1
|
Protein kinase D regulates positive selection of CD4 + thymocytes through phosphorylation of SHP-1. Nat Commun 2016; 7:12756. [PMID: 27670070 PMCID: PMC5052653 DOI: 10.1038/ncomms12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. The three isoforms of protein kinase D (PKD) have important but often redundant roles in cell signalling. Here the authors show, by generating PKD2/3 double-deficient mice, that PKD is essential for TCR signalling in thymocytes, and identify SHP-1 as a PKD target critical for development of CD4+ T cells.
Collapse
|
2
|
Yamasaki S, Ishikawa E, Sakuma M, Ogata K, Sakata-Sogawa K, Hiroshima M, Wiest DL, Tokunaga M, Saito T. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat Immunol 2005; 7:67-75. [PMID: 16327787 DOI: 10.1038/ni1290] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/13/2005] [Indexed: 01/08/2023]
Abstract
The pre-T cell receptor (TCR) is crucial for early T cell development and is proposed to function in a ligand-independent way. However, the molecular mechanism underlying the autonomous signals remains elusive. Here we show that the pre-TCR complex spontaneously formed oligomers. Specific charged residues in the extracellular domain of the pre-TCR alpha-chain mediated formation of the oligomers in vitro. Alteration of these residues eliminated the ability of the pre-TCR alpha-chain to support pre-TCR signaling in vivo. Dimerization but not raft localization of CD3epsilon was sufficient to simulate pre-TCR function and promote beta-selection. These results suggest that the pre-TCR complex can deliver its signal autonomously through oligomerization of the pre-TCR alpha-chain mediated by charged residues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/immunology
- Hematopoietic Stem Cells/cytology
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Boyer O, Marodon G, Cohen JL, Lejeune L, Irinopoulou T, Liblau R, Bruneval P, Klatzmann D. Human CD4 expression at the late single-positive stage of thymic development supports T cell maturation and peripheral export in CD4-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4347-53. [PMID: 12370367 DOI: 10.4049/jimmunol.169.8.4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Positive selection of developing thymocytes is initiated at the double-positive (DP) CD4(+)CD8(+) stage of their maturation. Accordingly, expression of a human CD4 (hCD4) transgene beginning at the DP stage has been shown to restore normal T cell development and function in CD4-deficient mice. However, it is unclear whether later onset CD4 expression would still allow such a restoration. To investigate this issue, we used transgenic mice in which a hCD4 transgene is not expressed on DP, but only on single-positive cells. By crossing these animals with CD4-deficient mice, we show that late hCD4 expression supports the maturation of T cell precursors and the peripheral export of mature TCRalphabeta(+) CD8(-) T cells. These results were confirmed in two different MHC class II-restricted TCR transgenic mice. T cells arising by this process were functional in the periphery because they responded to agonist peptide in vivo. Interestingly, thymocytes of these mice appeared refractory to peptide-induced negative selection. Together, these results indicate that the effect of CD4 on positive selection of class II-restricted T cells extends surprisingly late into the maturation process by a previously unrecognized pathway of differentiation, which might contribute to the generation of autoreactive T cells.
Collapse
Affiliation(s)
- Olivier Boyer
- Laboratoire de Biologie et Thérapeutique des Pathologies Immunitaires and Centre National de la Recherche Scientifique Unité Mixte de Recherche 7087, Hôpital Pitié-Salpêtrière, 83 boulevard de l'hôpital, F-75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
My colleagues and I are studying the regulation of T cell differentiation and lineage commitment in the thymus. Most recently, we have focused on the role of the mitogen-activated protein kinase (MAPK) signaling pathway in these processes and, in particular, the temporal pattern of activation of this pathway and its effect on downstream gene targets. Our data suggest that thymocyte differentiation to either the CD4 or CD8 lineages requires sustained low-level signaling via MAPK, although the latter requires a weaker signal. We have proposed that both the amplitude and kinetics of MAPK signaling may be one aspect of the link between T cell receptor affinity and cell fate. In addition, we have shown that the Egr family of transcription factors is induced as a consequence of MAPK activation during positive selection in the thymus, and we are taking several approaches to identify other genes that are involved in regulating this developmental process.
Collapse
Affiliation(s)
- J Kaye
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Carleton M, Ruetsch NR, Berger MA, Rhodes M, Kaptik S, Wiest DL. Signals Transduced by CD3ε, But Not by Surface Pre-TCR Complexes, Are Able to Induce Maturation of an Early Thymic Lymphoma In Vitro. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Development of immature CD4−CD8− (double-negative) thymocytes to the CD4+CD8+ (double-positive) stage is linked to productive rearrangement of the TCRβ locus by signals transduced through the pre-TCR. However, the mechanism whereby pre-TCR signaling is initiated remains unclear, in part due to the lack of an in vitro model system amenable to both biochemical and genetic analysis. In this study, we establish the thymic lymphoma Scid.adh as such a model system. Scid.adh responds to Ab engagement of surface IL-2Ra (TAC):CD3ε molecules (a signaling chimera that mimics pre-TCR signaling in vivo) by undergoing changes in gene expression observed following pre-TCR activation in normal thymocytes. These changes include down-regulation of CD25, recombinase-activating gene (RAG)-1, RAG-2, and pTα; and the up-regulation of TCRα germline transcripts. We term this complete set of changes in gene expression, in vitro maturation. Interestingly, Scid.adh undergoes only a subset of these changes in gene expression following Ab engagement of the pre-TCR. Our findings make two important points. First, because TAC:CD3ε stimulation of Scid.adh induces physiologically relevant changes in gene expression, Scid.adh is an excellent cellular system for investigating the molecular requirements for pre-TCR signaling. Second, Ab engagement of CD3ε signaling domains in isolation (TAC:CD3ε) promotes in vitro maturation of Scid.adh, whereas engagement of CD3ε molecules contained within the complete pre-TCR fails to do so. Our current working hypothesis is that CD3ε fails to promote in vitro maturation when in the context of an Ab-engaged pre-TCR because another pre-TCR subunit(s), possibly TCRζ, qualitatively alters the CD3ε signal.
Collapse
Affiliation(s)
- Michael Carleton
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| | - Norman R. Ruetsch
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| | - Marc A. Berger
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| | - Michele Rhodes
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| | - Steven Kaptik
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| | - David L. Wiest
- Fox Chase Cancer Center, Immunobiology Working Group, Division of Basic Sciences, Philadelphia, PA 19111
| |
Collapse
|
6
|
Pankhaniya R, Jabrane-Ferrat N, Gaufo GO, Sreedharan SP, Dazin P, Kaye J, Goetzl EJ. Vasoactive intestinal peptide enhancement of antigen-induced differentiation of a cultured line of mouse thymocytes. FASEB J 1998; 12:119-27. [PMID: 9438417 DOI: 10.1096/fasebj.12.1.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prominence of vasoactive intestinal peptide (VIP) in rodent thymic neurons suggested that this potent mediator of T cell functions may alter developmental responses of thymocytes to T cell receptor (TCR) -dependent stimulation. CD4+8+ DPK cells derived from a thymic lymphoma of a TCR transgenic mouse respond to pigeon cytochrome C (PCC) antigen in association with distinct I-E MHC II haplotypes on antigen-presenting cells (APCs) by differentiating into CD4+8- T cells. The specific recognition of VIP by two types of homologous G-protein-coupled receptors (VIPR1 and VIPR2) on DPK cells was attributable predominantly to VIPR1 before and to VIPR2 after exposure to APCs and PCC, as assessed by quantification of the respective mRNAs. PCC-evoked differentiation of DPK cells was enhanced significantly by 1 to 100 nM VIP after 3 to 4 days. The effects of VIP analogs with VIPR type selectivity implied that VIP enhancement of differentiation of DPK cells was mediated principally by VIPR2. Differential reduction in the expression of each type of VIPR by transfection of DPK cells with plasmids encoding the respective antisense mRNAs confirmed the central role of VIPR2 in VIP-enhanced conversion to CD4+8- T cells. The suppression of DPK cell differentiation by inhibitors of adenylyl cyclase and protein kinase A suggested a transductional role for VIP-elicited increases in [cAMP]i. That the changes in frequency of CD4+8+ and CD4+8- DPK cells reflected principally differentiation was supported by the lack of consistent differences between the two subsets in the effects of VIP and VIPR2 agonist on cell number, viability, apoptosis, and proliferation. VIP may be one endogenous mediator that explains the unique thymic microenvironment for topographically specific development of T cells.
Collapse
Affiliation(s)
- R Pankhaniya
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0711, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Shao H, Kono DH, Chen LY, Rubin EM, Kaye J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 1997; 185:731-44. [PMID: 9034151 PMCID: PMC2196139 DOI: 10.1084/jem.185.4.731] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
There is little known about the regulation of gene expression during TCR-mediated differentiation of immature CD4+8+ (double positive) thymocytes into mature T cells. Using the DPK CD4+8+ thymocyte precursor cell line, we demonstrate that the early growth response-1 gene (Erg-1), encoding a zinc finger transcription factor, is rapidly upregulated after TCR stimulation. We also report that Egr-1 is expressed by a subset of normal double positive thymocytes in the thymic cortex, as well by a majority of medullary single positive thymocytes. Expression of Egr-1 is dramatically reduced in the thymus of major histocompatibility complex knockout mice, but can be induced by anti-CD3 antibody stimulation of isolated thymocytes from these animals. These and other data suggest that high level expression of Egr-1 in the thymus is a consequence of selection. A similar pattern of expression is found for family members Egr-2 and Egr-3. Using the DPK cell line, we also demonstrate that expression of Egr-1, 2, and 3 is dependent upon ras activation, as is the initiation of differentiation to a single positive cell. In contrast, the calcineurin inhibitor cyclosporin A, which inhibits DPK cell differentiation as well as positive selection, inhibits expression of Egr-2 and Egr-3, but not Egr-1. The identification of the Egr family in this context represents the first report of a link between the two known signaling pathways involved in positive selection and downstream transcriptional regulators.
Collapse
Affiliation(s)
- H Shao
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
8
|
Lo D, Reilly CR, Burkly LC, DeKoning J, Laufer TM, Glimcher LH. Thymic stromal cell specialization and the T-cell receptor repertoire. Immunol Res 1997; 16:3-14. [PMID: 9048205 DOI: 10.1007/bf02786320] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ten years ago, we proposed a model for thymus function in which thymic epithelial cells are primarily responsible for imprinting major histocompatibility complex (MHC)-restricted specificity, and bone marrow-derived macrophages or dendritic cells are responsible for the induction of self-tolerance. Since then, transgenic and knockout models have allowed for a dissection of thymic stromal components in vivo, leading to a new understanding of their specialized functions. We have determined that with regard to class II-restricted CD4 T-cell development, two distinct subsets of thymic epithelium help shape the repertoire: Cortical epithelium appears solely responsible for positive selection, whereas a fucose-bearing subset of medullary epithelium is specialized for negative selection. This absolute separation of positive and negative selection into two distinct spatial and temporal compartments leads to a much simpler view of the process of repertoire selection. Finally, a novel view of the function of the thymic medulla is discussed.
Collapse
Affiliation(s)
- D Lo
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 1996; 383:81-5. [PMID: 8779719 DOI: 10.1038/383081a0] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The normal development of T cells in the thymus requires both positive and negative selection. During positive selection, thymocytes mature only if their T-cell receptors react with some specificity to host major histocompatibility complex (MHC) and host peptides. During negative selection, thymocytes die if their T-cell receptors react with too high an affinity to the presenting cell, self MHC, and peptides to which they are exposed. These two processes are important for the development of the T-cell repertoire and the acquisition of self-tolerance, but their precise location and temporal relationship are not known. We have used the keratin 14 (K14) promoter to re-express a class II MHC antigen (I-Ab) in class II-negative mice. The transgenic I-A molecule is expressed only on thymic cortical epithelium; thymic medullary epithelium and bone-marrow-derived cells are I-A negative. CD4+ cells are positively selected in K14 mice, but clonal deletion does not ocur in K14 mice or in relB-negative mice, which lack a thymic medulla. The K14 CD4 cells are autoreactive, as they proliferate extensively to and specifically lyse I-Ab-positive target cells. These autoreactive cells make up 5% of the peripheral CD4 T cells, providing and estimate of the minimal frequency of positively selected cells that must subsequently undergo negative selection for self-tolerance to be preserved. Thus positive and negative selection occur in anatomically distinct sites.
Collapse
Affiliation(s)
- T M Laufer
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
10
|
Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 1995; 373:531-6. [PMID: 7845467 DOI: 10.1038/373531a0] [Citation(s) in RCA: 605] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DC) derived from bone marrow are critical in the function of the immune system, for they are the primary antigen-presenting cells in the activation of T-lymphocyte response. Their differentiation from precursor cells has not been defined at a molecular level, but recent studies have shown an association between expression of the relB subunit of the NF-kappa B complex and the presence of DC in specific regions of normal unstimulated lymphoid tissues. Here we show that relB expression also correlates with differentiation of DC in autoimmune infiltrates in situ, and that a mutation disrupting the relB gene results in mice with impaired antigen-presenting cell function, and a syndrome of excess production of granulocytes and macrophages. Thymic UEA-1+ medullary epithelial cells from normal mice show striking similarities to DC and, interestingly, these cells are also absent in relB mutant mice. Taken together, these results suggest that relB is critical in the coordinated activation of genes necessary for the differentiation of two unrelated but phenotypically similar cells (DC and thymic UEA-1+ medullary epithelial cells) and is therefore a candidate for a gene determining lineage commitment in the immune system.
Collapse
Affiliation(s)
- L Burkly
- Biogen Inc., Cambridge, Massachusetts 02142
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- P J Fink
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|