Stahlschmidt A, Khalili P, Sun W, Machulla HJ, Knaus EE, Wiebe LI. Biodistribution and imaging of 1-(2-deoxy-beta-d-ribofuranosyl)-2,4-difluoro-5-[123/125I]iodobenzene (dRF[(123/125)I]IB), a nonpolar thymidine-mimetic nucleoside, in rats and tumor-bearing mice.
NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010;
28:379-93. [PMID:
20183590 DOI:
10.1080/15257770903051072]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1-(2-Deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene (dRFIB) is a putative bioisostere of iododeoxyuridine (IUdR). The advantages of dRFIB over IUdR for in vivo studies include resistance to both phosphorolytic cleavage of the nucleoside bond and de-iodination. dRFIB was radioiodinated (dRF(123/125)IB) by copper-catalyzed exchange using commercial sodium [(123/125)I]iodide. The in vivo biodistribution of dRF[(125)I]IB in BALBc mice and imaging of dRF[(123)I]IB in Sprague-Dawley rats are reported. In vivo data for rats show rapid clearance of radioactivity from blood (>95%ID in 15 minutes), extensive excretion in urine (56%ID/24 hours), concentration in the hepatobiliary-small intestine system and very little fecal excretion (approximately 3%ID/24 hours). Pharmacokinetic data for dRF[(125)I]IB (i.v. 48.7 ug/kg) in rats (t(1/2)[h] = 0.51 +/- 0.14, AUC(inf)[microg.min/mL] = 3.7 +/- 0.4, Cl[L/kg/h] = 0.75 +/- 0.12, Vss[L/kg] = 0.96 +/- 0.18) confirm previously reported dose-dependent pharmacokinetics. Scintigraphic images of rats dosed with dRF[(123)I]I were compatible with rapid soft-tissue clearance and extensive accumulation of radioactivity in bladder/urine and liver/small intestine. In tumor-bearing mice, thyroid and stomach radioactivity was indicative of moderate deiodination. An unidentified polar radioactive metabolite was detected in serum.
Collapse