Schueppel R, Uhrich C, Pfeiffer M, Leo K, Brier E, Reinold E, Baeuerle P. Enhanced Photogeneration of Triplet Excitons in an Oligothiophene–Fullerene Blend.
Chemphyschem 2007;
8:1497-503. [PMID:
17566137 DOI:
10.1002/cphc.200700306]
[Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photoinduced and transient absorption spectroscopy is used to study triplet exciton dynamics in thin films of a new thiophene-based oligomer (DCV3T) and blends of DCV3T and fullerene C60. We find enhanced DCV3T triplet exciton generation in the blend layer, which is explained as an excitonic ping-pong effect: singlet energy transfer from DCV3T to C60, followed by immediate intersystem crossing to C60, and triplet exciton back-transfer. Estimations of the rate constants involved show that the ping-pong effect has an overall efficiency close to unity. The singlet-singlet energy transfer from DCV3T to C60 is demonstrated by efficient quenching of DCV3T luminescence in the blend, leading to sensitized emission of C60. We discuss a promising new concept of solar cells with an enlarged active-layer thickness based on potentially long-ranged triplet exciton diffusion in combination with efficient intersystem crossing.
Collapse