás
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Science, Budapest, Karolina út 29-31, H-1113, Hungary
| | | | | | | | | |
Collapse
|
16
|
Chan S, Segelke B, Lekin T, Krupka H, Cho US, Kim MY, So M, Kim CY, Naranjo CM, Rogers YC, Park MS, Waldo GS, Pashkov I, Cascio D, Perry JL, Sawaya MR. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J Mol Biol 2004; 341:503-17. [PMID: 15276840 DOI: 10.1016/j.jmb.2004.06.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/07/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The structure of Mycobacterium tuberculosis dUTP nucleotidohydrolase (dUTPase) has been determined at 1.3 Angstrom resolution in complex with magnesium ion and the non-hydrolyzable substrate analog, alpha,beta-imido dUTP. dUTPase is an enzyme essential for depleting potentially toxic concentrations of dUTP in the cell. Given the importance of its biological role, it has been proposed that inhibiting M.tuberculosis dUTPase might be an effective means to treat tuberculosis infection in humans. The crystal structure presented here offers some insight into the potential for designing a specific inhibitor of the M.tuberculosis dUTPase enzyme. The structure also offers new insights into the mechanism of dUTP hydrolysis by providing an accurate representation of the enzyme-substrate complex in which both the metal ion and dUTP analog are included. The structure suggests that inclusion of a magnesium ion is important for stabilizing the position of the alpha-phosphorus for an in-line nucleophilic attack. In the absence of magnesium, the alpha-phosphate of dUTP can have either of the two positions which differ by 4.5 Angstrom. A transiently ordered C-terminal loop further assists catalysis by shielding the general base, Asp83, from solvent thus elevating its pK(a) so that it might in turn activate a tightly bound water molecule for nucleophilic attack. The metal ion coordinates alpha, beta, and gamma phosphate groups with tridentate geometry identical with that observed in the crystal structure of DNA polymerase beta complexed with magnesium and dNTP analog, revealing some common features in catalytic mechanism.
Collapse
Affiliation(s)
- Sum Chan
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, 206 Boyer Hall, Box 951570, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dubrovay Z, Gáspári Z, Hunyadi-Gulyás E, Medzihradszky KF, Perczel A, Vértessy BG. Multidimensional NMR Identifies the Conformational Shift Essential for Catalytic Competence in the 60-kDa Drosophila melanogaster dUTPase Trimer. J Biol Chem 2004; 279:17945-50. [PMID: 14724273 DOI: 10.1074/jbc.m313644200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic mechanism of dUTP pyrophosphatase (dUTPase), responsible for the prevention of uracil incorporation into DNA, involves ordering of the flexible C terminus of the enzyme. This conformational shift is investigated by multidimensional NMR on the Drosophila enzyme. Flexible segments of the homotrimer give rise to sharp resonances in the (1)H-(15)N heteronuclear single-quantum coherence (HSQC) spectra, which are clearly distinguishable from the background resonances of the well folded protein globule. Binding of the product dUMP or the analogues dUDP and alpha,beta-imino-dUTP to the enzyme induces a conformational change reflected in the disappearance of eight sharp resonances. This phenomenon is interpreted as nucleotide binding-induced ordering of some residues upon the folded protein globule. Three-dimensional (15)N-edited (1)H-(15)N HSQC total correlation spectroscopy (TOCSY) and (1)H-(15)N HSQC nuclear Overhauser effect spectroscopy measurements allowed clear assignment of these eight specific resonance peaks. The residues identified correspond to the conserved C-terminal sequence motif, indicating that (i) this conformational shift is amenable to NMR studies in solution even in the large trimeric molecule and (ii) formation of the closed enzyme conformer in the case of the Drosophila enzyme does not require the complete triphosphate chain of the substrate. NMR titration of the enzyme with the nucleotide ligands as well as kinetic data indicated significant deviation from the model of independent active sites within the homotrimer. The results suggest allosterism in the eukaryotic dUTPase.
Collapse
Affiliation(s)
- Zsófia Dubrovay
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, POB 7, H-1518, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Hidalgo-Zarco F, Camacho AG, Bernier-Villamor V, Nord J, Ruiz-Pérez LM, González-Pacanowska D. Kinetic properties and inhibition of the dimeric dUTPase-dUDPase from Leishmania major. Protein Sci 2001; 10:1426-33. [PMID: 11420444 PMCID: PMC2374113 DOI: 10.1110/ps.48801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Revised: 03/15/2001] [Accepted: 04/23/2001] [Indexed: 10/14/2022]
Abstract
Kinetic properties of the dimeric enzyme dUTPase from Leishmania major were studied using a continuous spectrophotometric method. dUTP was the natural substrate and dUMP and PPi the products of the hydrolysis. The trypanosomatid enzyme exhibited a low K(m) value for dUTP (2.11 microM), a k(cat) of 49 s(-1), strict Michaelis-Menten kinetics and is a potent catalyst of dUDP hydrolysis, whereas in other dUTPases described, this compound acts as a competitive inhibitor. Discrimination is achieved for the base and sugar moiety showing specificity constants for different dNTPs similar to those of bacterial, viral, and human enzymes. In the alkaline range, the K(m) for dUTP increases with the dissociation of ionizable groups showing pK(a) values of 8.8, identified as the uracil moiety of dUTP and 10, whereas in the acidic range, K(m) is regulated by an enzyme residue exhibiting a pK(a) of 7.1. Activity is strongly inhibited by the nucleoside triphosphate analog alpha-beta-imido-dUTP, indicating that the enzyme can bind triphosphate analogs. The existence of specific inhibition and the apparent structural and kinetic differences (reflected in different binding strength of dNTPs) with other eukaryotic dUTPases suggest that the present enzyme might be exploited as a target for new drugs against leishmaniasis.
Collapse
Affiliation(s)
- F Hidalgo-Zarco
- Instituto de Parasitología y Biomedicina López-Neyra, 18001-Granada, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Nord J, Nyman P, Larsson G, Drakenberg T. The C-terminus of dUTPase: observation on flexibility using NMR. FEBS Lett 2001; 492:228-32. [PMID: 11257499 DOI: 10.1016/s0014-5793(01)02257-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dynamics of the C-terminus of the dUTPases from Escherichia coli and equine infectious anaemia virus (EIAV) were studied by 1H-(15)N nuclear magnetic resonance spectroscopy. The two enzymes differ with regard to flexibility in the backbone of the 15 most C-terminal amino acid residues, some of which are conserved and essential for enzymic activity. In the bacterial enzyme, the residues closest to the C-terminus are highly flexible and display a correlation time in the nanosecond time range. No similar high flexibility could be detected for the C-terminal part of EIAV dUTPase, indicating a different time range of flexibility.
Collapse
Affiliation(s)
- J Nord
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden. johan.nord@astrazeneca
| | | | | | | |
Collapse
|
20
|
Nord J, Kiefer M, Adolph HW, Zeppezauer MM, Nyman PO. Transient kinetics of ligand binding and role of the C-terminus in the dUTPase from equine infectious anemia virus. FEBS Lett 2000; 472:312-6. [PMID: 10788633 DOI: 10.1016/s0014-5793(00)01453-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transient kinetics of the equine infectious anemia virus deoxyuridine 5'-triphosphate nucleotide hydrolase were characterized by monitoring the fluorescence of the protein. Rate constants for the association and dissociation of substrate and inhibitors were determined and found to be consistent with a one-step mechanism for substrate binding. A C-terminal part of the enzyme presumed to be flexible was removed by limited trypsinolysis. As a result, the activity of the dUTPase was completely quenched, but the rate constants and fluorescent signal of the truncated enzyme were affected only to a minor degree. We conclude that the flexible C-terminus is not a prerequisite for substrate binding, but indispensable for catalysis.
Collapse
Affiliation(s)
- J Nord
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, University of Lund, P.O. Box 124, S-221 00, Lund, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Harris JM, McIntosh EM, Muscat GE. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. J Mol Biol 1999; 288:275-87. [PMID: 10329142 DOI: 10.1006/jmbi.1999.2680] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a beta-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this beta-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKa of both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme's catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved alpha-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors.
Collapse
Affiliation(s)
- J M Harris
- Centre for Molecular and Cellular Biology, University of Queensland, St Lucia, Australia.
| | | | | |
Collapse
|
22
|
Bergman AC, Nyman PO, Larsson G. Kinetic properties and stereospecificity of the monomeric dUTPase from herpes simplex virus type 1. FEBS Lett 1998; 441:327-30. [PMID: 9883909 DOI: 10.1016/s0014-5793(98)01575-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kinetic properties of the monomeric enzyme dUTPase from herpes simplex virus type 1 (HSV) were investigated and compared to those previously determined for homotrimeric dUTPases of bacterial and retroviral origins. The HSV and Escherichia coli dUTPases are equally potent as catalysts towards the native substrate dUTP with a kcat/K(M) of about 10(7) M(-1) s(-1) and a K(M) of 0.3 microM. However, the viral enzymes are less specific than the bacterial enzyme. The HSV and E. coli dUTPases show the same stereospecificity towards the racemic substrate analogue dUTPalphaS (2'-deoxyuridine 5'-(alpha-thio)triphosphate), suggesting that they have identical reaction mechanisms.
Collapse
Affiliation(s)
- A C Bergman
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
23
|
Vertessy BG, Larsson G, Persson T, Bergman AC, Persson R, Nyman PO. The complete triphosphate moiety of non-hydrolyzable substrate analogues is required for a conformational shift of the flexible C-terminus in E. coli dUTP pyrophosphatase. FEBS Lett 1998; 421:83-8. [PMID: 9462846 DOI: 10.1016/s0014-5793(97)01545-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanism of substrate analogue interaction with Escherichia coli dUTPase was investigated, using the non-hydrolyzable 2'-deoxyuridine 5'-(alpha,beta-imido)triphosphate (alpha,beta-imido-dUTP). Binding of this analogue induces a difference in the far UV circular dichroism (CD) spectrum arguing for a significant change in protein conformation. The spectral shift is strictly Mg2+-dependent, does not appear with dUDP instead of alpha,beta-imido-dUTP and is not elicited if the flexible C-terminal arm is deleted from the protein by limited tryptic digestion. Involvement of the C-terminal arm in alpha,beta-imido-dUTP binding is consistent with the finding that this analogue protects against tryptic hydrolysis at Arg-141. Near UV CD of ligand-enzyme complexes reveals a characteristic difference in the microenvironments of enzyme-bound dUDP and alpha,beta-imido-dUTP, a difference not observable in C-terminally truncated dUTPase. The results suggest that (i) closing of the active site during the catalytic cycle, through the movement of the C-terminal arm, requires the presence of the complete triphosphate moiety of the substrate in complex with Mg2+, and (ii) after catalytic cleavage the active site pops open to facilitate product release.
Collapse
Affiliation(s)
- B G Vertessy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest.
| | | | | | | | | | | |
Collapse
|
24
|
Nord J, Larsson G, Kvassman JO, Rosengren AM, Nyman PO. dUTPase from the retrovirus equine infectious anemia virus: specificity, turnover and inhibition. FEBS Lett 1997; 414:271-4. [PMID: 9315700 DOI: 10.1016/s0014-5793(97)00935-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetic properties of dUTPase from equine infectious anemia virus (EIAV) were investigated. K(M) (1.1 +/- 0.1 microM) and k(cat) (25 s(-1)) were found to be independent of pH in the neutral pH range. Above pH 8.0, K(M) increases slightly. Below pH 6.0, the enzyme is rapidly deactivated. Detergent was found to enhance activity, leaving K(M) and k(cat) unaffected. Compared to the Escherichia coli dUTPase, the EIAV enzyme is equally potent in hydrolyzing dUTP, but less specific. Inhibition of the viral enzyme by the nucleotides dTTP, dUMP and a synthetic analogue, 2'-deoxyuridine 5'-(alpha,beta-imido)triphosphate, is stronger by one order of magnitude.
Collapse
Affiliation(s)
- J Nord
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|