1
|
Farook TH, Ramees L, Dudley J. Relationship between anterior occlusion, arch dimension, and mandibular movement during speech articulation: A three-dimensional analysis. J Prosthet Dent 2025; 133:881-887. [PMID: 39242274 DOI: 10.1016/j.prosdent.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/09/2024]
Abstract
STATEMENT OF PROBLEM Studies correlating occlusal morphology from 3-dimensional intraoral scans with both soft and hard tissue dynamic landmark tracking within the same participant population are lacking. PURPOSE The purpose of this clinical study was to use 3-dimensional intraoral scanning, computer-aided design, electrognathography, and artificial intelligence to investigate the relationships between anterior occlusion and arch parameters with hard and soft tissue displacements during speech production. MATERIAL AND METHODS An artificial intelligence (AI) driven software program and electrognathography was used to record the phonetic activities in 62 participants for soft tissue (ST) and hard tissue (HT) displacement. Soft tissue displacement was quantified by the mean difference between subnasale and soft tissue pogonion peaks during phonetic expressions, and hard tissue displacement was directly measured with an electrognathograph. Intercanine and intermolar distances, arch perimeters, and horizontal and vertical overlap were measured from the intraoral scan data. RESULTS ST and HT displacements were successfully estimated for fricative (ST=7.16 ±4.51 mm, HT=11.86 ±4.02 mm), sibilant (ST=5.11 ±3.49 mm, HT=8.24 ±3.31 mm), linguodental (ST=5.72 ±4.46 mm, HT=10.01 ±3.16 mm), and bilabial (ST=5.56 ±4.64 mm, HT=11.69 ±4.28 mm) phonetics. Vertical overlap correlated positively with hard tissue movement during all speech expressions except bilabial phonetics (ρ=.30 to.41, P<.05). Maxillary and mandibular arch perimeters showed negative correlations with soft tissue displacement during linguodental and bilabial speech (ρ=-.25 to -.41, P<.05) but were significantly correlated with hard tissue movement during all speech assessments (ρ=-.28 to -.44, P<.05). Maxillary intermolar distances negatively correlated with hard tissue phonetic expressions (ρ=-.24 to -.30, P<.05). Participant age positively correlated with soft tissue displacement during all speech patterns (ρ=.28 to.33, P<.05) and with weight increase (ρ=.27, P=.033), and hard tissue displacement (ρ=.25, P=.048) during maximum mouth opening significantly correlated with linguodental phonetics. CONCLUSIONS Within the study population, vertical overlap, maxillary intermolar distance, and dental arch perimeters correlated significantly with mandibular displacement during phonetic expression.
Collapse
Affiliation(s)
- Taseef Hasan Farook
- PhD Candidate, Adelaide Dental School, The University of Adelaide, Adelaide, Australia.
| | - Lameesa Ramees
- Research Assistant, Adelaide Dental School, The University of Adelaide, Adelaide, Australia
| | - James Dudley
- Associate Professor, Adelaide Dental School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG: 2004-2024. J Appl Physiol (1985) 2025; 138:121-135. [PMID: 39576281 DOI: 10.1152/japplphysiol.00453.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025] Open
Abstract
This review follows two previous papers [Farina et al. Appl Physiol (1985) 96: 1486-1495, 2004; Farina et al. J Appl Physiol (1985) 117: 1215-1230, 2014] in which we reflected on the use of surface electromyography (EMG) in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modeling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of nonmeasurable parameters by inverse modeling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the nonstationarities in dynamic contractions, and to decompose signals in real time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 yr since our first review, we conclude that the recording and analysis of surface EMG signals have seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Roberto Merletti
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
3
|
Negi PCBS, Pandey SS, Sharma S, Sharma N. Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images. J Med Eng Technol 2024; 48:239-252. [PMID: 39936825 DOI: 10.1080/03091902.2025.2462310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.
Collapse
Affiliation(s)
- Pranshu C B S Negi
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S S Pandey
- Department of Orthopaedics, Institute of Medical Sciences (Banaras Hindu University), Varanasi, India
| | - Shiru Sharma
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
4
|
Mesin L. Nonlinear spatio-temporal filter to reduce crosstalk in bipolar electromyogram. J Neural Eng 2024; 21:016021. [PMID: 38277703 DOI: 10.1088/1741-2552/ad2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Objective.The wide detection volume of surface electromyogram (EMG) makes it prone to crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from bipolar recordings is an important open problem for many applications.Approach.An innovative nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle by processing noisy signals from two bipolar channels, placed over the target and the crosstalk muscle, respectively. The filter is trained on some calibration data and then can be applied on new signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments (from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results.The proposed filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically significant reduction of its root mean squared of about 20%, both in simulated and experimental data. Its performances are also superior to those of a blind source separation method applied to the same data.Significance.The proposed filter is simple to be applied and feasible in applications in which single bipolar channels are placed over the muscles of interest. It can be useful in many fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback, clinical studies, prosthesis control.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| |
Collapse
|
5
|
Selkowitz DM, Beneck GJ, Powers CM. Persons with patellofemoral pain exhibit altered hip abductor muscle recruitment while performing hip abductor exercises. Physiother Theory Pract 2024; 40:11-20. [PMID: 35880404 DOI: 10.1080/09593985.2022.2101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Strengthening of the hip abductors has been advocated for persons with patellofemoral pain (PFP). It is not clear if these individuals activate the hip abductor muscles appropriately to achieve the desired therapeutic effects. OBJECTIVE To compare activation of the hip abductor muscles between persons with and without PFP during the performance of hip abductor exercises. METHODS Thirty-two individuals participated (12 with PFP and 20 without PFP). The average age (± standard deviation) was 29.7 ± 5.9 years for the PFP group and 28.1 ± 6.9 for the control group. Electromyographic (EMG) signals from the gluteus medius (GMED), superior gluteus maximus (SUP-GMAX), and tensor fascia lata (TFL) were obtained using fine-wire electrodes while participants performed 11 different exercises. Normalized EMG activity of each muscle was compared between groups across all exercises. RESULTS When averaged across all exercises, persons with PFP exhibited significantly greater EMG activity of TFL (mean = 25.3% MVIC; 95% CI = 19.2, 31.3) compared to those without PFP (mean = 17.6% MVIC; 95% CI = 12.8, 22.4) and significantly lower EMG activity of SUP-GMAX (mean = 16.4% MVIC; 95% CI = 11.0, 22.0) compared to those without PFP (mean = 25.4% MVIC; 95% CI = 21.0, 29.8). Persons with PFP exhibited lower EMG activity of GMED, but only for 3 out of the 11 exercises evaluated (hip abduction, hip hike, step-up). CONCLUSION Compared to persons without PFP, those with PFP exhibited activation differences during the performance of exercises used to target the hip abductors. Our results highlight the need for activation training prior to the initiation of strengthening exercises to achieve desired therapeutic effects.
Collapse
Affiliation(s)
- David M Selkowitz
- Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA, USA
| | - George J Beneck
- Department of Physical Therapy, California State University, Long Beach, CA, USA
| | - Christopher M Powers
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Avila ER, Williams SE, Disselhorst-Klug C. Advances in EMG measurement techniques, analysis procedures, and the impact of muscle mechanics on future requirements for the methodology. J Biomech 2023; 156:111687. [PMID: 37339541 DOI: 10.1016/j.jbiomech.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Muscular coordination enables locomotion and interaction with the environment. For more than 50 years electromyography (EMG) has provided insights into the central nervous system control of individual muscles or muscle groups, enabling both fine and gross motor functions. This information is available either at individual motor units (Mus) level or on a more global level from the coordination of different muscles or muscle groups. In particular, non-invasive EMG methods such as surface EMG (sEMG) or, more recently, spatial mapping methods (High-Density EMG - HDsEMG) have found their place in research into biomechanics, sport and exercise, ergonomics, rehabilitation, diagnostics, and increasingly for the control of technical devices. With further technical advances and a growing understanding of the relationship between EMG and movement task execution, it is expected that with time, especially non-invasive EMG methods will become increasingly important in movement sciences. However, while the total number of publications per year on non-invasive EMG methods is growing exponentially, the number of publications on this topic in journals with a scope in movement sciences has stagnated in the last decade. This review paper contextualizes non-invasive EMG development over the last 50 years, highlighting methodological progress. Changes in research topics related to non-invasive EMG were identified. Today non-invasive EMG procedures are increasingly used to control technical devices, where muscle mechanics have a minor influence. In movement science, however, the effect of muscle mechanics on the EMG signal cannot be neglected. This explains why non-invasive EMG's relevance in movement sciences has not developed as expected.
Collapse
Affiliation(s)
- Elisa Romero Avila
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Sybele E Williams
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany.
| |
Collapse
|
7
|
Farina D, Enoka RM. Evolution of surface electromyography: From muscle electrophysiology towards neural recording and interfacing. J Electromyogr Kinesiol 2023; 71:102796. [PMID: 37343466 DOI: 10.1016/j.jelekin.2023.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Surface electromyography (EMG) comprises a recording of electrical activity from the body surface generated by muscle fibres during muscle contractions. Its characteristics depend on the fibre membrane potentials and the neural activation signal sent from the motor neurons to the muscles. EMG has been classically used as the primary investigation tool in kinesiology studies in a variety of applications. More recently, surface EMG techniques have evolved from single-channel methods to high-density systems with hundreds of electrodes. High-density EMG recordings can be deconvolved to estimate the discharge times of spinal motor neurons innervating the recorded muscles, with algorithms that have been developed and validated in the last two decades. Within limits and with some variability across muscles, these techniques provide a non-invasive method to study relatively large populations of motor neurons in humans. Surface EMG is thus evolving from a peripheral measure of muscle electrical activity towards a neural recording and neural interfacing signal. These advances in technology have had a major impact on our fundamental understanding of the neural control of movement and have exposed new perspectives in neurotechnologies. Here we provide an overview and perspective of modern EMG technology, as derived from past achievements, and its impact in neurophysiology and neural engineering.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, United Kingdom.
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, CO, United States
| |
Collapse
|
8
|
Zimmer M, Kleiser B, Marquetand J, Ateş F. Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. J Mech Behav Biomed Mater 2023; 137:105543. [PMID: 36371993 DOI: 10.1016/j.jmbbm.2022.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.
Collapse
Affiliation(s)
- Manuela Zimmer
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569, Stuttgart, Germany.
| | - Benedict Kleiser
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany; MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076, Tübingen, Germany
| | - Filiz Ateş
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Billot M, Duclay J, Rigoard P, David R, Martin A. Antagonist muscle torque at the ankle interfere with maximal voluntary contraction under isometric and anisometric conditions. Sci Rep 2022; 12:20238. [PMID: 36424457 PMCID: PMC9691747 DOI: 10.1038/s41598-022-24752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
While resultant maximal voluntary contraction (MVC) is commonly used to assess muscular performance, the simultaneous activation of antagonist muscles may dramatically underestimate the strength of the agonist muscles. Although quantification of antagonist torque has been performed in isometric conditions, it has yet to be determined in anisometric conditions. The aim of the study was to compare the mechanical impact of antagonist torque between eccentric, isometric and concentric contractions in PF and DF MVCs. The MVCs in dorsiflexion (DF) and plantar-flexion (PF) were measured in isometric, concentric and eccentric conditions (10° s-1) in nine healthy men (26.1 ± 2.7 years; 1.78 ± 0.05 m; 73.4 ± 6.5 kg) through two sessions. Electromyographic (EMG) activities from the soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles were simultaneously recorded. The EMG biofeedback method was used to quantify antagonist torque. Resultant torque significantly underestimated agonist torque in DF MVC (30-65%) and to a lesser extent in PF MVC (3%). Triceps surae antagonist torque was significantly modified with muscle contraction type, showing higher antagonist torque in isometric (29 Nm) than in eccentric (23 Nm, p < 0.001) and concentric (14 Nm, p < 0.001) conditions and resulting in modification of the DF MVC torque-velocity shape. Estimation of the antagonist torque in isometric or anisometric conditions provides new relevant insights to improve neuromuscular performance assessment and to better design strength training and rehabilitation programs related to the torque applied by agonist and antagonist muscles.
Collapse
Affiliation(s)
- Maxime Billot
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France
| | - Julien Duclay
- grid.15781.3a0000 0001 0723 035XToulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Philippe Rigoard
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France ,grid.411162.10000 0000 9336 4276Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France ,grid.11166.310000 0001 2160 6368ISAE-ENSMA, Pprime Institute UPR 3346, CNRS, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Romain David
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France
| | - Alain Martin
- grid.5613.10000 0001 2298 9313Laboratoire INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Université de Bourgogne - UFR STAPS, Dijon, France
| |
Collapse
|
10
|
Gabriel DA. Teaching Essential EMG Theory to Kinesiologists and Physical Therapists Using Analogies Visual Descriptions, and Qualitative Analysis of Biophysical Concepts. SENSORS (BASEL, SWITZERLAND) 2022; 22:6555. [PMID: 36081014 PMCID: PMC9460425 DOI: 10.3390/s22176555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Electromyography (EMG) is a multidisciplinary field that brings together allied health (kinesiology and physical therapy) and the engineering sciences (biomedical and electrical). Since the physical sciences are used in the measurement of a biological process, the presentation of the theoretical foundations of EMG is most conveniently conducted using math and physics. However, given the multidisciplinary nature of EMG, a course will most likely include students from diverse backgrounds, with varying levels of math and physics. This is a pedagogical paper that outlines an approach for teaching foundational concepts in EMG to kinesiologists and physical therapists that uses a combination of analogies, visual descriptions, and qualitative analysis of biophysical concepts to develop an intuitive understanding for those who are new to surface EMG. The approach focuses on muscle fiber action potentials (MFAPs), motor unit action potentials (MUAPs), and compound muscle action potentials (CMAPs) because changes in these waveforms are much easier to identify and describe in comparison to the surface EMG interference pattern (IP).
Collapse
Affiliation(s)
- David A Gabriel
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
11
|
Meier TB, Brecheisen AR, Gandomi KY, Carvalho PA, Meier GR, Clancy EA, Fischer GS, Nycz CJ. Individuals with moderate to severe hand impairments may struggle to use EMG control for assistive devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2864-2869. [PMID: 36085874 DOI: 10.1109/embc48229.2022.9871351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurological trauma, such as stroke, traumatic brain injury (TBI), spinal cord injury, and cerebral palsy can cause mild to severe upper limb impairments. Hand impairment makes it difficult for individuals to complete activities of daily living, especially bimanual tasks. A robotic hand orthosis or hand exoskeleton can be used to restore partial function of an intact but impaired hand. It is common for upper extremity prostheses and orthoses to use electromyography (EMG) sensing as a method for the user to control their device. However some individuals with an intact but impaired hand may struggle to use a myoelectrically controlled device due to potentially confounding muscle activity. This study was conducted to evaluate the application of conventional EMG control techniques as a robotic orthosis/exoskeleton user input method for individuals with mild to severe hand impairments. Nine impaired subjects and ten healthy subjects were asked to perform repeated contractions of muscles in their forearm and then onset analysis and feature classification were used to determine the accuracy of the employed EMG techniques. The average accuracy for contraction identification across employed EMG techniques was 95.4% ± 4.9 for the healthy subjects and 73.9% ± 13.1 for the impaired subjects with a range of 47.0% ± 19.1 - 91.6% ± 8.5. These preliminary results suggest that the conventional EMG control technologies employed in this paper may be difficult for some impaired individuals to use due to their unreliable muscle control.
Collapse
|
12
|
Comparison between side-lying and standing positions for hip abductor strength assessment. J Bodyw Mov Ther 2022; 30:181-186. [DOI: 10.1016/j.jbmt.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022]
|
13
|
Grinspan GA, Cabral HV, de Souza LML, de Oliveira LF, Aguiar S, Blanco E, Benech N. Surface wave elastography is a reliable method to correlate muscle elasticity, torque, and electromyography activity level. Physiol Rep 2021; 9:e14955. [PMID: 34337894 PMCID: PMC8326893 DOI: 10.14814/phy2.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
The shear elastic modulus is one of the most important parameters to characterize the mechanical behavior of soft tissues. In biomechanics, ultrasound elastography is the gold standard for measuring and mapping it locally in skeletal muscle in vivo. However, their applications are limited to the laboratory or clinic. Thus, low-frequency elastography methods have recently emerged as a novel alternative to ultrasound elastography. Avoiding the use of high frequencies, these methods allow obtaining a mean value of bulk shear elasticity. However, they are frequently susceptible to diffraction, guided waves, and near field effects, which introduces biases in the estimates. The goal of this work is to test the performance of the non-ultrasound surface wave elastography (NU-SWE), which is portable and is based on new algorithms designed to correct the incidence of such effects. Thus, we show its first application to muscle biomechanics. We performed two experiments to assess the relationships of muscle shear elasticity versus joint torque (experiment 1) and the electromyographic activity level (experiment 2). Our results were comparable regarding previous works using the reference ultrasonic methods. Thus, the NU-SWE showed its potentiality to get wide the biomechanical applications of elastography in many areas of health and sports sciences.
Collapse
Affiliation(s)
- Gustavo A. Grinspan
- Sección Biofísica y Biología de SistemasFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Hélio V. Cabral
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine)School of Sport, Exercise and Rehabilitation SciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Leonardo M. L. de Souza
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Liliam F. de Oliveira
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Sofía Aguiar
- Instituto de Ensayo de MaterialesFacultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
| | - Ernesto Blanco
- Instituto de FísicaFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Nicolás Benech
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| |
Collapse
|
14
|
The functional capacity and morphological characteristics of the intrinsic foot muscles in subjects with Hallux Valgus deformity: A systematic review. Foot (Edinb) 2020; 45:101706. [PMID: 33039908 DOI: 10.1016/j.foot.2020.101706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The intrinsic foot muscles are vital for maintaining normal foot function. This study was conducted to systematically review the literature on the functional capacity and morphological characteristics of the intrinsic foot muscles in subjects with Hallux Valgus (HV) deformity. METHODS A search was carried out in all available electronic databases, including Pub Med, Scopus, Embase and Web of Science, for identifying any relevant studies published from 1990 to October 2018. RESULTS Three studies had investigated intrinsic foot muscle size using ultrasound imaging; two had reported electromyography parameters and four had measured the muscle force capacity. The results of the present review suggested that the functional capacity and morphological characteristics of intrinsic foot muscles are different in subjects with HV compared to those without this deformity. CONCLUSION This review found scientific evidence on muscle performance impairment in the abductor hallucis and flexor hallucis brevis in subjects with HV deformity.
Collapse
|
15
|
Wu R, Ditroilo M, Delahunt E, De Vito G. Age Related Changes in Motor Function (II). Decline in Motor Performance Outcomes. Int J Sports Med 2020; 42:215-226. [PMID: 33137831 DOI: 10.1055/a-1265-7073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-related impairments in motor performance are caused by a deterioration in mechanical and neuromuscular functions, which have been investigated from the macro-level of muscle-tendon unit to the micro-level of the single muscle fiber. When compared to the healthy young skeletal muscle, aged skeletal muscle is: (1) weaker, slower and less powerful during the performance of voluntary contractions; (2) less steady during the performance of isometric contractions, particularly at low levels of force; and (3) less susceptible to fatigue during the performance of sustained isometric contractions, but more susceptible to fatigue during the performance of high-velocity dynamic contractions. These impairments have been discussed to be mainly the result of: a) loss of muscle mass and selective atrophy of type II muscle fibers; b) altered tendon mechanical properties (decreased tendon stiffness); c) reduced number and altered function of motor units; d) slower muscle fiber shortening velocity; e) increased oscillation in common synaptic input to motor neurons; and f) altered properties and activity of sarcoplasmic reticulum. In this second part of a two-part review we have detailed the age-related impairments in motor performance with a reference to the most important mechanical and neuromuscular contributing factors.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Massimiliano Ditroilo
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Eamonn Delahunt
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | | |
Collapse
|
16
|
Mesin L. Inverse modelling to reduce crosstalk in high density surface electromyogram. Med Eng Phys 2020; 85:55-62. [PMID: 33081964 DOI: 10.1016/j.medengphy.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Surface electromyogram (EMG) has a relatively large detection volume, so that it could include contributions both from the target muscle of interest and from nearby regions (i.e., crosstalk). This interference can prevent a correct interpretation of the activity of the target muscle, limiting the use of surface EMG in many fields. To counteract the problem, selective spatial filters have been proposed, but they reduce the representativeness of the data from the target muscle. A better solution would be to discard only crosstalk from the signal recorded in monopolar configuration (thus, keeping most information on the target muscle). An inverse modelling approach is here proposed to estimate the contributions of different muscles, in order to focus on the one of interest. The method is tested with simulated monopolar EMGs from superficial nearby muscles contracted at different force levels (either including or not model perturbations and noise), showing statistically significant improvements in information extraction from the data. The median over the entire dataset of the mean squared error in representing the EMG of the muscle under the detection electrode was reduced from 11.2% to 4.4% of the signal energy (5.3% if noisy data were processed); the median bias in conduction velocity estimation (from 3 monopolar channels aligned to the muscle fibres) was decreased from 2.12 to 0.72 m/s (1.1 m/s if noisy data were processed); the median absolute error in the estimation of median frequency was reduced from 1.02 to 0.67 Hz in noise free conditions and from 1.52 to 1.45 Hz considering noisy data.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
17
|
McManus L, De Vito G, Lowery MM. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation Engineers. Front Neurol 2020; 11:576729. [PMID: 33178118 PMCID: PMC7594523 DOI: 10.3389/fneur.2020.576729] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Recent decades have seen a move toward evidence-based medicine to inform the clinical decision-making process with reproducible findings from high-quality research studies. There is a need for objective, quantitative measurement tools to increase the reliability and reproducibility of studies evaluating the efficacy of healthcare interventions, particularly in the field of physical and rehabilitative medicine. Surface electromyography (sEMG) is a non-invasive measure of muscle activity that is widely used in research but is under-utilized as a clinical tool in rehabilitative medicine. Other types of electrophysiological signals (e.g., electrocardiography, electroencephalography, intramuscular EMG) are commonly recorded by healthcare practitioners, however, sEMG has yet to successfully transition to clinical practice. Surface EMG has clear clinical potential as an indicator of muscle activation, however reliable extraction of information requires knowledge of the appropriate methods for recording and analyzing sEMG and an understanding of the underlying biophysics. These concepts are generally not covered in sufficient depth in the standard curriculum for physiotherapists and kinesiologists to encourage a confident use of sEMG in clinical practice. In addition, the common perception of sEMG as a specialized topic means that the clinical potential of sEMG and the pathways to application in practice are often not apparent. The aim of this paper is to address barriers to the translation of sEMG by emphasizing its benefits as an objective clinical tool and by overcoming its perceived complexity. The many useful clinical applications of sEMG are highlighted and examples provided to illustrate how it can be implemented in practice. The paper outlines how fundamental biophysics and EMG signal processing concepts could be presented to a non-technical audience. An accompanying tutorial with sample data and code is provided which could be used as a tool for teaching or self-guided learning. The importance of observing sEMG in routine use in clinic is identified as an essential part of the effective communication of sEMG recording and signal analysis methods. Highlighting the advantages of sEMG as a clinical tool and reducing its perceived complexity could bridge the gap between theoretical knowledge and practical application and provide the impetus for the widespread use of sEMG in clinic.
Collapse
Affiliation(s)
- Lara McManus
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- Neuromuscular Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Park DJ, Hwang YI. Comparison of the Intrinsic Foot Muscle Activities between Therapeutic and Three-Dimensional Foot-Ankle Exercises in Healthy Adults: An Explanatory Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197189. [PMID: 33019530 PMCID: PMC7578945 DOI: 10.3390/ijerph17197189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
Background: In recent years, a three-dimensional ankle exercise has been proposed as a practice for strengthening the intrinsic foot muscles, however this topic still requires further research. This study aimed to compare the activities of the intrinsic muscles in healthy participants during 3D foot–ankle exercises, namely, short foot (SF), and toe spread out (TSO). Methods: Prior to the experiment, 16 healthy adults were trained on how to perform SF, TSO, and 3D foot–ankle exercises for an hour. Once all participants passed the foot–ankle exercise performance test, we randomly measured the activity of the intrinsic foot muscles using electromyography while the patients were performing foot–ankle exercises. Results: The abductor hallucis (AbH), extensor hallucis longus (EHL), and flexor hallucis brevis (FHB) activities showed significant differences among the exercises for intrinsic foot muscle strengthening (p < 0.01). Additionally, the AbH/AdH (adductor hallucis) ratio showed significant differences among the exercises for strengthening the intrinsic foot muscles (p < 0.01). Conclusions: Our results showed that the 3D extension exercise is as effective as the therapeutic exercise in terms of the AbH and FHB activities, and the AbH/AdH ratio. On the contrary, the 3D flexion exercise showed superiority in terms of the EHL activity.
Collapse
Affiliation(s)
- Du-Jin Park
- Department of Industrial Health, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Young-In Hwang
- Department of Physical Therapy, College of Life and Health Science, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-9973
| |
Collapse
|
19
|
Trinidad-Fernández M, González-Molina F, Moya-Esteban A, Roldán-Jiménez C, González-Sánchez M, Cuesta-Vargas AI. Muscle activity and architecture as a predictor of hand-grip strength. Physiol Meas 2020; 41:075008. [PMID: 32585652 DOI: 10.1088/1361-6579/aba007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Grip strength is a powerful predictor of disability as well as a good indicator of physical activity. OBJECTIVES This study aimed to relate ultrasound (US) and electromyography (EMG) simultaneously to maximum hand-grip strength during an isometric contraction. APPROACH This is a cross-sectional study. Data acquisition was done with a dynamometer, US and EMG. Outcome variables included maximum strength during the hand-grip gesture, maximum muscle activity and change in muscle thickness. A non-linear regression analysis was performed to analyse the relationship between all outcome variables. MAIN RESULTS A total of 38 subjects (18 men and 20 women) participated in the study. The mean results for hand-grip strength were 25.50 (SD 6.55) kg of maximum strength, a change in muscle thickness of 1.83 (SD 0.75) mm and an EMG activity of 499.29 (SD 224.20) µV. Hand-grip strength had a high correlation with muscle thickness (R 2 = 0.61) and EMG activity (R 2 = 0.95). The correlation between maximum muscle activity and change in muscle thickness was R 2 = 0.83. SIGNIFICANCE The results of the present study demonstrate that this new method based on electromyographic activity and muscule architecture could be important in the development of the hand-grip test.
Collapse
Affiliation(s)
- Manuel Trinidad-Fernández
- Departamento de Fisioterapia, Instituto de Biomedicina de Málaga (IBIMA), Grupo de Clinimetría (F-14), Universidad de Málaga, Andalucía Tech, Facultad de Ciencias de la Salud, Málaga, Spain. Rehabilitation Sciences Research Department, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Fang C, He B, Wang Y, Cao J, Gao S. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of the Art and Challenges. BIOSENSORS 2020; 10:E85. [PMID: 32722542 PMCID: PMC7460307 DOI: 10.3390/bios10080085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
In the field of rehabilitation, the electromyography (EMG) signal plays an important role in interpreting patients' intentions and physical conditions. Nevertheless, utilizing merely the EMG signal suffers from difficulty in recognizing slight body movements, and the detection accuracy is strongly influenced by environmental factors. To address the above issues, multisensory integration-based EMG pattern recognition (PR) techniques have been developed in recent years, and fruitful results have been demonstrated in diverse rehabilitation scenarios, such as achieving high locomotion detection and prosthesis control accuracy. Owing to the importance and rapid development of the EMG centered multisensory fusion technologies in rehabilitation, this paper reviews both theories and applications in this emerging field. The principle of EMG signal generation and the current pattern recognition process are explained in detail, including signal preprocessing, feature extraction, classification algorithms, etc. Mechanisms of collaborations between two important multisensory fusion strategies (kinetic and kinematics) and EMG information are thoroughly explained; corresponding applications are studied, and the pros and cons are discussed. Finally, the main challenges in EMG centered multisensory pattern recognition are discussed, and a future research direction of this area is prospected.
Collapse
Affiliation(s)
- Chaoming Fang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China; (C.F.); (Y.W.)
| | - Bowei He
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
| | - Yixuan Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China; (C.F.); (Y.W.)
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02138, USA;
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China; (C.F.); (Y.W.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
21
|
Patterson A, Dickerson CR, Ribeiro DC. The Effect of Shoulder Mobilization on Scapular and Shoulder Muscle Activity During Resisted Shoulder Abduction: A Crossover Study of Asymptomatic Individuals. J Manipulative Physiol Ther 2020; 43:832-844. [PMID: 32723669 DOI: 10.1016/j.jmpt.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The primary aim was to investigate the effect of inferior shoulder mobilization on scapular and shoulder muscle activity during resisted shoulder abduction in asymptomatic individuals. METHODS This was a lab-based, repeated-measures, crossover, randomized controlled study. Twenty-two participants were recruited. The order of experimental conditions was randomized. Each participant performed 5 repetitions of resisted shoulder abduction before and after the control and mobilization (grade +IV inferior shoulder mobilization, 3 sets, 60 seconds) conditions. Surface electromyography recorded the muscle activity of anterior, middle, and posterior deltoid; supraspinatus; infraspinatus; upper and lower trapezius; serratus anterior; and latissimus dorsi muscles. RESULTS Muscle activity levels reduced for infraspinatus (11.3% MVIC, 95% CI: 1.7-20.8), middle (22.4% MVIC, 95% CI: 15.9-28.8) and posterior deltoid (8.7 % MVIC, 95% CI: 4.6-12.9), and serratus anterior (-28.1% MVIC, 95% CI: 15.6-40.8) muscles after the mobilization condition during the eccentric phase of shoulder abduction. No carryover effects were observed, and within-session reliability was excellent (intraclass correlation coefficient scores ranging from 0.94 to 0.99). CONCLUSION Our findings suggest that inferior glenohumeral mobilization reduces activity levels of some scapular and shoulder muscles. Given the exploratory nature of our study, changes in muscle activity levels may have been found by chance. Confirmatory studies are required.
Collapse
Affiliation(s)
- Abbey Patterson
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, New Zealand
| | - Clark R Dickerson
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel C Ribeiro
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
22
|
Zheng Y, Shin H, Kamper DG, Hu X. Automatic Detection of Contracting Muscle Regions via the Deformation Field of Transverse Ultrasound Images: A Feasibility Study. Ann Biomed Eng 2020; 49:354-366. [PMID: 32632530 DOI: 10.1007/s10439-020-02557-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022]
Abstract
Accurate identification of contracting muscles can help us to understand the muscle function in both physiological and pathological conditions. Conventional electromyography (EMG) have limited access to deep muscles, crosstalk, or instability in the recordings. Accordingly, a novel framework was developed to detect contracting muscle regions based on the deformation field of transverse ultrasound images. We first estimated the muscle movements in a stepwise calculation, to derive the deformation field. We then calculated the divergence of the deformation field to locate the expanding or shrinking regions during muscle contractions. Two preliminary experiments were performed to evaluate the feasibility of the developed algorithm. Using concurrent intramuscular EMG recordings, Experiment I verified that the divergence map can capture the activity of superficial and deep muscles, when muscles were activated voluntarily or through electrical stimulation. Experiment II verified that the divergence map can only capture contracting muscles but not muscle shortening during passive movements. The results demonstrated that the divergence can individually capture the activity of muscles at different depths, and was not sensitive to muscle shortening during passive movements. The proposed framework can automatically detect the regions of contracting muscle, and could potentially serve as a tool to assess the functions of a group of muscles concurrently.
Collapse
Affiliation(s)
- Yang Zheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 116 Manning Drive, 10206B Mary Ellen Jones Bldg, Chapel Hill, NC, 27599-7575, USA
| | - Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 116 Manning Drive, 10206B Mary Ellen Jones Bldg, Chapel Hill, NC, 27599-7575, USA
| | - Derek G Kamper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 116 Manning Drive, 10206B Mary Ellen Jones Bldg, Chapel Hill, NC, 27599-7575, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 116 Manning Drive, 10206B Mary Ellen Jones Bldg, Chapel Hill, NC, 27599-7575, USA.
| |
Collapse
|
23
|
Aurbach M, Spicka J, Süß F, Dendorfer S. Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90°. J Biomech 2020; 106:109817. [PMID: 32517973 DOI: 10.1016/j.jbiomech.2020.109817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach.
Collapse
Affiliation(s)
- Maximilian Aurbach
- Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany.
| | - Jan Spicka
- New Technologies Research Centre, University of West Bohemia (UWB), Pilsen, Czech Republic
| | - Franz Süß
- Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, OTH and University Regensburg, Regensburg, Germany
| | - Sebastian Dendorfer
- Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, OTH and University Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Crosstalk in surface electromyogram: literature review and some insights. Phys Eng Sci Med 2020; 43:481-492. [DOI: 10.1007/s13246-020-00868-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
|
25
|
Dai C, Hu X. Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. IEEE J Biomed Health Inform 2020; 24:760-767. [DOI: 10.1109/jbhi.2019.2926307] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Abboud J, Kuo C, Descarreaux M, Blouin JS. Regional activation in the human longissimus thoracis pars lumborum muscle. J Physiol 2019; 598:347-359. [PMID: 31654400 DOI: 10.1113/jp278260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS •Longissimus activity in the lumbar region was measured using indwelling electromyography to characterize the territory of its motor units. •The distribution of motor units in the longissimus pars lumborum muscle was mainly grouped into two distinct regions. •Regional activation of the longissimus pars lumborum was also observed during functional tasks involving trunk movements. •The regional activation of the longissimus pars lumborum muscle may play a role in segmental stabilization of the lumbar spine. ABSTRACT The longissimus pars lumborum contributes to lumbar postural control and movement. While animal studies suggest a segmental control of this muscle, the territory of motor units constituting the human longissimus pars lumborum remains unknown. The aims of this study were to identify the localization of motor unit territories in the longissimus and assess the activation of this muscle during functional tasks. Eight healthy participants were recruited. During isometric back extension contractions, single motor-unit (at L1, L2, L3 and L4) and multi-unit indwelling recordings (at L1, L1-L2, L2, L2-L3, L3, L3-L4 and L4) were used to estimate motor unit territories in the longissimus pars lumborum based on the motor-unit spike-triggered averages from fine-wire electrodes. A series of functional tasks involving trunk and arm movements were also performed. A total of 73 distinct motor units were identified along the length of the longissimus: only two motor units spanned all recording sites. The majority of the recorded motor units had muscle fibres located in two main rostro-caudal territories (32 motor units spanned L1 to L3 and 30 spanned ∼L3 to L4) and 11 had muscle fibres outside these two main territories. We also observed distinct muscle activation between the rostral and caudal regions of the longissimus pars lumborum during a trunk rotation task. Our results show clear rostral and caudal motor unit territories in the longissimus pars lumborum muscle and suggest that the central nervous system can selectively activate regions of the superficial lumbar muscles to provide local stabilization of the spine.
Collapse
Affiliation(s)
- Jacques Abboud
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Calvin Kuo
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Martin Descarreaux
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | |
Collapse
|
27
|
Association of anthropometric parameters with amplitude and crosstalk of mechanomyographic signals during forearm flexion, pronation and supination torque tasks. Sci Rep 2019; 9:16166. [PMID: 31700129 PMCID: PMC6838124 DOI: 10.1038/s41598-019-52536-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022] Open
Abstract
This study aimed to quantify the association of four anthropometric parameters of the human arm, namely, the arm circumference (CA), arm length (LA), skinfold thickness (ST) and inter-sensor distance (ISD), with amplitude (RMS) and crosstalk (CT) of mechanomyography (MMG) signals. Twenty-five young, healthy, male participants were recruited to perform forearm flexion, pronation and supination torque tasks. Three accelerometers were employed to record the MMG signals from the biceps brachii (BB), brachialis (BRA) and brachioradialis (BRD) at 80% maximal voluntary contraction (MVC). Signal RMS was used to quantify the amplitude of the MMG signals from a muscle, and cross-correlation coefficients were used to quantify the magnitude of the CT among muscle pairs (BB & BRA, BRA & BRD, and BB & BRD). For all investigated muscles and pairs, RMS and CT showed negligible to low negative correlations with CA, LA and ISD (r = −0.0001–−0.4611), and negligible to moderate positive correlations with ST (r = 0.004–0.511). However, almost all of these correlations were statistically insignificant (p > 0.05). These findings suggest that RMS and CT values for the elbow flexor muscles recorded and quantified using accelerometers appear invariant to anthropometric parameters.
Collapse
|
28
|
Wu R, Delahunt E, Ditroilo M, Lowery MM, Segurado R, De Vito G. Changes in knee joint angle affect torque steadiness differently in young and older individuals. J Electromyogr Kinesiol 2019; 47:49-56. [DOI: 10.1016/j.jelekin.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
|
29
|
Wu R, Delahunt E, Ditroilo M, Ferri Marini C, De Vito G. Torque steadiness and neuromuscular responses following fatiguing concentric exercise of the knee extensor and flexor muscles in young and older individuals. Exp Gerontol 2019; 124:110636. [PMID: 31195103 DOI: 10.1016/j.exger.2019.110636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/16/2019] [Accepted: 06/09/2019] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the age-related alterations in the ability to exert maximal and to sustain submaximal isometric muscle torques after a fatiguing concentric exercise conducted with knee extensor (KE) and flexor (KF) muscles. Sixteen young (aged 19-30 years; 8 women) and 17 older (aged 65-75 years; 9 women) volunteers participated. The following tasks were performed before and immediately after 22 maximal concentric efforts of the right KE and KF at 1.05 rad/s: (1) a maximal voluntary isometric contraction (MVIC) task involving both KE and KF; and (2) a KE torque-steadiness task at a submaximal target contraction intensity (20% MVIC). During the dynamometric tests, surface EMG was recorded simultaneously from the KE and KF muscles. Fatigue-induced reductions in knee extension MVIC were similar (~15%) between groups, but young participants showed more pronounced declines in agonist (i.e. quadriceps) EMG responses in both time (RMS amplitude; ~15% vs. ~10%, p < 0.001) and frequency (median frequency; ~14% vs. ~8%, p < 0.01) domains. Torque steadiness exhibited a similar post-fatigue decrease in the two age groups (p < 0.01), but interestingly agonist activation (~17%; p < 0.001) and antagonist (i.e. hamstrings) co-activation (~16%; p < 0.001) declined only in the older participants. These findings suggest that the fatiguing concentric KE and KF exercise results in similar relative reductions (%) in maximal torque and steadiness of the KE in young and older individuals, but they are sustained by different age-related neuromuscular strategies.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.
| | - Eamonn Delahunt
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Massimiliano Ditroilo
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Carlo Ferri Marini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Italy
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Contraction mode and intensity effects on elbow antagonist muscle co-activation. J Electromyogr Kinesiol 2018; 44:101-107. [PMID: 30553969 DOI: 10.1016/j.jelekin.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Agonist muscle contraction mode and intensity effects on antagonist co-activation was examined between men and women. METHODS Fifteen healthy young men (mean ± standard deviation age = 24.9 ± 4.2 years, body mass index = 23.17 ± 2.34) and 15 women (mean ± standard deviation age = 21.8 ± 2.3 years, body mass index = 24.16 ± 2.91) performed five isokinetic concentric and eccentric maximal-effort elbow flexor/extensor contractions to establish their peak torque. Participants then performed a series of randomly ordered sub-maximal (10-90% of peak torque, 10% increments) elbow flexor contractions over two separate experimental sessions. All sub-maximal elbow flexor contractions were concentric during the first session, while eccentric contractions were performed during the second session. Antagonist co-activation was quantified as the elbow extensor surface electromyogram (EMG) magnitude during all flexor contractions, normalized to its' respective MVC level, when acting as an agonist. RESULTS The results demonstrated significant contraction intensity (p < 0.001), gender (p < 0.001) and contraction mode (p < 0.001) main effects, indicating that co-activation: (1) increased from 10-90% MVC (5.40% to 12.01%), (2) was greater in women than men (12.06% vs 3.68%), and (3) was greater during concentric than eccentric contractions (9.82% vs 5.92%), without correcting for skinfold thickness. A significant gender by contraction intensity interaction demonstrated that women displayed greater increases in co-activation, as compared to the men, across 10-90% MVC. Following correction for skinfold thickness, the gender difference was not found to be statistically significant. DISCUSSION The major findings demonstrated that antagonist muscle co-activation demonstrated a dependency on contraction intensity and mode; however, a gender difference was not observed when corrected for skinfold thickness.
Collapse
|
31
|
Evaluation of the activities of the medial and lateral heads of quadratus plantae in flexion movements of the lateral four toes using ultrasound real-time tissue elastography. Foot (Edinb) 2018; 36:25-29. [PMID: 30326349 DOI: 10.1016/j.foot.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/18/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023]
Abstract
Quadratus plantae (QP), one of the plantar intrinsic foot muscles, assist plantarflexion of the lesser toes. QP has medial and lateral muscle heads with different anatomical structures. The two heads of this muscle may have different roles in foot function. Ultrasound real-time tissue elastography (RTE) measurements have allowed quantitative assessment of deep-layer muscle elasticity. The purpose of this study was to determine the activity of the QP in flexion movements of the lateral four toes using RTE. Thirteen healthy subjects performed maximal voluntary contractions using a hand-held dynamometer with external belt fixation for each toe flexion movement. The elasticity of the muscles were measured using RTE during rest and flexion of each toe. The strain ratio of the muscle to that in an acoustic coupler was calculated as an index of muscle elasticity. Higher strain ratio values imply lower elasticity. The strain ratio of the medial head of QP for second toe flexion (0.10±0.11) was significantly stiffer than at rest (0.34±0.33). The strain ratios of the lateral head of QP for flexion of the second (0.32±0.19), third (0.41±0.37), fourth (0.33±0.26), and fifth (0.45±0.39) toes were significantly stiffer than at rest (1.02±0.68). These results suggest that the medial head of QP has a role in assisting second-toe flexion, and the lateral head has a role in assisting flexion of all four lateral toes.
Collapse
|
32
|
da Silva JCL, Ekblom MM, Tarassova O, Andersson E, Rönquist G, Grundström H, Arndt A. Effect of increasing workload on knee extensor and flexor muscular activity during cycling as measured with intramuscular electromyography. PLoS One 2018; 13:e0201014. [PMID: 30071032 PMCID: PMC6071990 DOI: 10.1371/journal.pone.0201014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to describe the effect of increasing workload on individual thigh muscle activation during a 20 minute incremental cycling test. Intramuscular electromyographic signals were recorded from the knee extensors rectus femoris, vastus lateralis, vastus medialis and vastus intermedius and the knee flexors semimembranosus, semitendinosus, and the short and long heads of the biceps femoris during increasing workloads. Mean activation levels were compared over the whole pedaling cycle and the crank angles at which onset and offset of activation and peak activity occurred were identified for each muscle. These data were compared between three workloads. EMG activation level significantly increased (p<0.05) with increasing workload in the rectus femoris, vastus medialis, vastus lateralis, vastus intermedius, biceps femoris long head, semitendinosus and semimembranosus but not in the biceps femoris short head. A significant change in activation timing was found for the rectus femoris, vastus lateralis, vastus medialis and semitendinosus. Of the knee flexors only the short head of the biceps femoris had its peak activity during the upstroke phase at the two highest workloads indicating a unique contribution to knee flexion.
Collapse
Affiliation(s)
- Julio Cézar Lima da Silva
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- School of Physical Education, Physiotherapy and Dance of the Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M. Ekblom
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Olga Tarassova
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Eva Andersson
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Gustaf Rönquist
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | | | - Anton Arndt
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
33
|
Lee JH, Park JS, Hwang HJ, Jeong WK. Time to peak torque and acceleration time are altered in male patients following traumatic shoulder instability. J Shoulder Elbow Surg 2018; 27:1505-1511. [PMID: 29678396 DOI: 10.1016/j.jse.2018.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Numerous authors have evaluated the strength of the rotator cuff muscles in patients with shoulder instability. However, only limited data are available with regard to neuromuscular control in patients with traumatic anterior shoulder instability, in particular at 90° of abduction. This study was designed to assess muscle strength and neuromuscular control ability using time to peak torque and acceleration time in nonathletic patients with traumatic anterior shoulder instability. METHODS Isokinetic muscle performance testing was performed in 20 male nonathletic anterior shoulder instability patients compared with 20 side-matched asymptomatic volunteers. Isokinetic muscle performance testing was performed at an angular velocity of 180°/s with 90° of shoulder abduction. Muscle strength and neuromuscular control (time to peak torque and acceleration time) of the internal rotators (IRs) and external rotators (ERs) were measured. RESULTS There were no significant differences in muscle strength of the IRs and ERs between the 2 groups. The injured shoulder showed delayed neuromuscular control in both the IRs and ERs in the instability patients compared with the normal control subjects (time to peak torque, P = .023 for IRs and P = .020 for ERs; acceleration time, P = .035 for IRs and P = .021 for ERs). CONCLUSION The neuromuscular control of both the IRs and ERs was decreased in male nonathletic patients with traumatic anterior shoulder instability even though muscle strength was not altered. Therefore, clinicians and therapists should implement exercises that aim to restore neuromuscular control in the rehabilitation of nonathletic patients with anterior shoulder instability.
Collapse
Affiliation(s)
- Jin Hyuck Lee
- Department of Sports Medical Center, Korea University, Anam Hospital, Seoul, Republic of Korea
| | - Ji Soon Park
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea; Sheikh Khalifa Specialty Hospital, North Ras Al Khaimah, United Arab Emirates
| | - Hyun Jung Hwang
- Department of Orthopaedic Surgery, Burteam Hospital, Seoul, Republic of Korea
| | - Woong Kyo Jeong
- Department of Sports Medical Center, Korea University, Anam Hospital, Seoul, Republic of Korea; Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Dai C, Cao Y, Hu X. Estimation of Finger Joint Angle Based on Neural Drive Extracted from High-Density Electromyography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4820-4823. [PMID: 30441425 DOI: 10.1109/embc.2018.8513152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Robust human-machine interactions require accurate and intuitive interfaces. Neural signals associated with muscle activities are widely used as the interface signals. This preliminary study evaluated the feasibility of a novel neural-drive-based interface in estimating the individual finger joint angles. The motor unit pool discharge probability was used to predict the neural drive associated with the fine control of the finger joint angle during individual finger extension movement. To obtain the neural drive information, individual motor unit discharge events were extracted from the decomposition of high-density surface electromyogram (sEMG) signals, and discharge events from different motor units were pooled to from a composite discharge event train. The neural-drive-based estimate was obtained by calculating the probability (normalized frequency) of the populational motor unit discharge. The global EMG signal (root-mean-squared value) was also used to estimate the joint angles as a control condition. Our preliminary results showed that the accuracy and stability of the neural-drive-based approach outperformed the classic EMG-based method. Our findings suggest that the novel neural-drive-based interface could be used as a promising control input for intuitive dynamic control of a robotic hand.
Collapse
|
35
|
Age-related differences in muscle activity patterns during walking in healthy individuals. J Electromyogr Kinesiol 2018; 41:124-131. [PMID: 29879694 DOI: 10.1016/j.jelekin.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To examine how muscle activity over the entire gait cycle changes with increasing age. METHODS Electromyography data of the erector spinae, rectus femoris, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius muscles were collected by an instrumented gait analysis during over ground walking in healthy adults aged between 20 and 89 years. Participants were categorized per decade (n = 105, 15 per decade, decades 3-9). Normalized integrated linear envelopes of the electromyographic signal were calculated for one stride. A one way ANOVA using spm1d statistics explored the differences between age groups, followed by a post hoc analysis. RESULTS While initiation of decline commenced at the age of 60 for erector spinae and tibialis anterior, age-related changes are most pronounced after the age of 80. Concerning timing of muscle activity, subjects in decade 7-9 had prolonged activity and/or early activity of the erector spinae, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius compared to other decades. Regarding amplitude of muscle activity, decreased peak amplitudes of the erector spinae, rectus femoris, vastus lateralis and gastrocnemius were observed in decades 7-9 compared to other decades. CONCLUSION Both timing and amplitude of muscle activation patterns need to be considered to understand the aging process. Regarding the erector spinae, tibialis anterior and vastus lateralis, a decrease in muscle activation coincides with prolonged activity, compared to the gastrocnemius where decreased muscle activation is associated with early activation.
Collapse
|
36
|
Dai C, Zheng Y, Hu X. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor. Front Neurol 2018; 9:187. [PMID: 29628911 PMCID: PMC5876305 DOI: 10.3389/fneur.2018.00187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/12/2018] [Indexed: 12/03/2022] Open
Abstract
Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.
Collapse
Affiliation(s)
- Chenyun Dai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Yang Zheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
37
|
Asmussen MJ, von Tscharner V, Nigg BM. Motor Unit Action Potential Clustering-Theoretical Consideration for Muscle Activation during a Motor Task. Front Hum Neurosci 2018; 12:15. [PMID: 29445332 PMCID: PMC5797735 DOI: 10.3389/fnhum.2018.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
During dynamic or sustained isometric contractions, bursts of muscle activity appear in the electromyography (EMG) signal. Theoretically, these bursts of activity likely occur because motor units are constrained to fire temporally close to one another and thus the impulses are "clustered" with short delays to elicit bursts of muscle activity. The purpose of this study was to investigate whether a sequence comprised of "clustered" motor unit action potentials (MUAP) can explain spectral and amplitude changes of the EMG during a simulated motor task. This question would be difficult to answer experimentally and thus, required a model to study this type of muscle activation pattern. To this end, we modeled two EMG signals, whereby a single MUAP was either convolved with a randomly distributed impulse train (EMG-rand) or a "clustered" sequence of impulses (EMG-clust). The clustering occurred in windows lasting 5-100 ms. A final mixed signal of EMG-clust and EMG-rand, with ratios (1:1-1:10), was also modeled. A ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50% of "clustered" MUAP occurred in a given time window (5-100 ms). The results of the model showed that clustering MUAP caused a downshift in the mean power frequency (i.e., ~30 Hz) with the largest shift occurring with a cluster window of 10 ms. The mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high. Further, the clustering of MUAP also caused a substantial increase in the amplitude of the EMG signal. This model potentially explains an activation pattern that changes the EMG spectra during a motor task and thus, a potential activation pattern of muscles observed experimentally. Changes in EMG measurements during fatiguing conditions are typically attributed to slowing of conduction velocity but could, per this model, also result from changes of the clustering of MUAP. From a clinical standpoint, this type of muscle activation pattern might help describe the pathological movement issues in people with Parkinson's disease or essential tremor. Based on our model, researchers moving forward should consider how MUAP clustering influences EMG spectral and amplitude measurements and how these changes influence movements.
Collapse
Affiliation(s)
| | | | - Benno M Nigg
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Ateş F, Davies BL, Chopra S, Coleman-Wood K, Litchy WJ, Kaufman KR. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship. Front Physiol 2018; 9:22. [PMID: 29416514 PMCID: PMC5787576 DOI: 10.3389/fphys.2018.00022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.
Collapse
Affiliation(s)
- Filiz Ateş
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brenda L Davies
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Swati Chopra
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Krista Coleman-Wood
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - William J Litchy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Bader J, Boland MR, Greybe D, Nitz A, Uhl T, Pienkowski D. Muscle activity during maximal isometric forearm rotation using a power grip. J Biomech 2018; 68:24-32. [PMID: 29305049 DOI: 10.1016/j.jbiomech.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to provide quantitative activation data for muscles of the forearm during pronation and supination while using a power grip. Electromyographic data was collected from 15 forearm muscles in 11 subjects while they performed maximal isometric pronating and supinating efforts in nine positions of forearm rotation. Biceps brachii was the only muscle with substantial activation in only one effort direction. It was significantly more active when supinating (µ = 52.1%, SD = 17.5%) than pronating (µ = 5.1%, SD = 4.8%, p < .001). All other muscles showed considerable muscle activity during both pronation and supination. Brachioradialis, flexor carpi radialis, palmaris longus, pronator quadratus and pronator teres were significantly more active when pronating the forearm. Abductor pollicis longus and biceps brachii were significantly more active when supinating. This data highlights the importance of including muscles additional to the primary forearm rotators in a biomechanical analysis of forearm rotation. Doing so will further our understanding of forearm function and lead to the improved treatment of forearm fractures, trauma-induced muscle dysfunction and joint replacements.
Collapse
Affiliation(s)
- Joseph Bader
- Orthopaedic Biomechanics Laboratory, Center for Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Michael R Boland
- Department of Orthopaedic Surgery, University of Kentucky Medical Center, Lexington, KY, United States; Hand Institute, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Desney Greybe
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arthur Nitz
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY, United States
| | - Timothy Uhl
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY, United States
| | - David Pienkowski
- Orthopaedic Biomechanics Laboratory, Center for Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Department of Orthopaedic Surgery, University of Kentucky Medical Center, Lexington, KY, United States
| |
Collapse
|
40
|
Wu R, Delahunt E, Ditroilo M, Lowery MM, DE Vito G. Effect of Knee Joint Angle and Contraction Intensity on Hamstrings Coactivation. Med Sci Sports Exerc 2018; 49:1668-1676. [PMID: 28350712 DOI: 10.1249/mss.0000000000001273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study investigated the effect of knee joint angle and contraction intensity on the coactivation of the hamstring muscles (when acting as antagonists to the quadriceps) in young and older individuals of both sexes. METHODS A total of 25 young (24 ± 2.6 yr) and 26 older (70 ± 2.5 yr) healthy men and women participated. Maximal voluntary isometric contraction of the knee extensors and flexors was assessed at two knee joint angles (90° and 60°, 0° = full extension). At each angle, participants performed submaximal contractions of the knee extensors (20%, 50%, and 80% maximal voluntary isometric contraction), whereas surface EMG was simultaneously acquired from the vastus lateralis and biceps femoris muscles to assess the level (EMG root-mean-square) of agonist activation and antagonist coactivation. Subcutaneous adipose tissue in the areas corresponding to surface EMG electrode placements was measured via ultrasonography. RESULTS The contractions performed at 90° knee flexion demonstrated higher levels of antagonist coactivation (all P < 0.01) and agonist activation (all P < 0.01) as a function of contraction intensity compared with the 60° knee flexion. Furthermore, after controlling for subcutaneous adipose tissue, older participants exhibited a higher level of antagonist coactivation at 60° knee flexion compared with young participants (P < 0.05). CONCLUSIONS The results of the present study suggest that 1) the antagonist coactivation is dependent on knee joint angle and contraction intensity and 2) subcutaneous adipose tissue may affect the measured coactivation level likely because of a cross-talk effect. Antagonist coactivation may play a protective role in stabilizing the knee joint and maintaining constant motor output.
Collapse
Affiliation(s)
- Rui Wu
- 1School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, IRELAND; 2Institute for Sport and Health, University College Dublin, Dublin, IRELAND; and 3School of Electrical, Electronic Communications Engineering, University College Dublin, Dublin, IRELAND
| | | | | | | | | |
Collapse
|
41
|
Vinti M, Gracies JM, Gazzoni M, Vieira T. Localised sampling of myoelectric activity may provide biased estimates of cocontraction for gastrocnemius though not for soleus and tibialis anterior muscles. J Electromyogr Kinesiol 2018; 38:34-43. [DOI: 10.1016/j.jelekin.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
|
42
|
Kapelner T, Negro F, Aszmann OC, Farina D. Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control. IEEE Trans Neural Syst Rehabil Eng 2018; 26:244-251. [DOI: 10.1109/tnsre.2017.2766360] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Rodriguez-Falces J, Place N. Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue. Eur J Appl Physiol 2017; 118:501-521. [DOI: 10.1007/s00421-017-3788-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
44
|
Ribeiro DC, Day A, Dickerson CR. Grade-IV inferior glenohumeral mobilization does not immediately alter shoulder and scapular muscle activity: a repeated-measures study in asymptomatic individuals. J Man Manip Ther 2017; 25:260-269. [PMID: 29449768 PMCID: PMC5810780 DOI: 10.1080/10669817.2017.1290310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES To assess: (1) the presence of any carry-over effect between interventions; (2) the immediate effects of inferior shoulder mobilization on shoulder and scapular muscle activity; and (3) to compare muscle activity response between the control and mobilization conditions. Repeated measures, cross-over, pre-post intervention study with sample of convenience. METHODS Twenty-two asymptomatic individuals performed 10 repetitions of shoulder abduction before and after the control and mobilization, with a dosage of three sets of 30-s duration, with grade-IV. The order of intervention was randomized. Surface electromyography was used for recording activity of upper and lower trapezius; anterior, middle and posterior deltoids; supraspinatus; infraspinatus; and serratus anterior. Repeated measures mixed-model analysis of variance was used to assess immediate changes in muscle activity levels following inferior shoulder mobilization. Statistical parametric mapping (SPM) was used for comparing muscle activity waveforms between control and mobilization conditions throughout the range of motion. RESULTS No systematic changes in muscle activity levels were found between: (1) baseline and follow-up for each condition, at the concentric and eccentric phases of shoulder abduction; (2) control and mobilization conditions during the concentric and eccentric phases of shoulder abduction. SPM results suggested no differences in muscle activity pattern between conditions. CONCLUSIONS Inferior shoulder mobilization did not produce immediate effects on shoulder and scapular muscle activity. It is possible that the dose used was insufficient to generate an immediate neuromuscular response to the mobilization.
Collapse
Affiliation(s)
- Daniel Cury Ribeiro
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Ashleigh Day
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Clark R. Dickerson
- Faculty of Applied Health Sciences, Department of Kinesiology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
45
|
Vieira TM, Botter A, Muceli S, Farina D. Specificity of surface EMG recordings for gastrocnemius during upright standing. Sci Rep 2017; 7:13300. [PMID: 29038435 PMCID: PMC5643316 DOI: 10.1038/s41598-017-13369-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
The relatively large pick-up volume of surface electrodes has for long motivated the concern that muscles other than that of interest may contribute to surface electromyograms (EMGs). Recent findings suggest however the pick-up volume of surface electrodes may be smaller than previously appreciated, possibly leading to the detection of surface EMGs insensitive to muscle activity. Here we combined surface and intramuscular recordings to investigate how comparably action potentials from gastrocnemius and soleus are represented in surface EMGs detected with different inter-electrode distances. We computed the firing instants of motor units identified from intramuscular EMGs detected from gastrocnemius and soleus while five participants stood upright. We used these instants to trigger and average surface EMGs detected from multiple skin regions along gastrocnemius. Results from 66 motor units (whereof 31 from gastrocnemius) revealed the surface-recorded amplitude of soleus action potentials was 6% of that of gastrocnemius and did not decrease for inter-electrode distances smaller than 4 cm. Gastrocnemius action potentials were more likely detected for greater inter-electrode distances and their amplitude increased steeply up to 5 cm inter-electrode distance. These results suggest that reducing inter-electrode distance excessively may result in the detection of surface EMGs insensitive to gastrocnemius activity without substantial attenuation of soleus crosstalk.
Collapse
Affiliation(s)
- Taian Martins Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy.
| | - Alberto Botter
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy
| | - Silvia Muceli
- Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, Research Department of Neurorehabilitation Systems, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
46
|
Mesin L. Optimal spatio-temporal filter for the reduction of crosstalk in surface electromyogram. J Neural Eng 2017; 15:016013. [PMID: 28948938 DOI: 10.1088/1741-2552/aa8f03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Crosstalk can pose limitations to the applications of surface electromyogram (EMG). Its reduction can help in the identification of the activity of specific muscles. The selectivity of different spatial filters was tested in the literature both in simulations and experiments: their performances are affected by many factors (e.g. anatomy, conduction properties of the tissues and dimension/location of the electrodes); moreover, they reduce crosstalk by decreasing the detection volume, recording data that represent only the activity of a small portion of the muscle of interest. In this study, an alternative idea is proposed, based on a spatio-temporal filter. APPROACH An adaptive method is applied, which filters both in time and among different channels, providing a signal that maximally preserves the energy of the EMG of interest and discards that of nearby muscles (increasing the signal to crosstalk ratio, SCR). MAIN RESULTS Tests with simulations and experimental data show an average increase of the SCR of about 2 dB with respect to the single or double differential data processed by the filter. This allows to reduce the bias induced by crosstalk in conduction velocity and force estimation. SIGNIFICANCE The method can be applied to few channels, so that it is useful in applicative studies (e.g. clinics, gate analysis, rehabilitation protocols with EMG biofeedback and prosthesis control) where limited and not selective information is usually available.
Collapse
|
47
|
Abstract
This study aimed to compare the muscle activity of lower limbs across typical table tennis strokes. Fourteen high-level players participated in this study in which five typical strokes (backhand top, forehand top, forehand spin, forehand smash, flick) were analysed. Surface electromyography activity (EMG) of eight muscles was recorded (gluteus maximus, biceps femoris, vastus medialis, vastus lateralis, rectus femoris, gastrocnemius medialis, gastrocnemius lateralis, soleus) and normalised to the maximal activity measured during squat jump or isometric maximal voluntary contractions. The forehand spin, the forehand top and the forehand smash exhibited significant higher EMG amplitude when compared with other strokes. Both biceps femoris and gluteus maximus were strongly activated during the smash, forehand spin and forehand top (from 62.8 to 91.7% of maximal EMG activity). Both vastii and rectus femoris were moderately to strongly activated during the forehand spin (from 50.4 to 62.2% of maximal EMG activity) whereas gastrocnemii and soleus exhibited the highest level of activity during the smash (from 67.1 to 92.1% of maximal EMG activity). Our study demonstrates that offensive strokes, such as smash or forehand top, exhibit higher levels of activity than other strokes.
Collapse
Affiliation(s)
- Yann Le Mansec
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - Sylvain Dorel
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - François Hug
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - Marc Jubeau
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| |
Collapse
|
48
|
Abstract
Myoelectric devices are controlled by electromyographic signals generated by contraction of residual muscles, which thus serve as biological amplifiers of neural control signals. Although nerves severed by amputation continue to carry motor control information intended for the missing limb, loss of muscle effectors due to amputation prevents access to this important control information. Targeted Muscle Reinnervation (TMR) was developed as a novel strategy to improve control of myoelectric upper limb prostheses. Severed motor nerves are surgically transferred to the motor points of denervated target muscles, which, after reinnervation, contract in response to neural control signals for the missing limb. TMR creates additional control sites, eliminating the need to switch the prosthesis between different control modes. In addition, contraction of target muscles, and operation of the prosthesis, occurs in reponse to attempts to move the missing limb, making control easier and more intuitive. TMR has been performed extensively in individuals with high-level upper limb amputations and has been shown to improve functional prosthesis control. The benefits of TMR are being studied in individuals with transradial amputations and lower limb amputations. TMR is also being investigated in an ongoing clinical trial as a method to prevent or treat painful amputation neuromas.
Collapse
Affiliation(s)
- Todd A Kuiken
- Director, Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, IL 60611
- Professor, Departments of Surgery and Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL
- Professor, Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Ann K Barlow
- Science Writer, Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, IL
| | - Levi Hargrove
- Research Scientist, Rehabilitation Institute of Chicago, Chicago, IL
- Associate Professor, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gregorgy A Dumanian
- Chief of Plastic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
- Professor of Plastic Surgery, Medical Education, Neurological Surgery, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
49
|
Flury N, Koenig I, Radlinger L. Crosstalk considerations in studies evaluating pelvic floor muscles using surface electromyography in women: a scoping review. Arch Gynecol Obstet 2017; 295:799-809. [PMID: 28176015 DOI: 10.1007/s00404-017-4300-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Surface electromyography (sEMG) using intravaginal probes is of widespread use for assessing pelvic floor muscles (PFM) activity in women. Although considered as a reliable method, its validity has been called into question due to the presence of a phenomenon called crosstalk. Crosstalk is described as the recording of sEMG activity originating from neighboring muscles rather than coming exclusively from the muscles being investigated. The purpose of this review was to provide an overview of existing literature about crosstalk during intravaginal surface electromyographic recordings. METHODS A scoping review was performed according to the Arksey and O'Malley framework. An electronic search was conducted on six relevant databases. Additionally, authors were directly contacted to identify grey literature. Data extraction consisted of descriptive numeric analysis as well as thematic analysis, which were conducted by two independent reviewers. RESULTS Forty-nine references written by 34 authors coming from 13 different countries constitute the body of evidence of the present review. Eight main themes have been identified through the thematic analysis. The included material varies greatly in terms of methodology, approach to the crosstalk problem and depth of analysis. CONCLUSIONS A gap in knowledge affecting the validity of the current sEMG investigation methods was identified. Literature addressing the crosstalk problem is scarce and often flawed. Definitive conclusions are regularly drawn from an insufficient basis of evidence. Further research is, therefore, deeply necessary, although it remains unclear whether this issue can be solved at all with current technology.
Collapse
Affiliation(s)
- Noémie Flury
- Bern University of Applied Sciences, Bern, Switzerland
| | - Irene Koenig
- Bern University of Applied Sciences, Bern, Switzerland.
| | | |
Collapse
|
50
|
The magnitude of muscular activation of four canine forelimb muscles in dogs performing two agility-specific tasks. BMC Vet Res 2017; 13:68. [PMID: 28270140 PMCID: PMC5341356 DOI: 10.1186/s12917-017-0985-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background The purpose of this study was to measure the muscular activation in four forelimb muscles while dogs performed agility tasks (i.e., jumping and A-frame) and to provide insight into potential relationships between level of muscular activation and risk of injury. Muscle activation in eight healthy, client-owned agility dogs was measured using ultrasound-guided fine-wire electromyography of four specific forelimb muscles: Biceps Brachii, Supraspinatus, Infraspinatus, and Triceps Brachii – Long Head, while dogs performed a two jump sequence and while dogs ascended and descended an A-frame obstacle at two different competition heights. Results The peak muscle activations during these agility tasks were between 1.7 and 10.6 fold greater than walking. Jumping required higher levels of muscle activation compared to ascending and descending an A-frame, for all muscles of interest. There was no significant difference in muscle activation between the two A-frame heights. Conclusions Compared to walking, all of the muscles were activated at high levels during the agility tasks and our findings indicate that jumping is an especially demanding activity for dogs in agility. This information is broadly relevant to understanding the pathophysiology of forelimb injuries related to canine athletic activity.
Collapse
|