Henriques JA, Andrade HH, Bankmann M, Brendel M. Reassessing the genotoxic potential of 8-MOP + UVA-induced DNA damage in the yeast Saccharomyces cerevisiae.
Curr Genet 1989;
16:75-80. [PMID:
2688926 DOI:
10.1007/bf00393398]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two different UVA irradiation systems were initially biologically calibrated with two haploid yeast strains proficient and deficient, respectively, in nucleotide excision repair. The number of DNA lesions introduced into the cell's genome by the photoactivated bifunctional furocoumarin 8-MOP was then calculated by means of the applied UVA exposure doses. At LD37 the repair-proficient wild type had about 14 ICL and 34 furan-side monoadducts in its DNA, while doubly blocked repair mutant rad3-12 pso1-1 had 2 ICL and 3 monoadducts. Locus-specific reversion of lys1-1 followed two-hit kinetics in the repair-proficient wild type and one-hit kinetics in an excision-deficient rad2-20 mutant, as would be expected if ICL was the main type of mutagenic lesion in the wild type and monoadducts the main mutagenic lesion type in the excision-deficient strain. Quantitative comparison of 8-MOP + UVA-induced ICL with those induced by bifunctional mustard revealed the former to have a much higher genotoxicity.
Collapse