1
|
Carvalho DN, Gonçalves C, Sousa RO, Reis RL, Oliveira JM, Silva TH. Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1079-1119. [PMID: 39254780 PMCID: PMC11541305 DOI: 10.1007/s10126-024-10361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R's policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Baghel M, Baghel I, Kumari P, Bharkatiya M, Joshi G, Sakure K, Badwaik H. Nano-delivery Systems and Therapeutic Applications of Phytodrug Mangiferin. Appl Biochem Biotechnol 2024; 196:7429-7463. [PMID: 38526662 DOI: 10.1007/s12010-024-04906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
In order to cure a range of ailments, scientists have investigated a number of bioactive antioxidant compounds produced from natural sources. Mangiferin, a C-glycosyl xanthone-structured yellow polyphenol, is abundant in mangoes and other dietary sources. In-depth examinations found that it is effective in the treatment of a variety of disorders due to its antiviral, anti-inflammatory, antiproliferative, antigenotoxic, antiatherogenic, radioprotective, nephroprotective, antihyperlipidemic, and antidiabetic properties. However, it is recognised that mangiferin's poor bioavailability, volatility, and limited solubility restrict its therapeutic usefulness. Over time, effective solutions to these problems have arisen in the shape of effective delivery methods. The current articles present a summary of the several researches that have updated Mangiferin's biopharmaceutical characteristics. Additionally, strategies for enhancing the bioavailability, stability, and solubility of this phytodrug have been discussed. This review provides detailed information on the development of innovative Mangiferin delivery methods such as nanoparticles, liposomes, micelles, niosomes, microspheres, metal nanoparticles, and complexation, as well as its therapeutic applications in a variety of sectors. This article provides effective guidance for researchers who desire to work on the formulation and development of an effective delivery method for improved magniferin therapeutic effectiveness.
Collapse
Affiliation(s)
- Madhuri Baghel
- Apollo College of Pharmacy, Anjora, Durg, 491001, Chhattisgarh, India
| | - Ishita Baghel
- Foothill High School, 4375, Foothill Road, Pleasanton, CA, 94588, USA
| | | | - Meenakshi Bharkatiya
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur, 313001, India
| | - Garvita Joshi
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490023, CG, India
| | - Hemant Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, 490020, Chhattisgarh, India.
| |
Collapse
|
3
|
Singh G, Majeed A, Singh R, George N, Singh G, Gupta S, Singh H, Kaur G, Singh J. CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review. RSC Adv 2023; 13:2912-2936. [PMID: 36756399 PMCID: PMC9847229 DOI: 10.1039/d2ra05592a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Copper(i) catalyzed alkyne azide cycloaddition (CuAAC), the quintessential example of 'click chemistry', provides an adaptable and adequate platform for the synthesis of nanogels for sustained drug release at targeted sites because of their better biocompatibility. The coupling of drugs, carried out via various synthetic routes including CuAAC, into long-chain polymeric forms like nanogels has exhibited considerable assurance in therapeutic advancements and intracellular drug delivery due to the progression of water solubility, evacuation of precocious drug release, and improved upthrust of the pharmacokinetics of the nanogels, thereby rendering them as better and efficient drug carriers. The inefficiency of drug transmission to the target areas due to the resistance of complex biological barriers in vivo is a major hurdle that impedes the therapeutic translation of nanogels. This review compiles the data of nanogels synthesized specifically via CuAAC 'click' methodology, as scaffolds for targeted drug delivery and their assimilation into nanomedicine. In addition, it elaborates the ability of CuAAC to graft specific moieties and conjugating biomolecules like proteins and growth factors, onto orthogonally functionalized polymer chains with various chemical groups resulting in nanogels that are not only more appealing but also more effective at delivering drugs, thereby enhancing their site-specific target approach and initiating selective therapies.
Collapse
Affiliation(s)
- Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Ather Majeed
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Nancy George
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana 141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| |
Collapse
|
4
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
5
|
Gaikwad SS, Akalade NV, Salunkhe KS. Nanogel Development and its Application in Transdermal Drug Delivery System. CURRENT NANOMEDICINE 2022; 12:126-136. [DOI: 10.2174/2468187312666220630152606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2025]
Abstract
Background:Nanogels are hydrophilic polymer networks that range in size from 20 to 200 nanometers. Polymer is used to make nanogels, which can be obtained from natural or manu-factured sources. Nanogels can deliver peptides, antigens, carbohydrates, oligonucleotides, proteins, and genes, among other things. These nanogels also provide inorganic materials, such as silver na-noparticles and quantum dots. Both solid and liquid nanogels have the same properties. These nanogels penetrate the stratum corneum more effectively than conventional gels. Dermatology and cosmetology have both experimented with nanoscale technology.Objective:The medication can penetrate the stratum corneum through a variety of routes. One of the ways lipids can infiltrate the skin membrane is through the transcellular route. Cream, gel, oint-ment, lotion, thin-film, and foams are among the topical preparations used. Nanogels are catego-rised into two types: those that respond to stimuli and those that cross-link. For the manufacture of nanogels, numerous polymers of synthetic, natural, or semisynthetic origin are commonly em-ployed. Nanoprecipitation, emulsion polymerization, and dispersion polymerization are all ways to make these nanogels. These nanogels are rarely released by diffusion mechanism employing the Fick’s law.Conclusions:The nano gel is a new advanced technology that allows to improve drug molecule pen-etration in the stratum corneum. If poorly soluble and permeable medications are administered through this nanogel technology, their solubility and permeability will be improved.
Collapse
Affiliation(s)
- Sachin S. Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| | - Nisarga V. Akalade
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| | - Kishor S. Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| |
Collapse
|
6
|
Ahmed Omar N, Amédée J, Letourneur D, Fricain JC, Fenelon M. Recent Advances of Pullulan and/or Dextran-Based Materials for Bone Tissue Engineering Strategies in Preclinical Studies: A Systematic Review. Front Bioeng Biotechnol 2022; 10:889481. [PMID: 35845411 PMCID: PMC9280711 DOI: 10.3389/fbioe.2022.889481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
Collapse
Affiliation(s)
| | - Joëlle Amédée
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
| | - Didier Letourneur
- SILTISS, Saint-Viance, France
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM U1148, LVTS, X Bichat Hospital, Université de Paris, Paris, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
- *Correspondence: Mathilde Fenelon,
| |
Collapse
|
7
|
Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. Int J Pharm 2020; 581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|