1
|
Bal-Ozturk A, Cecen B, Avci-Adali M, Topkaya SN, Alarcin E, Yasayan G, Ethan YC, Bulkurcuoglu B, Akpek A, Avci H, Shi K, Shin SR, Hassan S. Tissue Adhesives: From Research to Clinical Translation. NANO TODAY 2021; 36:101049. [PMID: 33425002 PMCID: PMC7793024 DOI: 10.1016/j.nantod.2020.101049] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sutures, staples, clips and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation. They are fluid or semi-fluid mixtures that can be easily used to seal any wound of any morphology - uniform or irregular. As such, they provide alternatives to new and novel platforms for wound closure methods. In this review, we offer a background on the improvement of distinctive tissue adhesives focusing on the chemistry of some of these products that have been a commercial success from the clinical application perspective. This review is aimed to provide a guide toward innovation of tissue bioadhesive materials and their associated biomedical applications.
Collapse
Affiliation(s)
- Ayça Bal-Ozturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Zeytinburnu, Istanbul, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Yi-Chen Ethan
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Ali Akpek
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Department of Bioengineering, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Sabanci University Nanotechnology Research & Application Center, 34956, Tuzla Istanbul-Turkey
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering, Faculty of Engineering and Architecture Eskisehir Osmangazi University Eskisehir Turkey
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Zhang H, Xia WS, Xu YS, Jiang QX, Wang CX, Wang WJ. Effects of spray-drying operational parameters on the quality of freshwater mussel powder. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2012.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Mehdizadeh M, Yang J. Design strategies and applications of tissue bioadhesives. Macromol Biosci 2012; 13:271-88. [PMID: 23225776 DOI: 10.1002/mabi.201200332] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Indexed: 01/02/2023]
Abstract
In the past two decades tissue adhesives and sealants have revolutionized bleeding control and wound healing. This paper focuses on existing tissue adhesive design, their structure, functioning mechanism, and their pros and cons in wound management. It also includes the latest advances in the development of new tissue adhesives as well as the emerging applications in regenerative medicine. We expect that this paper will provide insightful discussion on tissue bioadhesive design and lead to innovations for the development of the next generation of tissue bioadhesives and their related biomedical applications.
Collapse
Affiliation(s)
- Mohammadreza Mehdizadeh
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
4
|
Voigt D, Gorb S. Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc Biol Sci 2009; 277:895-903. [PMID: 19923132 DOI: 10.1098/rspb.2009.1706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant surfaces covered with crystalline epicuticular waxes are known to be anti-adhesive, hardly wettable and preventing insect attachment. But there are insects that are capable of gluing their eggs to these surfaces by means of proteinaceous secretions. In this study, we analysed the bonding region between the eggs of Crioceris asparagi and the plant surface of Asparagus officinalis using light and cryo-scanning electron microscopy. The wettability of the plant surface by egg secretion was compared with that by Aqua Millipore water, aqueous sugar solution and chicken egg white. Furthermore, the force required to remove C. asparagi eggs from the plant surface was measured, in order to evaluate the egg's bonding strength. Mean pull-off force was 14.7 mN, which is about 8650 times higher than the egg weight. Egg glue was observed spreading over the wax crystal arrays on the plant cladophyll and wetting them. Similar wetting behaviour on the A. officinalis surface was observed for chicken egg white. Our results support the hypothesis that the mechanism of insect egg adhesion on micro- and nanostructured hydrophobic plant surfaces is related to the proteinaceous nature of adhesive secretions of insect eggs. The secretion wets superhydrophobic surfaces and after solidifying builds up a composite, consisting of the solidified glue and wax crystals, at the interface between the egg and plant cuticle.
Collapse
Affiliation(s)
- Dagmar Voigt
- Evolutionary Biomaterials Group, Department of Thin Films and Biological Systems, Max-Planck Institute for Metals Research, Heisenbergstrasse 03, 70569 Stuttgart, Germany.
| | | |
Collapse
|
5
|
Silverman HG, Roberto FF. Understanding marine mussel adhesion. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:661-81. [PMID: 17990038 PMCID: PMC2100433 DOI: 10.1007/s10126-007-9053-x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/24/2007] [Accepted: 09/05/2007] [Indexed: 05/07/2023]
Abstract
In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.
Collapse
Affiliation(s)
- Heather G Silverman
- Biological Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, USA.
| | | |
Collapse
|
6
|
Burzio LA, Burzio VA, Pardo J, Burzio LO. In vitro polymerization of mussel polyphenolic proteins catalyzed by mushroom tyrosinase. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:383-9. [PMID: 11007180 DOI: 10.1016/s0305-0491(00)00188-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The in vitro enzymatic polymerization of the polyphenolic protein purified from the mussels Aulacomya ater, Mytilus edulis chilensis and Choromytilus chorus was studied. Mushroom tyrosinase was used to oxidize the dopa residues present in these proteins, and polymerization was monitored by acid-urea polyacrylamide gel electrophoresis. The protein from A. ater polymerized at a faster rate than the other two. Amino acid analysis of the crosslinked protein showed a notable decrease in the content of dopa, but no significant change of other amino acids. This suggests that crosslink formation may be limited to the oxidized dopa derivatives of the protein molecules.
Collapse
Affiliation(s)
- L A Burzio
- BiosChile Ingerinería Genetica S.A. and Fundación Ciencia para la Vida, Nuñoa, Santiago, Chile
| | | | | | | |
Collapse
|
7
|
Burzio LA, Saéz C, Pardo J, Waite JH, Burzio LO. The adhesive protein of Choromytilus chorus (Molina, 1782) and Aulacomya ater (Molina, 1782): a proline-rich and a glycine-rich polyphenolic protein. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:315-20. [PMID: 11004549 DOI: 10.1016/s0167-4838(00)00010-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The adhesive polyphenolic proteins from Aulacomya ater and Choromytilus chorus with apparent molecular masses of 135000 and 105000, respectively, were digested with trypsin and the peptides produced resolved by reversed phase liquid chromatography. About 5 and 12 major peptides were obtained from the protein of A. ater and C. chorus, respectively. The major peptides were purified by reverse-phase chromatography and the amino acid sequence indicates that both polyphenolic proteins consisted of repeated sequence motifs in their primary structure. The major peptides of A. ater contain seven amino acids corresponding to the consensus sequence AGYGGXK, whereas the tyrosine was always found as 3, 4-dihydroxyphenylalanine (Dopa), the X residue in position 6 was either valine, leucine or isoleucine, and the carboxy terminal was either lysine or hydroxylysine. On the other hand, the major peptides of C. chorus ranged in size from 6 to 21 amino acids and the majority correspond to the consensus sequence AKPSKYPTGYKPPVK. Both proteins differ markedly in the sequence of their tryptic peptides, but they share the common characteristics of other adhesive proteins in having a tandem sequence repeat in their primary structure.
Collapse
Affiliation(s)
- L A Burzio
- BiosChile Ingenieria Genética S.A., Santiago, Chile
| | | | | | | | | |
Collapse
|
8
|
Burzio LO, Burzio VA, Silva T, Burzio LA, Pardo J. Environmental bioadhesion: themes and applications. Curr Opin Biotechnol 1997; 8:309-12. [PMID: 9206011 DOI: 10.1016/s0958-1669(97)80008-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many marine organisms attach to underwater surfaces using protein adhesives. These are basic proteins with high levels of the amino acid 3,4-dihydroxyphenylalanine and an extended flexible conformation. The hydroxylation of tyrosine residues plays a key role in the chemisorption of these polymers to surfaces and in the setting of the adhesive. These unique proteins are attracting biotechnological attention for application in industry and medicine. Recent development on the immobilization of antigens and antibodies, enzymes, cells and tissues, illustrate the great potential use of these adhesives for diagnostics and medicine. The use of these adhesive proteins as anticorrosive coats for metal also suggests important applications for industry.
Collapse
Affiliation(s)
- L O Burzio
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia.
| | | | | | | | | |
Collapse
|
10
|
Delgado F, Brito M, Concha II, Schroeder R, Burzio LO. Nuclear Sm antigens in the sperm of different organisms. ZYGOTE 1994; 2:227-35. [PMID: 8785681 DOI: 10.1017/s0967199400002021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunoblot analysis of sperm protein from several species revealed the presence of polypeptides recognised by anti-Sm sera obtained from patients with systemic lupus erythematosus. Immunoreactive polypeptides in human, bull, mouse and rat sperm were identified as protein B', B and D as compared with the Sm polypeptides of HeLa cells. In the sperm of rooster, the teleost fish Cyprinus carpio and the mussel Choromytilus chorus, the immunoreactive polypeptide profile was more complex. To ascertain the sperm origin of the Sm antigens, immunolocalisation with anti-Sm serum was carried out. The results demonstrated that in all the species studied staining was confined to the sperm nucleus, confirming that some polypeptides of the small nuclear ribonucleoprotein complex are present in the gamete.
Collapse
Affiliation(s)
- F Delgado
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|