1
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Bartko JC, Li Y, Sun G, Halterman MW. Phosphorylation within the bipartite NLS alters the localization and toxicity of the ER stress response factor DDIT3/CHOP. Cell Signal 2020; 74:109713. [PMID: 32673756 DOI: 10.1016/j.cellsig.2020.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Regulated nuclear-cytoplasmic trafficking is a well-established mechanism utilized by cells to regulate adaptive and maladaptive responses to acute oxidant stress. Commonly associated with endoplasmic reticulum stress, the bZIP transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP/DDIT3) mediates the cellular response to redox stress with effects on cellular growth, differentiation, and survival. We show through functional analyses that CHOP contains a conserved, compound pat4/bipartite nuclear localization signal within the basic DNA-binding domain. Using phylogenetic analyses and mass spectrometry, we now show that Ser107 located within the linker region of the bipartite NLS domain is a substrate for phosphorylation under standard culture conditions. Studies using the S107E phospho-mimic of CHOP indicate that changes in the charge properties at this residue regulate CHOP's nuclear-to-cytoplasmic ratio. And while co-stimulation with the SERCA inhibitor thapsigargin induced injury in cells expressing wild-type CHOP, the S107A point-mutant blocked this response. These findings indicate that phosphorylation within the bipartite NLS exerts regulatory effects on both the subcellular localization and toxic potential of DDIT3/CHOP. Future studies geared towards defining the relevant kinase/phosphatase networks that converge on the phosphorylation-regulated NLS (prNLS) phosphoepitope may provide an opportunity to constrain cellular damage in the context of acute ER stress.
Collapse
Affiliation(s)
- Jonathan C Bartko
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Yinghui Li
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - George Sun
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Marc W Halterman
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
3
|
Molecular mechanisms of the protein-protein interaction-regulated binding specificity of basic-region leucine zipper transcription factors. J Mol Model 2019; 25:246. [PMID: 31342181 DOI: 10.1007/s00894-019-4138-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
It is well known that the DNA-binding specificity of transcription factors (TFs) is influenced by protein-protein interactions (PPIs). However, the underlying molecular mechanisms remain largely unknown. In this work, we adopted the cAMP-response element-binding protein (CREB) of the basic leucine zipper (bZIP) TF family as a model system, and a workflow of combined bioinformatics and molecular modeling analysis of protein-DNA interaction was tested. First, the multiple sequence alignment and SDPsite method were used to find potential bZIP family binding specificity determining positions (SDPs) within the protein-protein interaction region. Second, the mutation system was analyzed using molecular dynamics simulation. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy calculations confirmed the enhancement of the binding affinity of the mutation, which was in agreement with experimental results. The root mean square fluctuation (RMSF) and hydrogen bonding changes suggested an open and close protein dimerization process after the system was mutated, which resulted in the change of the hydrogen bonding of the protein-DNA interface and a slight conformational change. We believe that this work will contribute to understanding the protein-protein interaction-regulated binding specificity of bZIP transcription factors.
Collapse
|
4
|
Salvadó I, Gamba I, Montenegro J, Martínez-Costas J, Brea JM, Loza MI, Vázquez López M, Vázquez ME. Membrane-disrupting iridium(iii) oligocationic organometallopeptides. Chem Commun (Camb) 2016; 52:11008-11. [PMID: 27538788 DOI: 10.1039/c6cc05537k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of oligoarginine peptide derivatives containing cyclometallated iridium(iii) units display remarkable cytotoxicity, comparable to that of cisplatin. In vitro studies with unilamellar vesicles support a membrane-disrupting mechanism of action.
Collapse
Affiliation(s)
- Iria Salvadó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pantoja-Hernández L, Álvarez-Buylla E, Aguilar-Ibáñez CF, Garay-Arroyo A, Soria-López A, Martínez-García JC. Retroactivity effects dependency on the transcription factors binding mechanisms. J Theor Biol 2016; 410:77-106. [PMID: 27524647 DOI: 10.1016/j.jtbi.2016.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.
Collapse
Affiliation(s)
- Libertad Pantoja-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México (C3-UNAM), Mexico City, Mexico.
| | - Elena Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México (C3-UNAM), Mexico City, Mexico
| | - Carlos F Aguilar-Ibáñez
- Centro de investigación en Computación, Instituto Politécnico Nacional (CIC - IPN), Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Soria-López
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Carlos Martínez-García
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
6
|
Shen XB, Huang L, Zhang SH, Wang DP, Wu YL, Chen WN, Xu SH, Lin X. Transcriptional regulation of the apolipoprotein F (ApoF) gene by ETS and C/EBPα in hepatoma cells. Biochimie 2015; 112:1-9. [PMID: 25726912 DOI: 10.1016/j.biochi.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF.
Collapse
Affiliation(s)
- Xue-Bin Shen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Ling Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Shao-Hong Zhang
- Department of Medical Laboratory, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - De-Ping Wang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Endocrinology and Metabolism, Hongqi Hospital of MuDanJiang Medical College, Mudanjiang, China
| | - Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shang-Hua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China.
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
7
|
A protein adaptor to locate a functional protein dimer on molecular switchboard. Methods 2014; 67:142-50. [DOI: 10.1016/j.ymeth.2013.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 01/25/2023] Open
|
8
|
Robustelli P, Trbovic N, Friesner RA, Palmer AG. Conformational Dynamics of the Partially Disordered Yeast Transcription Factor GCN4. J Chem Theory Comput 2013; 9. [PMID: 24409105 DOI: 10.1021/ct400654r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics (MD) simulations have been employed to study the conformational dynamics of the partially disordered DNA binding basic leucine zipper domain of the yeast transcription factor GCN4. We demonstrate that back-calculated NMR chemical shifts and spin-relaxation data provide complementary probes of the structure and dynamics of disordered protein states and enable comparisons of the accuracy of multiple MD trajectories. In particular, back-calculated chemical shifts provide a sensitive probe of the populations of residual secondary structure elements and helix capping interactions, while spin-relaxation calculations are sensitive to a combination of dynamic and structural factors. Back calculated chemical shift and spin-relaxation data can be used to evaluate the populations of specific interactions in disordered states and identify regions of the phase space that are inconsistent with experimental measurements. The structural interactions that favor and disfavor helical conformations in the disordered basic region of the GCN4 bZip domain were analyzed in order to assess the implications of the structure and dynamics of the apo form for the DNA binding mechanism. The structural couplings observed in these experimentally validated simulations are consistent with a mechanism where the binding of a preformed helical interface would induce folding in the remainder of the protein, supporting a hybrid conformational selection / induced folding binding mechanism.
Collapse
Affiliation(s)
- Paul Robustelli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York NY 10032, USA
| | - Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York NY 10032, USA
| | | | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York NY 10032, USA
| |
Collapse
|
9
|
Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides. Nat Commun 2013; 4:1874. [DOI: 10.1038/ncomms2825] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/28/2013] [Indexed: 01/17/2023] Open
|
10
|
De Jong AT. Effect of flanking bases on the DNA specificity of EmBP-1. Biochemistry 2013; 52:786-94. [PMID: 23305409 DOI: 10.1021/bi301404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EmBP-1 is a basic region leucine zipper (bZIP) protein found in many types of plants. In general, plant bZIP proteins bind selectively to DNA sequences containing ACGT core sequences with different immediate flanking nucleotides preferred by different proteins. I report that the distant flanking sequence also has a strong effect on the preference of EmBP-1 for internal bases and determine the residue governing this effect. EmBP-1 binds selectively to the 10 bp gcG-box palindrome GCCACGTGGC 18-fold more tightly than the gcC-box GTGACGTCAC, but when the outer flanking G/C residues were changed to A/T (i.e., ACCACGTGGT and ATGACGTCAT), an only 1.2-fold preference for G-box binding was observed. Analysis of a series of single-residue alanine mutants of EmBP-1 revealed that this effect is mediated by arginine 10. Mutation of this residue to alanine greatly reduces the affinity for the gcG-box while leaving the affinity for other sequences relatively unchanged. Partial retention of G-box specificity upon mutation of R10 to lysine indicates that the effect is reliant on the basic nature of the residue. Additional studies with other EmBP-1 protein mutants and with oligonucleotides containing the T/A and C/G flanking sequences demonstrate the complexity of the protein-DNA interaction and demonstrate that the mechanism of sequence selective DNA binding is highly dependent on the flanking sequence.
Collapse
Affiliation(s)
- Antonia T De Jong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J Mol Biol 2011; 416:287-99. [PMID: 22226835 DOI: 10.1016/j.jmb.2011.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023]
Abstract
Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs).
Collapse
|
12
|
[Progress of transcription factor CCAAT enhancer binding protein β]. YI CHUAN = HEREDITAS 2011; 33:198-206. [PMID: 21402526 DOI: 10.3724/sp.j.1005.2011.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CCAAT enhancer binding protein β (C/EBP β) belongs to CCAAT enhancer binding protein (C/EBP) family, which is a subfamily of basic leucine zipper (bZIP) protein family. C/EBP family plays important roles in many processes such as cell differentiation, metabolism, and development. In this paper, the structure, expression regulation, and function of C/EBP β were reviewed.
Collapse
|
13
|
Chan IS, Shahravan SH, Fedorova AV, Shin JA. The bZIP targets overlapping DNA subsites within a half-site, resulting in increased binding affinities. Biochemistry 2008; 47:9646-52. [PMID: 18702507 DOI: 10.1021/bi800355t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that the wt bZIP, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes GCN4 cognate site AP-1 (TGACTCA) but also selectively targets noncognate DNA sites, in particular the C/EBP site (TTGCGCAA). In this work, we used electrophoretic mobility shift assay and DNase I footprinting to investigate the factors driving the high affinity between the wt bZIP and the C/EBP site. We found that on each strand of the C/EBP site, the wt bZIP recognizes two 4 bp subsites, TTGC and TGCG, which overlap to form the effective 5 bp half-site (TTGCG). The affinity of the wt bZIP for the overall 5 bp half-site is >or=10-fold stronger than that for either 4 bp subsite. Our results suggest that interactions of the wt bZIP with both subsites contribute to the strong affinity at the overall 5 bp half-site and, consequently, the C/EBP site. Accordingly, we propose that the wt bZIP undergoes conformational changes to slide between the two overlapping subsites on the same DNA strand and establish sequence-selective contacts with the different subsites. The proposed binding mechanism expands our understanding of what constitutes an actual DNA target site in protein-DNA interactions.
Collapse
Affiliation(s)
- I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | |
Collapse
|
14
|
Chan IS, Fedorova AV, Shin JA. The GCN4 bZIP targets noncognate gene regulatory sequences: quantitative investigation of binding at full and half sites. Biochemistry 2007; 46:1663-71. [PMID: 17279629 PMCID: PMC2435288 DOI: 10.1021/bi0617613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that a basic region/leucine zipper (bZIP) protein, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes cognate target sites AP-1 (5'-TGACTCA-3') and cAMP-response element (CRE) (5'-TGACGTCA-3') but also binds selectively to noncognate DNA sites: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and E-box (5'-CACGTG). In this work, we used electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) for more extensive characterization of the binding of wt bZIP dimer to noncognate sites as well as full- and half-site derivatives, and we examined changes in flanking sequences. Quantitative EMSA titrations were used to measure dissociation constants of this hybrid, wt bZIP, to DNA duplexes: Full-site binding affinities gradually decrease from cognate sites AP-1 and CRE with Kd values of 13 and 12 nM, respectively, to noncognate sites with Kd values of 120 nM to low microM. DNA-binding selectivity at half sites is maintained; however, half-site binding affinities sharply decrease from the cognate half site (Kd = 84 nM) to noncognate half sites (all Kd values > 2 microM). CD shows that comparable levels of alpha-helical structure are induced in wt bZIP upon binding to cognate AP-1 or noncognate sites. Thus, noncognate sites may contribute to preorganization of stable protein structure before binding target DNA sites. This work demonstrates that the bZIP scaffold may be a powerful tool in the design of small, alpha-helical proteins with desired DNA recognition properties.
Collapse
Affiliation(s)
- I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
15
|
Kim YG, Park HJ, Kim KK, Lowenhaupt K, Rich A. A peptide with alternating lysines can act as a highly specific Z-DNA binding domain. Nucleic Acids Res 2006; 34:4937-42. [PMID: 16982643 PMCID: PMC1635270 DOI: 10.1093/nar/gkl607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many nucleic acid binding proteins use short peptide sequences to provide specificity in recognizing their targets, which may be either a specific sequence or a conformation. Peptides containing alternating lysine have been shown to bind to poly(dG–d5meC) in the Z conformation, and stabilize the higher energy form [H. Takeuchi, N. Hanamura, H. Hayasaka and I. Harada (1991) FEBS Lett., 279, 253–255 and H. Takeuchi, N. Hanamura and I. Harada (1994) J. Mol. Biol., 236, 610–617.]. Here we report the construction of a Z-DNA specific binding protein, with the peptide KGKGKGK as a functional domain and a leucine zipper as a dimerization domain. The resultant protein, KGZIP, induces the Z conformation in poly(dG–d5meC) and binds to Z-DNA stabilized by bromination with high affinity and specificity. The binding of KGZIP is sufficient to convert poly(dG–d5meC) from the B to the Z form, as shown by circular dichroism. The sequence KGKGKGK is found in many proteins, although no functional role has been established. KGZIP also has potential for engineering other Z-DNA specific proteins for future studies of Z-DNA in vitro and in vivo.
Collapse
Affiliation(s)
- Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University300 Chunchundong, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Hyun-Ju Park
- College of Pharmacy, Sungkyunkwan University300 Chunchundong, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Kyeong Kyu Kim
- Department of Biology, Massachusetts Institute of Technology77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University300 Chunchundong, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Ky Lowenhaupt
- Department of Biology, Massachusetts Institute of Technology77 Massachusetts Avenue, Cambridge, MA 02139, USA
- To whom correspondence should be addressed. Tel: +1 617 253 4710; Fax: +1 61 258 8299;
| | - Alexander Rich
- Department of Biology, Massachusetts Institute of Technology77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Fedorova AV, Chan IS, Shin JA. The GCN4 bZIP can bind to noncognate gene regulatory sequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1252-9. [PMID: 16784907 PMCID: PMC2600801 DOI: 10.1016/j.bbapap.2006.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/10/2006] [Accepted: 04/17/2006] [Indexed: 12/27/2022]
Abstract
We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (Xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and the E-box (Enhancer box, 5'-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the microM range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein's affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, alpha-helical proteins with desired DNA recognition properties.
Collapse
Affiliation(s)
- Anna V. Fedorova
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Corresponding author. Tel.: +1 905 828 5355; fax: +1 905 828 5425. E-mail address: (J.A. Shin)
| |
Collapse
|
17
|
Vinson C, Acharya A, Taparowsky EJ. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. ACTA ACUST UNITED AC 2006; 1759:4-12. [PMID: 16580748 DOI: 10.1016/j.bbaexp.2005.12.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 12/22/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Over the last 15 years, numerous studies have addressed the structural rules that regulate dimerization stability and dimerization specificity of the leucine zipper, a dimeric parallel coiled-coil domain that can either homodimerize or heterodimerize. Initially, these studies were performed with a limited set of B-ZIP proteins, sequence-specific DNA binding proteins that dimerize using the leucine zipper domain to bind DNA. A global analysis of B-ZIP leucine zipper dimerization properties can be rationalized using a limited number of structural rules [J.R. Newman, A.E. Keating, Comprehensive identification of human bZIP interactions with coiled-coil arrays, Science 300 (2003) 2097-2101]. Today, however, access to the genomic sequences of many different organisms has made possible the annotation of all B-ZIP proteins from several species and has generated a bank of data that can be used to refine, and potentially expand, these rules. Already, a comparative analysis of the B-ZIP proteins from Arabidopsis thaliana and Homo sapiens has revealed that the same amino acids are used in different patterns to generate diverse B-ZIP dimerization patterns [C.D. Deppmann, A. Acharya, V. Rishi, B. Wobbes, S. Smeekens, E.J. Taparowsky, C. Vinson, Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs, Nucleic Acids Res. 32 (2004) 3435-3445]. The challenge ahead is to investigate the biological significance of different B-ZIP protein-protein interactions. Gaining insight at this level will rely on ongoing investigations to (a) define the role of target DNA on modulating B-ZIP dimerization partners, (b) characterize the B-ZIP transcriptome in various cells and tissues through mRNA microarray analysis, (c) identify the genomic localization of B-ZIP binding at a genomic level using the chromatin immunoprecipitation assay, and (d) develop more sophisticated imaging technologies to visualize dimer dynamics in single cells and whole organisms. Studies of B-ZIP family leucine zipper dimerization and the regulatory mechanisms that control their biological activities could serve as a paradigm for deciphering the biophysical and biological parameters governing other well-characterized protein-protein interaction motifs. This review will focus on the dimerization specificity of coiled-coil proteins, particularly the human B-ZIP transcription family that consists of 53 proteins that use the leucine zipper coiled-coil as a dimerization motif.
Collapse
Affiliation(s)
- Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
18
|
Hirata A, Ueno M, Aizawa Y, Ohkubo K, Morii T, Yoshikawa S. Dual DNA recognition codes of a short peptide derived from the basic leucine zipper protein EmBP1. Bioorg Med Chem 2005; 13:3107-16. [PMID: 15809146 DOI: 10.1016/j.bmc.2005.02.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 12/01/2022]
Abstract
Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences. The GCN4 basic region peptide binds 5'-ATGAC-3' in the alpha-helical conformation, but it neither shows affinity nor helix formation with 5'-GCCAC-3'. Because native EmBP1 forms 100 times more stable complex with 5'-GCCACGTGGC-3' over 5'-ATGACGTCAT-3', our results suggest that the sequence-selectivity of native EmBP1 is dictated by the structure of leucine zipper dimerization domain including the hinge region spanning between the basic region and the leucine zipper.
Collapse
Affiliation(s)
- Akiyoshi Hirata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
20
|
Hollenbeck JJ, McClain DL, Oakley MG. The role of helix stabilizing residues in GCN4 basic region folding and DNA binding. Protein Sci 2002; 11:2740-7. [PMID: 12381856 PMCID: PMC2373721 DOI: 10.1110/ps.0211102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.
Collapse
Affiliation(s)
- Jessica J Hollenbeck
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | |
Collapse
|
21
|
Bird GH, Lajmi AR, Shin JA. Sequence-specific recognition of DNA by hydrophobic, alanine-rich mutants of the basic region/leucine zipper motif investigated by fluorescence anisotropy. Biopolymers 2002; 65:10-20. [PMID: 12209468 DOI: 10.1002/bip.10205] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We generated minimalist proteins capable of sequence-specific, high-affinity binding of DNA to probe how proteins are used and can be used to recognize DNA. In order to quantify binding affinities and specificities in our protein-DNA system, we used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) domain to DNA duplexes containing target sites AP-1 (5'-TGACTCA-3') or ATF/CREB (5'-TGACGTCA-3'). We simplified the alpha-helical bZIP molecular recognition scaffold by alanine substitution: 4A, 11A, and 18A contain four, eleven, and eighteen alanine mutations in their DNA-binding basic regions, respectively. DNase I footprinting analysis demonstrates that all bZIP mutants retain the sequence-specific DNA-binding function of native GCN4 bZIP. Titration of fluorescein-labeled oligonucleotide duplexes with increasing amounts of protein yielded low nanomolar dissociation constants for all bZIP mutants in complex with the AP-1 and ATF/CREB sites: binding to the nonspecific control duplex was > 1000-fold weaker. Remarkably, the most heavily mutated protein 18A, containing 24 alanines in its 27-residue basic region, still binds AP-1 and ATF/CREB with dissociation constants of 15 and 7.8 nM, respectively. Similarly, wild-type bZIP binds these sites with K(d) values of 9.1 and 14 nM. 11A also displays low nanomolar dissociation constants for AP-1 and ATF/CREB, while 4A binds these sites with approximately 10-fold weaker K(d) values. Thus, both DNA-binding specificity and affinity are maintained in all our bZIP derivatives. This Ala-rich scaffold may be useful in design and synthesis of small alpha-helical proteins with desired DNA-recognition properties capable of serving as therapeutics targeting transcription.
Collapse
Affiliation(s)
- Gregory H Bird
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
22
|
Lee YS, Gurnon DG, Hollenbeck JJ, Oakley MG. Selection of a high-affinity DNA pool for a bZip protein with an out-of-phase alignment of the basic region relative to the leucine zipper. Bioorg Med Chem 2001. [DOI: 10.1016/s0968-0896(01)00158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Montclare JK, Sloan LS, Schepartz A. Electrostatic control of half-site spacing preferences by the cyclic AMP response element-binding protein CREB. Nucleic Acids Res 2001; 29:3311-9. [PMID: 11504868 PMCID: PMC55852 DOI: 10.1093/nar/29.16.3311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Basic region leucine zipper (bZIP) proteins represent a class of transcription factors that bind DNA using a simple, dimeric, alpha-helical recognition motif. The cAMP response element-binding protein (CREB) is a member of the CREB/ATF subfamily of bZIP proteins. CREB discriminates effectively in vivo and in vitro between the 10 bp cAMP response element (ATGACGTCAT, CRE) and the 9 bp activating protein 1 site (ATGACTCAT, AP-1). Here we describe an alanine scanning mutagenesis study designed to identify those residues within the CREB bZIP element that control CRE/AP-1 specificity. We find that the preference of CREB for the CRE site is controlled in a positive and negative way by acidic and basic residues in the basic, spacer and zipper segments. The CRE/AP-1 specificity of CREB is increased significantly by four glutamic acid residues located at positions 24, 28, 35 and 41; glutamic acid residues at positions 10 and 48 contribute in a more modest way. Specificity is decreased significantly by two basic residues located at positions 21 and 23; basic residues at positions 14, 18, 33 and 34 and V17 contribute in a more modest way. All of the residues that influence specificity significantly are located on the solvent-exposed face of the protein-DNA complex and likely participate in interactions between and among proteins, not between protein and DNA. The finding that the CRE/AP-1 specificity of CREB is dictated by the presence or absence of charged residues has interesting implications for how transcription factors seek and selectively bind sequences within genomic DNA.
Collapse
Affiliation(s)
- J K Montclare
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
24
|
Tang Y, Ghirlanda G, Vaidehi N, Kua J, Mainz DT, Goddard III WA, DeGrado WF, Tirrell DA. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001; 40:2790-6. [PMID: 11258889 DOI: 10.1021/bi0022588] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.
Collapse
Affiliation(s)
- Y Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This paper considers how enzymes that catalyze reactions at specific DNA sites have been engineered to overcome the problem of competitive inhibition by excess nonspecific binding sites on DNA. The formation of a specific protein-DNA recognition complex is discussed from both structural and thermodynamic perspectives, and contrasted with formation of nonspecific complexes. Evidence (from EcoRI and BamHI endonucleases) is presented that a wide variety of perturbations of the DNA substrate alter binding free energy but do not affect the free energy of activation for the chemical step; that is, many energetic factors contribute equally to the recognition complex and the transition-state complex. This implies that the specific recognition complex bears a close resemblance to the transition-state complex, such that very tight binding to the recognition site on the DNA substrate does not inhibit catalysis, but instead provides energy that is efficiently utilized along the path to the transition state. It is suggested that this view can be usefully extended to "noncatalytic" site-specific DNA-binding proteins like transcriptional activators and general transcription factors.
Collapse
Affiliation(s)
- L Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Hollenbeck JJ, Oakley MG. GCN4 binds with high affinity to DNA sequences containing a single consensus half-site. Biochemistry 2000; 39:6380-9. [PMID: 10828952 DOI: 10.1021/bi992705n] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
bZip proteins contain a bipartite DNA-binding motif consisting of a "leucine zipper" dimerization domain and a highly charged "basic region" that directly contacts DNA. These transcription factors form dimeric complexes with each monomer recognizing half of a symmetric or nearly symmetric DNA site. We have found that the bZip protein GCN4 can also bind with high affinity to DNA sites containing only a single GCN4 consensus half-site. Because several recent lines of evidence have suggested a role for monomeric DNA binding by bZip proteins, we investigated the structure of the GCN4.half-site complex. Quantitative DNA binding and affinity cleaving studies support a model in which GCN4 binds as a dimer, with one monomer making specific contacts to the consensus half-site and the other monomer forming nonspecific contacts that are nonetheless important for binding affinity. We also examined the folding transition induced in the basic regions of this complex upon binding DNA. Circular dichroism (CD) studies demonstrate that the basic regions of both monomers are helical, suggesting that a protein folding transition may be required for both specific and nonspecific DNA binding by GCN4.
Collapse
Affiliation(s)
- J J Hollenbeck
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
27
|
Lajmi AR, Lovrencic ME, Wallace TR, Thomlinson RR, Shin JA. Minimalist, Alanine-Based, Helical Protein Dimers Bind to Specific DNA Sites. J Am Chem Soc 2000. [DOI: 10.1021/ja993025a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajay R. Lajmi
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260
| | - Michael E. Lovrencic
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260
| | - Timothy R. Wallace
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260
| | - Robyn R. Thomlinson
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260
| | - Jumi A. Shin
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260
| |
Collapse
|
28
|
Sissi C, Aiyar J, Boyer S, Depew K, Danishefsky S, Crothers DM. Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. Proc Natl Acad Sci U S A 1999; 96:10643-8. [PMID: 10485879 PMCID: PMC17936 DOI: 10.1073/pnas.96.19.10643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin gamma(1)(I) and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known protein-binding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in their free and protein-bound forms. The proteins were selected to provide examples in which the minor-groove binding site for the carbohydrate is (CAP) or is not (GCN4) covered by the protein. Additionally, peptides related to the GCN4 and CREB families, which have different bending effects on their DNA-binding sites, were used. We observe that proteins of the CREB class, which induce a tendency to bend toward the minor groove at the center of the site, inhibit drug-cleavage sites located at the center of the free AP-1 or CRE DNA sites. In the case of GCN4, which does not induce DNA bending, there is no effect on calicheamicin cleavage of the CRE site, but we observe a GCN4-induced rearrangement of the cutting pattern in the AP-1 site. This effect may arise from either a subtle local conformational rearrangement not accompanied by bending or a localized reduction in DNA flexibility. Whereas GCN4 binding is not inhibited by the calicheamicin aryltetrasaccharide, binding of CAP to its DNA target is significantly inhibited, and calicheamicin cutting of DNA at the center of the CAP-DNA complex site is strongly reduced by protein binding. This result probably reflects steric inhibition of drug binding by the protein.
Collapse
Affiliation(s)
- C Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Zondlo NJ, Schepartz A. Highly Specific DNA Recognition by a Designed Miniature Protein. J Am Chem Soc 1999. [DOI: 10.1021/ja990968z] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neal J. Zondlo
- Department of Chemistry Yale University, P.O. Box 208107 New Haven Connecticut 06520-8107
| | - Alanna Schepartz
- Department of Chemistry Yale University, P.O. Box 208107 New Haven Connecticut 06520-8107
| |
Collapse
|
30
|
Berger C, Piubelli L, Haditsch U, Bosshard HR. Diffusion-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor. FEBS Lett 1998; 425:14-8. [PMID: 9540998 DOI: 10.1016/s0014-5793(98)00156-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basic leucine zipper (bZIP) transcription factors are dimers that recognize mainly palindromic DNA sites. It has been assumed that bZIP factors have to form a dimer in order to bind to their target DNA. We find that DNA binding of both monomeric and dimeric bZIP transcription factor GCN4 is diffusion-limited and that, therefore, the rate of dimerization of the bZIP domain does not affect the rate of DNA recognition and GCN4 need not dimerize in order to bind to its specific DNA site. The results have implications for the mechanism by which bZIP transcription factors find their target sites for transcriptional regulation.
Collapse
Affiliation(s)
- C Berger
- Biochemisches Institut der Universität, Zürich, Switzerland
| | | | | | | |
Collapse
|
31
|
Metallo SJ, Paolella DN, Schepartz A. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA. Nucleic Acids Res 1997; 25:2967-72. [PMID: 9224594 PMCID: PMC146868 DOI: 10.1093/nar/25.15.2967] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization.
Collapse
Affiliation(s)
- S J Metallo
- Department of Chemistry, PO Box 208107, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
32
|
Metallo SJ, Schepartz A. Certain bZIP peptides bind DNA sequentially as monomers and dimerize on the DNA. NATURE STRUCTURAL BIOLOGY 1997; 4:115-7. [PMID: 9033590 DOI: 10.1038/nsb0297-115] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
|
34
|
Peterson BR, Sun LJ, Verdine GL. A critical arginine residue mediates cooperativity in the contact interface between transcription factors NFAT and AP-1. Proc Natl Acad Sci U S A 1996; 93:13671-6. [PMID: 8942992 PMCID: PMC19386 DOI: 10.1073/pnas.93.24.13671] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1996] [Accepted: 09/13/1996] [Indexed: 02/03/2023] Open
Abstract
The heterologous transcription factors NFAT and AP-1 coordinately regulate cytokine gene expression through cooperative binding to precisely juxtaposed DNA recognition elements. The molecular origins of cooperativity in the binding of NFAT and AP-1 to DNA are poorly understood. Herein we have used yeast one-hybrid screening and alanine-scanning mutagenesis to identify residues in AP-1 that affect cooperative interactions with NFAT on DNA. Mutation of a single conserved Arg residue to Ala in the cJun spacer region (R285A) led to a virtually complete abolition of cooperative interactions with NFAT. The DNA-binding activity of AP-1 alone was unaffected by the cJun R285A mutation, thus indicating that this residue influences cooperative binding only. Ala-scanning mutations elsewhere in AP-1, including the cFos subunit, revealed no other strongly interacting single positions. We thus conclude that NFAT contacts AP-1 in the spacer region of the cJun subunit, making an especially important contact to R285, and that these interactions drive formation of the cooperative NFAT/AP-1/DNA complex. These results provide a general strategy for selectively ablating cooperativity between transcription factors without affecting their ability to act alone and yield insights into the structural basis for coordinate regulation of gene expression.
Collapse
Affiliation(s)
- B R Peterson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
35
|
Cox JM, Sloan LS, Schepartz A. Conformation of Tax-response elements in the human T-cell leukemia virus type I promoter. CHEMISTRY & BIOLOGY 1995; 2:819-26. [PMID: 8807815 DOI: 10.1016/1074-5521(95)90088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND HTLV-I Tax is believed to activate viral gene expression by binding bZIP proteins (such as CREB) and increasing their affinities for proviral TRE target sites. Each 21 bp TRE target site contains an imperfect copy of the intrinsically bent CRE target site (the TRE core) surrounded by highly conserved flanking sequences. These flanking sequences are essential for maximal increases in DNA affinity and transactivation, but they are not, apparently, contacted by protein. Here we employ non-denaturing gel electrophoresis to evaluate TRE conformation in the presence and absence of bZIP proteins, and to explore the role of DNA conformation in viral transactivation. RESULTS Our results show that the TRE-1 flanking sequences modulate the structure and modestly increase the affinity of a CREB bZIP peptide for the TRE-1 core recognition sequence. These flanking sequences are also essential for a maximal increase in stability of the CREB-DNA complex in the presence of Tax. CONCLUSIONS The CRE-like TRE core and the TRE flanking sequences are both essential for formation of stable CREB-TRE-1 and Tax-CREB-TRE-1 complexes. These two DNA segments may have co-evolved into a unique structure capable of recognizing Tax and a bZIP protein.
Collapse
Affiliation(s)
- J M Cox
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
36
|
Baranger AM, Palmer CR, Hamm MK, Giebler HA, Brauweiler A, Nyborg JK, Schepartz A. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax. Nature 1995; 376:606-8. [PMID: 7637812 DOI: 10.1038/376606a0] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.
Collapse
Affiliation(s)
- A M Baranger
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hamm MK, Schepartz A. Studies on the formation of DNA·protein interfaces: DNA specificity and straightening by CREB. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00266-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Okagami M, Ueno M, Makino K, Shimomura M, Saito I, Morii T, Sugiura Y. Sequence-specific DNA binding by covalently constrained peptide dimers of the basic leucine zipper protein GCN4. Bioorg Med Chem 1995; 3:777-84. [PMID: 7582955 DOI: 10.1016/0968-0896(95)00047-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA binding of covalently bonded peptide dimers was studied by using enantiomeric and C2-symmetric templates as a dimerization module. Amino acid sequence of the peptide is derived from that of DNA contact region of the basic leucine zipper protein GCN4. These peptide dimers were designed to possess different constraints with respect to the orientation of two peptides. The basic region peptides were covalently linked to the enantiomeric template at the C-terminal ends. Two peptides are arranged either in a right-handed or left-handed geometry depending on the chirality of the template. The GCN4 basic region dimers with both right-handed and left-handed geometries show equal affinity to the native GCN4 binding DNA sequences, 5'-ATGACTCAT-3' and 5'-ATGACGTCAT-3', as revealed by the gel mobility shift assay. Specific recognition of the palindromic DNA sequence by the peptide dimers was confirmed by the DNase I footprinting. Circular dichroism spectroscopic study indicates that the basic region peptides bound the target DNA sequence in a helical conformation. The degree to which a chiral constraint effects may depend on the geometry of two DNA binding domains in the parent protein-DNA complex and on a position to apply the chiral constraint.
Collapse
Affiliation(s)
- M Okagami
- Department of Polymer Science and Engineering, Kyoto Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|